文档库 最新最全的文档下载
当前位置:文档库 › 剪切速率

剪切速率

剪切速率
剪切速率

剪切速率

基本概述

流体的流动速相对圆流道半径的变化速率—剪切速率(shear rate)公式:剪切速率=流速差/所取两页面的高度差

塑料熔体注塑时流道的剪切速率一般不低于1000ˉS 浇口的剪切速率一般在100000ˉS—1000000ˉS

具体介绍

粘度为液体分子内摩擦的量度,也是物体粘流性质的一项具体反映。粘度的定义为一对平行板,面积为A,相距dr,板间充以某液体。今对上板施加一推力F,使其产生一速度变化du。由于液体的粘性将此力层层传递,各层液体也相应运动,形成一速度梯度du/dr,称剪切速率,以r′表示。F/A称为剪切应力,以τ表示。剪切速率与剪切应力间具有如下关系:(F /A)=η(du/dr),此比例系数η即被定义为液体的剪切粘度(另有拉伸粘度,剪切粘度平时使用较多,一般不加区别简称粘度时多指剪切粘度),故η=(F/A)/(du/dr)=τ/r′。

粘度单位常用“泊”,以P表示。部分粘度单位换算如下:

1泊(P)=0.1牛顿秒/米2(Ns/m2)=3.6×102千克/米时(kg/mh)、1千克力秒/米2(kgfs/m2)=1Pa.s=98.07泊(P)。

PVC与大部分聚合物一样,影响其粘度的因素有:

1,温度T,PVC粘度随温度升高呈指数下降。

当剪切速率r′=100/s时,温度T=150℃,

软质PVC的粘度η=6200 Pa.s=608047泊(P)。

硬质PVC的粘度η=17000 Pa.s=1677900泊(P)。

温度T=190℃,

软质PVC的粘度η=310 Pa.s=30597泊(P)。

硬质PVC的粘度η=600 Pa.s=59220泊(P)。

2,剪切速率r′,剪切速率r′增加,PVC粘度下降。

温度T=150℃时,剪切速率r′=100/s,

软质PVC的粘度η=6200 Pa.s=608047泊(P)。

硬质PVC的粘度η=17000 Pa.s=1677900泊(P)。

剪切速率r′=1000/s,

软质PVC的粘度η=900 Pa.s=88263泊(P)。

硬质PVC的粘度η=2000 Pa.s=197400泊(P)。

3,压力,在同一温度下,增压会增加PVC的粘度。

剪切应力为τ,剪切速率为Y,则粘度η=τ/Y,称为动力粘度,单位为Pa.s(泊),常用单位为mPa.s (如一般原油测试的粘度)。

一般现在流变仪测试的粘度结果都是1/s;而一些以前的粘度计测试的结果却是rpm,它换算成1/s估计有些困难,因为它的转子属于相对测试系统,转子尺寸和测量杯的尺寸的影响,无法准确得到其剪切速率。

一、流体流动的基本概念

1.剪切速率和剪切应力

液体与固体的重要区别之一是液体具有流动性,就是说,加很小的力就能使液体发生变形,而且只要力作用的时间相当长,很小的力就能使液体发生很大的变形。以河水在水面的流速分布为例,可以观察到越靠近河岸,流速越小,河中心处流速最大,河面水的流速分布如图3-1所示。管道中水的流速分布是中心处流速最大,越向周围流速越小,靠近管壁处流速为零。流速剖面形状为抛物线。从立体来看,它像一个套筒望远镜或拉杆天线,如图3-2所示。

水中各点的流速不同,可以设想将其分成许多薄层。通过管道中心线上的点作一条流速的垂线,自中心线上的点沿垂线向管壁移动位置,随着位置的变化流速也在发生变化。液流中各层的流速不同这个现象,通常是用剪切速率(或称流速梯度)这个物理量来描述的。如果在垂直于流速的方向上取一段无限小的距离缸,流速由I/变化到v+dv,则比值dw/d工表示在垂直于流速方向上单位距离流速的增量,即剪切速率。剪切速率也可用符号了来表示。若剪切速率大,则表示液流中各层之间流速的变化大;反之,流速的变化则小。在SI单位制中,流速的单位为m/s,距离的单位为m,所以剪切速率的单位为s-1。钻井液在循环过程中,由于它在各个部位的流速不同,因此剪切速率也不相同。流速越大之处剪切速率越高,反之则越低。一般情况下,沉砂池处剪切速率最低,大约在10一20s-1;沸慰占?0~250 s-1;钻杆内100~1 000 s-1;钻头喷嘴处最高,大约在10 000~100 000 s-1。

液流中各层的流速不同,故层与层之间必然存在着相互作用。由于液体内部

内聚力的作用,流速较快的液层会带动流速较慢的相邻液层,而流速较慢的液层又会阻碍流速较快的相邻液层。这样在流速不同的各液层之间会发生内摩擦作用,即出现成对的内摩擦力(即剪切力),阻碍液层剪切变形。通常将液体流动时所具有的抵抗剪切变形的物理性质称做液体的粘滞性。

为了确定内摩擦力与哪些因素有关,牛顿通过大量实验研究提出了液体内摩擦定律,通常称为牛顿内摩擦定律。其内容为:液体流动时,液体层与层之间的内摩擦力(F)的大小与液体的性质及温度有关,并与液层间的接触面积(S)和剪切速率(γ)成正比,而与接触面上的压力无关,即

F =μSγ (3-1)

内摩擦力F除以接触面积S即得液体内的剪切应力r,剪切应力可理解为单位面积上的剪切力,即

τ=F/S=μγ (3-2)

以上两式中,μ是量度液体粘滞性大小的物理量,通常称为粘度。μ的物理意义是产生单位剪切速率所需要的剪切应力。μ越大,表示产生单位剪切速率所需要的剪切应力越大。粘度是液体的性质,不同液体有不同的μ值。μ还与温度有关,液体的粘度一般随温度的升高而降低。

在SI单位制中,r的单位是Pa,γ的单位是s-1,μ的单位是Pa·s。由于Pa·s单位太大,在实际应用中一般用mpa·s表示液体的粘度。例如,在20℃时,水的粘度ρ=1.008 7mpa·s。在工程应用中,卢的常用单位为厘泊(cP),cP=1 mpa·s。

式(3-2)是牛顿内摩擦定律的数学表达式。通常将剪切应力与剪切速率的:系遵守牛顿内摩擦定律的流体,称为牛顿流体;不遵守牛顿内摩擦定律的流体称为非牛顿流体。水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低流动的气体等均为牛顿流体,高分子聚合物的浓溶液和悬浮液等一般为非牛流体。大多数钻井液都属于非牛顿流体。

2.流变模式和流变曲线

剪切应力和剪切速率是流变学中的两个基本概念,钻井液流变性的核心题就是研究各种钻井液的剪切应力与剪切速率之间的关系。这种关系可以用学关系式表示,也可以作出图线来表示。若用数学关系式表示时,称为流变方程习惯上又称为流变模式,如式(3-2)就是牛顿流体的流变模式。若用图线来表时,就称为流变曲线。

当对某种钻井液进行实验,求出一系列的剪切速率与剪切应力数据时,即在直角坐标图上作出剪切速率随剪切应力变化的曲线,或剪切应力随剪切速变化的曲线。这两种形式是一样的,只是纵、横坐标互换了一下。鉴于目前各:文献著作中,两种表示方法同时存在,所以对它们都应该熟悉。图3-3a和3-3b分别为两种液体流变曲线的不同表示方法。由于是通过原点的直线,很显然两液体均为牛顿流体。在图3-3b中,直线的斜率tanα=τ/γ,对某种液体说,μ是一个常数,说明在任何剪切速率下,牛顿流体的粘度不变。剪切速率γ

增加一倍,剪切应力τ也相应地增加一倍。也就是说,只用一个参数μ即可描牛顿流体的流变性。从图中还可看出,α越大,tanα越大,即液体的粘度μ

也越大。

3.流体的基本流型

按照流体流动时剪切速率与剪切应力之间的关系,流体可以划分为不同的类型,即所谓流型。除牛顿流型外,根据所测出的流变曲线形状的不同,又可将非牛顿流体的流型归纳为塑性流型、假塑性性流型和膨胀流型。以上四种基本流型的流变曲线见图3-4。符合这四种流型的分别叫牛顿流体、塑性流体、假塑性流

体和膨胀性流体。

前面已提到,牛顿流体是流变性最简单的流体。流变方程为式(3-2),其意义是,当牛顿流体在外力作用下流动时,剪切应力与剪切速率成正比。从牛顿流体的流变方程和流变曲线可以看出,这类流体有如下特点:当τ>O时,γ>0,因此只要对牛顿流体施加一个外力,即使此力很小,也可以产生一定的剪切速率,即开始流动。此外,其粘度不随剪切速率的增减而变化。

膨胀流体比较少见。从图3-4可发现其流动特点是:稍加外力即发生流动;粘度

随剪切速率(或剪切应力)增加而增大,静置时又恢复原状。与假塑性流体相反,

其流变曲线凹向剪切应力轴。这种流体在静止状态时,所含有的颗粒是分散的。

当剪切应力增大时,部分颗粒会纠缠在一起形成网架结构,使流动阻力增大。

因为目前广泛使用的多数钻井液为塑性流体和假塑性流体,因此,下面将重点讨论这两种类型的非牛顿流体。

二、塑性流体返回

高粘土含量的钻井液、高含蜡原油和油漆等都属于塑性流体。与牛顿流体不同,塑性流体当γ=0时,τ≠0。也就是说,它不是加很小的剪切应力就开始流动,而是必须加一定的力才开始流动,这种使流体开始流动的最低剪切应力(τs)称为静切应力(又称静切力、切力或凝胶强度)。从图3-4中塑性流体的流变曲线可以看出,当剪切应力超过τs时,在初始阶段剪切应力和剪切速率的关系不是一条直线,表明此时塑性流体还不能均匀地被剪切,粘度随剪切速率增大而降低(图中曲线段)。继续增加剪切应力,当其数值大到一定程度之后,粘度不再随剪切速率增大而发生变化,此时流变曲线变成直线(图中直线段)。此直线段的斜率称为塑性粘度(表示为μ

P

或PV)。延长直线段与剪切应力轴相交于一点τ0,通常将τ0 (亦可表示为YP)称为动切应力(常简称为动切力或屈服值)。塑性粘度和动切力是钻井液的两个重要流变参数。

引入动切力之后,塑性流体流变曲线的直线段即可用下面的直线方程进行描述;

τ=μ

0十μ

P

γ (3-3)

此式即是塑性流体的流变模式。因是宾汉首先提出的,该式常称为宾汉模式(BinghamModel),并将塑性流体称为宾汉塑性流体。

塑性流体表现上述流动特性是与它的内部结构分不开的。例如,水基钻井液主要由粘土、水和处理剂所组成。粘土矿物具有片状或棒状结构,形状很不规则,颗粒之间容易彼此连接在一起,形成空间网架结构。研究表明,粘土颗粒可能出现如图3-5所描述的三种不同连接方式,即面-面(FacetoFace)、端-面(EdgetoFace)和端-端(EdgetoEdge)连接。这是由于粘土颗粒表面的性质(带电性和水化膜)极不均匀引起的。片状的粘土颗粒有两种不同的表面,即带永久负电荷的板面(简称"面")和既可能带正电荷也可能带负电荷的端面(简称"端"),这样粘土表面在溶液中就可能形成两种不同的双电层。一般说来,粘土胶体颗粒的相互作用受三种力的支配,即双电层斥力、静电吸引力和范德华引力。粘土颗粒间净的相互作用力是斥力和吸力的代数和,因此在不同条件下,会产生以上三种不同的连接方式。例如,当端面带正电荷时,板面与端面就由于静电吸引力占优势而彼此连接;当加入可溶性电解质时,则由于其中的阳离子压缩双电层使ζ电位降低,从而降低了双电层斥力,于是引起端-面连接;如果加入的电解质足够多,双电层斥力降至某种程度之后,则会发生面-面连接。

三种不同的连接方式将产生不同的后果。面-面连接会导致形成较厚的片,即颗粒分散度降低,这一过程通常称为聚结(Aggregation);而端-面与端-端连接则形成三维的网架结构,特别是当粘土含量足够高时,能够形成布满整个空间的连续网架结构,胶体化学上称做凝胶结构,这一过程通常称为絮凝(Floccula -tion)。与聚结和絮凝相对应的相反过程分别叫做分散(Dispersion)和解絮凝(Defiocculation),如图3-5所示。

一般情况下,钻井液中的粘土颗粒都在不同程度上处在一定的絮凝状态。因此,要使钻井液开始流动,就必须施加一定的剪切应力,破坏絮凝时形成的这种连续网架结构。这个力即静切应力,由于它反映了所形成结构的强弱,因此又将静切应力称为凝胶强度。

在钻井液开始流动以后,由于初期的剪切速率较低,结构的拆散速度大于其恢复速度,拆散程度随剪切速率增加而增大,因此表现为粘度随剪切速率增加而降低(即图3-4中塑性流体的曲线段)。随着结构拆散程度增大,拆散速度逐渐减小,结构恢复速度相应增加。因此,当剪切速率增至一定程度,结构破坏的速度和恢复的速度保持相等(即达到动态平衡)时,结构拆散的程度将不再随剪切速率增加而发生变化,相应地粘度亦不再发生变化(图中直线段)。该粘度即钻井液的塑性粘度。因为该参数不随剪切应力和剪切速率而改变,所以对钻井液的水力计

)/γ,塑性粘度的单位为算是很重要的。从宾汉模式可以得出:μp=(τ-τ

mpa·S。

三、假塑性流体返回

某些钻井液、高分子化合物的水溶液以及乳状液等均属于假塑性流体。其流变曲线是通过原点并凸向剪切应力轴的曲线(见图3-4)。这类流体的流动特点是:施加极小的剪切应力就能产生流动,不存在静切应力,它的粘度随剪切应力的增大而降低。假塑性流体和塑性流体的一个重要区别在于:塑性流体当剪切速率增大到一定程度时,剪切应力与剪切速率之比为一常数,在这个范围,流变曲

线为直线;而假塑性流体剪切应力与剪切速率之比总是变化的,即在流变曲线中

无直线段。

假塑性流体服从下式所示的幂律方程,即

τ=Kγn (3-4)

该式为假塑性流体的流变模式,习惯上称为幂律模式(PowerLowModel)。式中的n(流性指数)和K(稠度系数)是假塑性流体的两个重要流变参数。

在中等和较高的剪切速率范围内,幂律模式和宾汉模式均能较好地表示实际钻井液的流动特性,然而在环形空间的较低剪切速率范围内,幂律模式比宾汉模式更接近实际钻井液的流动特性。因此,尽管宾汉模式一直是国内外钻井液工艺中最常用的流变模式,但目前认为,采用幂律模式能够比宾汉模式更好地表示钻井液在环空的流变性,并能更准确地预测环空压降和进行有关的水力参数计算。在钻井液设计和现场实际应用中,这两种流变模式往往同时使用。为了进一步提高幂律模式的应用效果,一种经修正的幂律模式,即赫-巴三参数流变模式也已经引入对钻井液流变性的研究中,其数学表达式和各参数的物理意义将在本章第二节中讨论。

第6讲 剪切与挤压的实用计算

第6讲教学方案——剪切与挤压的实用计算

§2-13剪切和挤压的实用计算 1.工程上的剪切件 通过如图3-1所示的钢杆受剪和图3-2所示的联接轴与轮的键的受剪情况,可以看出,工程上的剪切件有以下特点: 1)受力特点 杆件两侧作用大小相等,方向相反,作用线相距很近的外力。 2)变形特点 两外力作用线间截面发生错动,由矩形变为平行四边形。(见动画:受剪切作用的轴栓)。 因此剪切定义为相距很近的两个平行平面内,分别作用着大小相等、方向相 对(相反)的两个力,当这两个力相互平行错动并保持间距不变地作用在构件上时,构件在这两个平行面间的任一(平行)横截面将只有剪力作用,并产生剪切变形。 2.剪应力及剪切实用计算 剪切实用计算中,假定受剪面上各点处与剪力Q 相平行的剪应力相等,于是受剪面上的剪应力为 A Q =τ (3-1) 式中:Q —剪力;A —剪切面积 τ—名义剪切力 剪切强度条件可表示为: []ττ≤=A Q (3-2) 式中:[]τ—构件许用剪切应力。

剪切面为圆形时,其剪切面积为: 4 2 d A π = 对于如图3-3所示的平键,键的尺寸为l h b? ?,其剪切面积为:l b A? =。 例2-14电瓶车挂钩由插销联接,如图3-4a。插销材料为20#钢,[]MPa 30 = τ,直径mm 20 = d。挂钩及被联接的板件的厚度分别为mm 8 = t和mm 12 5.1= t。牵引力kN 15 = P。试校核插销的剪切强度。 解:插销受力如图3-4b所示。根据受力情况,插销中段相对于上、下两段,沿m—m和n —n两个面向左错动。所以有两个剪切面,称为双剪切。由平衡方程容易求出 2 P Q= 插销横截面上的剪应力为 () []τ π τ< = ? ? ? = = - MPa 9. 23 10 20 4 2 10 15 2 3 3 A Q 故插销满足剪切强度要求。 例2-15 如图3-8所示冲床,400 max = P kN,冲头 []400 = σMPa,冲剪钢板360 = b τMPa,设计冲头 的最小直径值及钢板厚度最大值。 解:(1)按冲头压缩强度计算d []σ π σ≤ = = 4 2 d P A P 所以

剪切力的计算方法

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

剪切计算

一、剪切应力的计算 要获得剪切面上的应力,应当首先考查剪切面上的内力。当构件受剪切作用时,在剪切面上自然要产生内力,内力的大小和方向可用裁面法求得。还是以螺栓受力为例,如图5-9所示。利用裁面法将螺栓沿剪切面m-m 截开,取其中的一部分为研究对象(本例取下半部分),由平衡条件可知,螺栓上半部分对下半部分的作用力的合力与外力F 是一对平衡力,它们大小相等、方向相反、作用线相互平行,该力F s 与剪切面m-m 相切,称之为剪力。 图5-9 截面法求取剪力示意图 根据平衡条件可知,为保持下半部分螺栓的平衡,作用在剪切面上的内力F s 与外力F 平衡,运用平衡方程可求出内力即剪力的大小为: F s =F (5-1) 虽然已经求得了剪切内力,但还不能对直接求取剪切应力,因为还不知道剪切面上的应力分布情况。一般情况下,剪力在剪切面上的分布是很复杂的,像螺栓在外力的作用下不仅发生剪切变形,还有微小的拉伸变形、弯曲变形等。如果进行精确计算,难度很大,但由于螺栓长度比较短、剪切面比较小,所以发生的拉伸变形、弯曲变形可以忽略不计,所以常采用较为实用的工程计算方法。此时只考虑连接件的主要变形——剪切变形,可以认为这时的剪切面上只有剪力作用,面且剪力在剪切面上是均匀分布的。因此,剪切面上的剪切应力(通常称为剪应力或切应力)大小为: s F A τ= (5-2) 式中,τ称为剪应力,F s 为剪切面上的剪力,A 为受剪构件的剪切面面积。剪应力τ的单位与正应力一样,用MPa(N /mm 2)或Pa(N /m 2)来表示。 注意,利用式(5-2)很出的剪应力数值,实际上是平均剪应力、是以剪切面上的剪力均匀分布这一假定为前提的,故又称为名义剪应力,名义剪应力实际上就是剪切面上的平均剪应力。 二、剪切应变的计算 为分析物体受剪力作用后的变形情况,从剪切面上取一直角六面体分析。如图5-10所示,在剪力作用下,相互垂直的两平面夹角发生了变化,即不再保持直角,则此角度的改变量γ称为剪应变、又称切应变。它是对剪切变形的一个度量标准,通常用弧度(rad)来度量。在小变形情况下,γ可用tanγ来近似,即 tan ee ff ae bf γγ''≈= = ' ae bf dx '== (5-3)

5-2剪切实用计算共26页

§5-2 剪切实用计算 一、剪切应力的计算 要获得剪切面上的应力,应当首先考查剪切面上的内力。当构件受剪切作用时,在剪切面上自然要产生内力,内力的大小和方向可用裁面法求得。还是以螺栓受力为例,如图5-9所示。利用裁面法将螺栓沿剪切面m-m 截开,取其中的一部分为研究对象(本例取下半部分),由平衡条件可知,螺栓上半部分对下半部分的作用力的合力与外力F 是一对平衡力,它们大小相等、方向相反、作用线相互平行,该力F s 与剪切面m-m 相切,称之为 剪力。 图5-9 截面法求取剪力示意图 根据平衡条件可知,为保持下半部分螺栓的平衡,作用在剪切面上的内力F s 与外力F 平衡,运用平衡方程可求出内力即剪力的大小为: F s =F (5-1) 虽然已经求得了剪切内力,但还不能对直接求取剪切应力,因为还不知道剪切面上的应力分布情况。一般情况下,剪力在剪切面上的分布是很复杂的,像螺栓在外力的作用下不仅发生剪切变形,还有微小的拉伸变形、弯曲变形等。如果进行精确计算,难度很大,但由于螺栓长度比较短、剪切面比较小,所以发生的拉伸变形、弯曲变形可以忽略不计,所以常采用较为实用的工程计算方法。此时只考虑连接件的主要变形——剪切变形,可以认为这时的剪切面上只有剪力作用,面且剪力在剪切面上是均匀分布的。因此,剪切面上的剪切应力(通常称为剪应力或切应力)大小为: s F A τ= (5-2) 式中,τ称为剪应力,F s 为剪切面上的剪力,A 为受剪构件的剪切面面积。剪应力τ的单位与正应力一样,用MPa(N /mm 2)或Pa(N /m 2)来表示。 注意,利用式(5-2)很出的剪应力数值,实际上是平均剪应力、是以剪切面上的剪力均匀分布这一假定为前提的,故又称为名义剪应力,名义剪应力实际上就是剪切面上的平均剪应力。

剪切应力计算

拉伸、压缩与剪切 1 基本概念及知识要点 1.1 基本概念 轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。 以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。 1.2 轴向拉压的内力、应力及变形 1.横截面上的内力:由截面法求得横截面上内力的合力沿杆的轴线方向,故定义为轴力 F N ,符号规定:拉力为正,压力为负。工程上常以轴力图表示杆件轴 力沿杆长的变化。 2.轴力在横截面上均匀分布,引起了正应力,其值为 F A σ= N 正应力的符号规定:拉应力为正,压应力为负。常用的单位为MPa 、Pa 。 3.强度条件 强度计算是材料力学研究的主要问题之一。轴向拉压时,构件的强度条件是 []F A σσ= ≤N 可解决三个方面的工程问题,即强度校核、设计截面尺寸及确定许用载荷。 4.胡克定律 线弹性范围内,杆的变形量与杆截面上的轴力F N 、杆的长度l 成正比,与截面尺寸A 成反比;或描述为线弹性范围内,应力应变成正比,即 F l l E E A σε?= =N 式中的E 称为材料的弹性模量,EA 称为抗拉压刚度。胡克定律揭示在比例极限内,应力和应变成正比,是材料力学最基本的定律之一,一定要熟练掌握。 1.3 材料在拉压时的力学性能 材料的力学性能的研究是解决强度和刚度问题的一个重要方面。材料力学性能的研究一般是通过实验方法实现的,其中拉压试验是最主要、最基本的一种试验,由它所测定的材料性能指标有: E —材料抵抗弹性变形能力的指标;b s σσ,—材料的强度指标; ψδ, —材料的塑性指标。低碳钢的拉伸试验是一个典型的试验。

剪切计算及常用材料强度

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 []s F A ττ= ≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: []0.60.8[]τσ= 对脆性材料: []0.8 1.0[]τσ= (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm 。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 2s F F = 销钉横截面上的剪应力为: 332151023.9MPa<[] 2(2010)4s F A ττπ-?===?? 故销钉满足剪切强度要求。 例5-2 如图5-13所示冲床,F max =400KN ,冲头[σ]=400MPa ,冲剪钢板的极限剪应力τb =360 MPa 。试设计冲头的最小直径及钢板最大厚度。

第三章剪切和联结的实用计算

第四部分 剪切和联结的实用计算 3.1预备知识 一、基本概念 1、联接件 工程构件中有许多构件往往要通过联接件联接。所谓联接是指结构或机械中用螺栓、销钉、键、铆钉和焊缝等将两个或多个部件联接而成。这些受力构件受力很复杂,要对这类构件作精确计算是十分困难的。 2、实用计算 联接件的实用计算法,是根据联接件实际破坏情况,对其受力及应力分布作出一些假设和简化,从而建名义应力公式,以此公式计算联接件各部分的名义工作应力。 另一方面,直接用同类联接件进行破坏试验,再按同样的名义应力公式,由破坏载荷确定联接件的名义极限应力,作为强度计算依据。实践证明,用这种实用计算方法设计的联接许是安全可靠的。 3、剪切的实用计算 联接件一般受到剪切作用,并伴随有挤压作用。剪切变形是杆件的基本变形之一,它是指杆件受到一对垂直于杆轴的大小相等、方向相反、作用线相距很近的力作用后所引起的变形,如图3—1a 所示。此时,截面cd 相对于ab 将发生错动(滑移)(图3—1b )即剪切变形。若变形过大,杆件将在cd 面和ab 面之间的某一截面m —m 处被剪断,m —m 截面称为剪切面。 联接件被剪切的面称为剪切面。剪切的名义切应力公式为A Q =τ,式中Q 为剪力,A 为剪切面面积,剪切强度条件为 []ττ≤= A Q 4、挤压的实用计算 联接件中产生挤压变形的表面称为挤压面。名义挤压应力公式为jy jy jy A F = σ ,式中F jy 为 挤压力,A jy 是挤压面面积。当挤压面为平面接触时(如平键),挤压面积等于实际承压面积;当接触面为柱面时,挤压面积为实际面积在其直径平面上投影。 挤压强度条件为 []jy jy jy jy A F σ σ≤= (a) (b)

相关文档
相关文档 最新文档