文档库 最新最全的文档下载
当前位置:文档库 › 数学思想与方法

数学思想与方法

数学思想与方法形成性考核册答案

一、简答题

1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。

答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。

代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。

它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。

2、比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。

答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。决定性现象的特点是:在一定的条件下,其结果可以唯一确定。因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。

随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。对于这类现象,由于条件和结果之间不存在必然性联系。

在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。这些是确定数学的局限所在。

二、论述题

1、论述社会科学数学化的主要原因。

答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:

第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。

第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。

第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。

第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。

2、论述数学的三次危机对数学发展的作用。

答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。

第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。

第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。

由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。

三、分析题

1、分析《几何原本》思想方法的特点,为什么?

答:(1)封闭的演绎体系

因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上

对概念下定义的要求,原则上不再依赖其它东西。因此《几何原本》是一个封闭的演绎体系。

另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是封闭的。所以,《几何原本》是一个封闭的演绎体系。

(2)抽象化的内容:《几何原本》中研究的对象都是抽象的概念和命题,它所探讨的是这些概念和命题之间的逻辑关系,不讨论这些概念和命题与社会生活之间的关系,也不考察这些数学模型所由之产生的现实原型。因此《几何原本》的内容是抽象的。

(3)公理化的方法:《几何原本》的第一篇中开头5个公设和5个公理,是全书其它命题证明的基本前提,接着给出23个定义,然后再逐步引入和证明定理。定理的引入是有序的,在一个定理的证明中,允许采用的论据只有公设和公理与前面已经证明过的定理。以后各篇除了不再给出公设和公理外也都照此办理。这种处理知识体系与表述方法就是公理化方法。

2、分析《九章算术》思想方法的特点,为什么?

答:(1)开放的归纳体系:从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。

在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综合起来,就得到整个《九章算术》。

另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。因此,《九章算术》是一个开放的归纳体系。

(2)算法化的内容:《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一。

(3)模型化的方法:《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。

数学思想与方法作业2

一、简答题

1、叙述抽象的含义及其过程。

答:抽象是指在认识事物的过程中,舍弃那些个别的、偶然的非本质属性,抽取普遍的、必然的本质属性,形成科学概念,从而把握事物的本质和规律的思维过程。人们在思维中对对象的抽象是从对对象的比较和区分开始的。所谓比较,就是在思维中确定对象之间的相同点和不同点;而所谓区分,则是把比较得到的相同点和不同点在思维中固定下来,利用它们把对象分为不同的类。然后再进行舍弃与收括,舍弃是指在思维中不考虑对象的某些性质,收括则是指把对象的我们所需要的性质固定下来,并用词表达出来。这就形成了抽象的概念,同时也就形成了表示这个概念的词,于是完成了一个抽象过程。

2、叙述概括的含义及其过程。

答:概括是指在认识事物属性的过程中,把所研究各部分事物得到的一般的、本质的属性联系起来,整理推广到同类的全体事物,从而形成这类事物的普遍概念的思维过程。

概括通常可分为经验概括和理论概括两种。经验概括是从事实出发,以对个别事物所做的观察陈述为基础,上升为普遍的认识——由对个体特性的认识上升为对个体所属的种的特性的认识。理论概括则是指在经验概括的基础上,由对种的特性的认识上升为对种所属的属的特性的认识,从而达到对客观世界的规律的认识。在数学中经常使用的是理论概括。

一个概括过程包括比较、区分、扩张和分析等几个主要环节。

3、简述公理方法历史发展的各个阶段

答:公理方法经历了具体的公理体系、抽象的公理体系和形式化的公理体系三个阶段。第一个具体的公理体系就是欧几里得的《几何原本》。非欧几何是抽象的公理体系的典型代表。希尔伯特的《几何基础》开创了形式化的公理体系的先河,现代数学的几乎所有理论都是用形式公理体系表述出来的,现代科学也尽量采用形式公理法作为研究和表述手段。

4、简述化归方法并举例说明。

答:所谓“化归”,从字面上看,应可理解为转化和归结的意思。数学方法论中所论及的“化归方法”是指数学家们把待解决或未解决的问题,通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中去,最终求获原问题之解答的一种手段和方法。例如:要求解四次方程可以令,将原方程化为关于的二次方程这个方程我们会求其解:和,从而得到两个二次方程:和这也是我们会求解的方程,解它们便得到原方程的解:,,,.这里所用的就是化归方法。

二、论述题

1、叙述不完全归纳法的推理形式,并举一个应用不完全归纳法的例子。

答:不完全归纳法的一般推理形式是:

设S= ;

由于具有属性p,具有属性p,……具有属性p,因此推断S类事物中的每一个对象都可能具有属性p。

2、叙述类比推理的形式。如何提高类比的可靠性?

答:类比推理通常可用下列形式来表示:

A具有性质B具有性质,因此,B也可能具有性质。

其中,分别相同或相似。

欲提高类比的可靠性,应尽量满足条件:

(1)A与B共同(或相似)的属性尽可能地多些;(2)这些共同(或相似)的属性应是类比对象A与B的主要属性;

(3)这些共同(或相似)的属性应包括类比对象的各个不同方面,并且尽可能是多方面的;

(4)可迁移的属性d应该是和属于同一类型。

符合上述条件的类比,其结论的可靠性虽然可以得到提高,但仍不能保证结论一定正确。

3、试比较归纳猜想与类比猜想的异同。

答:归纳猜想与类比猜想的共同点是:他们都是一种猜想,即一种推测性的判断,都是一种合情推理,其结论具有或然性,或者经过逻辑推理证明其为真,或者举出反例予以反驳。

归纳猜想与类比猜想的不同点是:归纳猜想是运用归纳法得到的猜想,是一种由特殊到一般的推理形式,其思维步骤为“特例—归纳—猜测”。类比猜想是运用类比法得到的猜想,是一种由特殊到特殊的推理形式,其思维步骤为“联想—类比—猜测”。

数学思想与方法作业3

一、简答题

1、简述计算和算法的含义。

答:计算是指根据已知数量通过数学方法求得未知数的过程,是一种最基本的数学思想方法。随着电子计算机的广泛应用,计算的重要意义更加凸现,主要表现在以下几个方面:(1)推动了数学的应用;(2)加快了科学的数学化进程;(3)促进了数学自身的发展。

算法是由一组有限的规则所组成的一个过程。所谓一个算法它实质上是解决一类问题的一个处方,它包括一套指令,只要按照指令一步一步地进行操作,就能引导到问题的解决。在一个算法中,每一个步骤必须规定得精确和明白,不会产生歧义,并且一个算法在按有限的步骤解决问题后必须结束。

数学中的许多问题都可以归结为寻找算法或判断有无算法的问题,因此,算法对数学中的许多问题的解决有着决定性作用。另外,算法在日常生活、社会生产和科学技术中也有着重要意义。算法在科学技术中的意义主要体现在如下几个方面:(1)用于表述科学结论的一种形式;(2)作为表述一个复杂过程的方法;(3)

减轻脑力劳动的一种手段;(4)作为研究和解决新问题的手段;(5)作为一种基本的数学工具。

2、简述数学教学中引起“分类讨论”的原因。

答:数学教学中引起“分类讨论”的原因有:数学中的许多概念的定义是分类给出的,因此涉及到这些概念时要分类讨论;数学中有些运算性质、运算法则是分类给出的,进行这类运算时要分类讨论;有些几何问题,根据题设不能只用一个图形表达,必须全面考虑各种不同的位置关系,需要分类讨论;许多数学问题中含有字母参数,随着参数取值不同,会使问题出现不同的结果。因此需要对字母参数的取值情况进行分类讨论。

二、论述题

1、什么是数学模型方法?并用框图表示MM方法解题的基本步骤。

答:所谓数学模型方法是利用数学模型解决问题的一般数学方法,简称MM 方法。

MM方法解题的基本步骤框图表示如下:

2、特殊化方法在数学教学中有哪些应用?

答:特殊化方法在数学教学中的应用大致有如下几个方面:利用特殊值(图形)解选择题;利用特殊化探求问题结论;利用特例检验一般结果;利用特殊化探索解题思路。

数学思想方法作业4答案

一、简答题

1、简述《国家数学课程标准》的几个主要特点。

答:2001年6月教育部推行了试用的九年义务教育阶段《国家数学课程标准》(实验稿),充分体现了数学课程改革与发展的内涵、特点和具体目标,并呈现下列八个特点:

1)、把“现实数学”作为数学课程的一项内容。即为学生准备的数学应该是与现实世界密切联系的数学,且能够在实际中得到应用的数学。

2)、把“数学化”作为数学课程的一个目标。学生学习数学化的过程是将学生的现实数学进一步提高、抽象的过程。

3)、把“再创造”作为数学教育的一条原则。把“已完成的数学”当成是“未完成的数学”来教,给学生提供“再创造”的机会。

4)、把“问题解决”作为数学教学的一种模式。《数学课程标准》在“学段目标”中的“解决问题”方面的具体阐述,实际上提出了“问题解决”的教学模式,即:情境—问题—探索—结论—反思。

5)、把“数学思想方法”作为课程体系的一条主线。要求学生掌握基本的数学思想方法。

6)、把“数学活动”作为数学课程的一个方面。强调学生的数学活动,注重“向学生提供充分从事数学活动的机会”,帮助他们“获得广泛的数学活动的经验”。

7)、把“合作交流”看成学生学习数学的一种方式。要让学生在解决问题的过程中“学会与他人合作”,并能“与他人交流思维的过程和结果”。

8)、把“现代信息技术”作为学生学习数学的一种工具。

2、简述数学思想方法教学的几个主要阶段。

答:学生理解数学思想方法要经历潜意识阶段、明朗化阶段、深化理解三个阶段。

二、论述题

1、试述小学数学加强数学思想方法教学的重要性。

答:数学思想方法是联系知识与能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。具体表现在:

(1)掌握数学思想方法能更好地理解数学知识。

(2)数学思想方法对数学问题的解决有着重要的作用。

(3)加强数学思想方法的教学是以学生发展为本的必然要求。

2、简述数学思想方法教学应注意哪些事项?

答:数学思想方法教学应注意以下事项:

(1)把数学思想方法的教学纳入教学目标;

(2)重视数学知识发生、发展的过程,认真设计数学思想方法教学的目标;

(3)做好数学思想方法教学的铺垫工作和巩固工作;

(4)不同数学思想方法应有不同的教学要求;

(5)注意不同数学思想方法的综合应用。

三、分析题

1.利用下列材料,请你设计一个“数形结合”教学片断。

材料:如图13-3-18所示,相邻四点连成的小正方形面积为1平方厘米。(1)分别连接各点,组成下面12个图形,你发现有什么排列规律?(2)求出各图形外面一周的点子数、中间的点子数以及各图形的面积,找出一周的点子数、中间的点子数、各图形的面积三者之间的关系。

提示:所设计的教学片断要求(1)对于第一个问题,体现教师引导学生观察图形的特点(可以是独立思考,也可以是小组讨论),然后组织学生交流各自的理解,师生共同(完全)归纳概括出规律的过程。(2)对于第二个问题,要充分展示学生结合“数”与“形”来考察问题的思维过程。教师所起的主导作用就是引导学生分析同一图中我们需要考察哪些“数”?由于这里涉及到三个方面的数量关系,教师同时还要进行学法指导,使学生获得这样的策略:当所要考察的图形的数量关系较复杂时,除了灵活运用数形结合方法外,还可用列表的形式来帮助分析。

解答提示:(一)、列表分析(也可以只列举部分图形分析)

(二)、观察、归纳:(限于篇幅只列举部分图形分析)

图形(1)的面积:4÷2+0-1=1

图形(3)的面积:8÷2+0-1=3

图形(5)的面积:4÷2+1-1=2

图形(8)的面积:14÷2+1-1=7

图形(9)的面积:4÷2+2-1=3

图形(11)的面积:8÷2+2-1=5

图形(12)的面积:14÷2+2-1=8

(三)、总结规律:

图形的面积与格点数满足关系:

面积=边上的点数÷2+内部点数-1

(四)、教学设计

一、找图的排列规律

师:同学们看图,找出图的排列规律来。(学生可以讨论)

生:老师我们发现,第一行的图中间没有点,第二行的图中间有一个点,第三行的图中间有两个点。

师:非常好!

二、数一数每个图周边的点数

师:现在我们来数一数每个图周边的点数。并将结果填入下列表中。(师生一起数)

三、计算面积

师:数完边点数,我们再来计算每个图的面积。结果也填入表中。(师生一起计算面积,过程略)

四、寻找每一列三个数之间的规律

师:我们根据这个表,找一找每列三个数之间的关系。告诉同学们,希望找到相同的规律。

生:第一列,边点数等于面积乘以4。

师:这个规律能否用到第二列呢?

生:不能,因为6不等于2乘以4。

生2:第一列,边点数除以2,减去面积等于1。

师:好!看看这个规律能否用到第二列?

生:能。还能用到第三、第四列。

生2:老师,这个规律不能用到第五列。

师:很好!我们看看这个规律到第五列可以怎样改一改。

生:我发现了,边点数除以2,加上内点数,再减去面积等于1。

师:非常好!大家一起算一算,是不是每一列都具有这个规律。

五、总结

师:我们把发现的规律总结成公式:

边点数/2+内点数-面积=1

也可以写为:

边点数/2+内点数-1=面积

2. 假定学生已有了除法商的不变性知识和经验,在学习分数的性质时,请你设计一个“分类法”教学片断。

解答:材料如下:

提示:所设计的教学片断要求(1)依据给定的材料设计一个学生动手操作的活动,让学生分一分,想一想,说一说,充分展示学生对分类的思考,交流各种不同分法的依据,并通过反思不同分法找出分类的标准;(2)体现教师引导学生归纳概括“分类方法”的过程,并开展学法指导,使学生获得“单一标准下分类方法”的策略。

2、假定学生已有了除法商的不变性知识经验,在学习分数的性质时,请你设计一个孕育“类比法”教学片断。

提示:所设计的教学片断要求(1)以小组合作探究的形式,让学生举例说明除法的被除数和除数与分数的分子和分母之间存在什么样的关系(相似关系)?商与分数又有什么关系(相似关系)?那么与被除数、除数同时扩大或缩小相同的倍数其商不变相似的结论又是什么呢?通过一系列层层递进式的问题情境,把学生的思维导向分数与商相似的特征上来,创设学生自主探究分数的性质的全过程;(2)教学设计要体现教师引导学生归纳概括“分数的性质”的过程,并重视学习方法指导,使学生初步领会用“类比法”获取新知识的策略。

解答提示:(一)、列表类比(教师引导,师生共同描述除法的性质,再由学生通过类比归纳出分数的性质)

注:性质(三)、(四)作为扩展学习内容(应根据学生的实际情况取舍)

(二)教学设计

一、回忆除法和分数的有关概念

师:同学们还记得除法的哪些概念和记号?

生:被除数÷除数=商

师:对。我们再回忆分数的概念和记号。

生:。

师:好。大家一起来比较这两个概念的相似性。

生:商好比分数,被除数好比分子。除数好比分母。

二、回忆除法的性质

师:很好。现在我们回忆除法有哪些性质。

生:被除数与除数同时扩大,商不变。

生2:被除数与除数同时缩小,商也不变。

三、类比出分数的性质

师:对。刚才我们知道商好比分数,因此我们可以问:除法的这些性质是否可以类比到分数上来呀?

生:可以。

师:应该怎样类比呢?

生:分子与分母同时扩大,分数不变。生2:分子与分母同时缩小,分数不变。

四、总结成公式

师:很好!这些性质怎样用公式表示呢?生:可以列表如下:

相关文档
相关文档 最新文档