文档库 最新最全的文档下载
当前位置:文档库 › 导热微分方程的推导_by Jacob

导热微分方程的推导_by Jacob

导热微分方程的推导_by Jacob
导热微分方程的推导_by Jacob

导热微分方程的推导

Jacob

〇.傅立叶定律

???

?

????+??+??-=?-=k j i z T y T x T gradT q λλ 其中,i ,j ,k 分别为x ,y ,z 坐标轴上的单位矢量。λ为导热率(单位

K

m W

?)。 其含义表示,单位时间内,通过某单位截面上的热流q

(单位2m

W ),与该处的温度梯度gradT 成正比,但方向相反。

一.导热微分方程的推导依据

1.依据

根据能量守恒定律与傅立叶定律,建立导热物体中的温度场应满足的数学表达式,即导热微分方程;

A E Q +?=

Q ,物体在单位时间内获得的热量; E ?,物体在单位时间内内能的增加; A ,物体对外界所做的功。

对于固体来说,温度改变导致体积变化对环境所做的功A 可忽略不计,上式变

为:

E Q ?=

2.一般性假设

(1) 所研究的物体是各向同性的连续介质; (2) 热导率、比热容和密度均为已知; (3) 物体内具有内热源,强度V q (单位3

m W

),表示单位体积、单位时间内放出的热量

二.直角坐标系下导热微分方程的推导

考察dt 时间内微元体中:

[导入与导出净热量] + [内热源发热量] = [热力学能的增加] 1. 导入与导出微元体的净热量

(1)dt 时间内、沿x 轴方向、经垂直于x 轴 的热量导入表面导入的热量:

dydzdt q dQ x x ?= (单位J )

同理,dt 时间内、沿x 轴方向、经垂直于x 轴 的热量导出表面导出的热量:

dydzdt q dQ dx x dx x ++= (单位J )

x q ,dx x q +分别为热量导入面和导出面上的热流密度,单位

2

m W

。 请注意,事实上这里有: dx x

q q q x

dx

x x ??-

=-+,所以导入与导出的热量差为: dydzdt dx x

q dQ dQ x

dx x x ???-

=-+ (单位J ) 同理:

(2)dt 时间内、沿y 轴方向、经垂直于y 轴 的两表面导入导出的热量差:

dxdzdt dy y

q dQ dQ y dy y y ???-

=-+ (单位J )

(3)dt 时间内、沿z 轴方向、经垂直于z 轴 的两表面导入导出的热量差:

dxdydt dz z

q dQ dQ z

dz z z ???-

=-+ (单位J ) 2. 微元体自身的发热量

dt 时间内,微元体自身的发热量dv Q :

dxdydzdt q Q v dv =

3.微元体热力学能的增量(即微元体温度升高耗费的能量)

dt 时间内,微元体温度升高耗费的能量T Q ?:

dxdydz dt t

T

c

Q T ???=?ρ 根据前面所述的能量守恒,有:

[]

T dv dz z z dy y y dx x x

Q Q dQ dQ dQ dQ dQ dQ

?+++=+-+-+-)()()(

dxdydz dt t T

c dxdydzdt q dxdydt dz z q dxdzdt dy y q dydzdt dx x q v

z y x ???=+?????????-???-???-ρ整理得:

t T

c q z q y q x q v

z y x ??=+??

??????-??-??-ρ 又因为傅立叶定律,即???? ????+??+??-=?-=k j i z T y T x T gradT q λλ ,所以: 22x T x q x ??-=??λ, 22y T

y q y ??-=??λ, 22z T z q z ??-=??λ,带入上式,得直角坐标系下的导热微分方程:

t T

c q z T y T x

T v ??=+????????+??+??ρλ222222

三.柱坐标系下导热微分方程的推导

注意,直接写出柱坐标系下的傅立叶定律:

)1(

k j i z

T T r r T T gradT q ??+??+??-=?-=-=φλλλ 解释如下:

沿着r 方向的温度梯度:r

T

??,容易理解; 沿着φ方向的温度梯度:

φ??T r 1,我们把它写成φ

d r T

??,注意分母是沿着φ方向的微小增量,或许就容易理解了; 沿着z 方向的温度梯度:z

T

??,这个很好理解,不多解释。

依据能量守恒,最后可得出柱坐标系中的导热微分方程:

t T

c q z T T r r T r r

T v ??=+????????+??+??+??ρθλ222222211

四.球坐标系下导热微分方程的推导

注意,直接写出球坐标系下的傅立叶定律:

)sin 11(

k j i φ

θθλλλ??+??+??-=?-=-=T r T r r T T gradt q 解释如下:

沿着r 方向的温度梯度:

r T

??,容易理解; 沿着θ方向的温度梯度:

?T 1,写成T

?的形式,可能就容易理解了,注意分

母正是沿着θ方向的微小增量。;

沿着φ方向的温度梯度:

φ

θ??T r sin 1,写成φθd r T

??sin 的形式,就容易理解了。注意

分母是什么?对着上面的图看一看,就理解了。

再根据能量守恒,就可以得出球坐标系下的导热微分方程:

t T

c q T tg r T r T r r T r r T v ??=+????????+??+??+??+??ρθθθφθλ2

22222222211sin 12

参考文献

[1] 传热学,韩风双,百度文库资料;

[2] 热应力,严宗达,王洪礼,高等教育出版社。

导热微分方程的推导_by Jacob

导热微分方程的推导 Jacob 〇.傅立叶定律 ??? ? ????+??+??-=?-=k j i z T y T x T gradT q λλ 其中,i ,j ,k 分别为x ,y ,z 坐标轴上的单位矢量。λ为导热率(单位 K m W ?)。 其含义表示,单位时间内,通过某单位截面上的热流q (单位2m W ),与该处的温度梯度gradT 成正比,但方向相反。 一.导热微分方程的推导依据 1.依据 根据能量守恒定律与傅立叶定律,建立导热物体中的温度场应满足的数学表达式,即导热微分方程; A E Q +?= Q ,物体在单位时间内获得的热量; E ?,物体在单位时间内内能的增加; A ,物体对外界所做的功。 对于固体来说,温度改变导致体积变化对环境所做的功A 可忽略不计,上式变 为: E Q ?= 2.一般性假设 (1) 所研究的物体是各向同性的连续介质; (2) 热导率、比热容和密度均为已知; (3) 物体内具有内热源,强度V q (单位3 m W ),表示单位体积、单位时间内放出的热量

二.直角坐标系下导热微分方程的推导 考察dt 时间内微元体中: [导入与导出净热量] + [内热源发热量] = [热力学能的增加] 1. 导入与导出微元体的净热量 (1)dt 时间内、沿x 轴方向、经垂直于x 轴 的热量导入表面导入的热量: dydzdt q dQ x x ?= (单位J ) 同理,dt 时间内、沿x 轴方向、经垂直于x 轴 的热量导出表面导出的热量: dydzdt q dQ dx x dx x ++= (单位J ) x q ,dx x q +分别为热量导入面和导出面上的热流密度,单位 2 m W 。 请注意,事实上这里有: dx x q q q x dx x x ??- =-+,所以导入与导出的热量差为: dydzdt dx x q dQ dQ x dx x x ???- =-+ (单位J ) 同理: (2)dt 时间内、沿y 轴方向、经垂直于y 轴 的两表面导入导出的热量差: dxdzdt dy y q dQ dQ y dy y y ???- =-+ (单位J )

第三章 平面一般力系

第三章平面一般力系 教学目的及要求 1.掌握平面任意力系向一点简化的方法,会应用解析法求主矢和主矩,熟知平面任意力系简化的结果。 2.深入理解平面力系的平衡条件及平衡方程的三种形式。 3.能熟练地计算在平面任意力系作用下物体和物体系统的平衡问题。 4.正确理解静定与静不定的概念,会判断物体系统是否静定。 5.理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法及其综合作用。 §3-1 平面一般力系向作用面内一点简化 教学重点:1.平面一般力系如何向作用面内一点简化 2. 主矢与主矩的概念 教学难点:对力的平移定理的理解和应用 教学内容: 首先对什么是平面一般力系进行分析。对于平面一般力系如何向其作用面内一点简化,从而引出力的平移定理。 1.力的平移定理 作用在刚体上的力可以向任意点平移,但必须附加一力偶,附加力偶的力偶矩等于原来的力对平移点(新作用点)的矩,它是一般力系向上点简化的依据。2.基本概念 1) 合力矢:汇交力系一般地合成为一合力,合力的作用线通过汇交点,合力矢等于力系的主矢。 2)主矢:平面力系各力的矢量和,即 3.应用力的的平移定理将平面一般力系向作用面内一点简化 用图形来进行讲解力系向一点简化的方法和结果。最终平面一般力系向一点简化可以得到两个简单的力系:平面汇交力系和平面力偶系。应用前两章学过的内容,这两个简单的力系还可以进一步简化成一个主矢和对简化中心的主矩。 结论:平面一般力系向作用面内任选一点O简化,可得到一个力和一个力偶,这个力等于该力系的主矢,作用线通过简化中心O,这个力偶的矩等于该力

系对于点O的主矩。 注意:主矢与简化中心无关;而主矩与简化中心有关,必须指明对于哪一点的主矩。 4.固定端约束 它是平面一般力系向作用面内一点简化的一个典型应用。可以将固定端支座的约束反力向作用平面内点A简化得到一个力和一力偶,这个力用两个未知分力来代替。 它限制了物体在平面内的转动,所以比铰支座多了一个给反力偶。 §3-2 平面一般力系简化结果与分析 教学重点:平面一般力系向作用面内一点简化的结果 教学难点:将一个力系向指定点简化的具体应用。 教学内容: 1.平面力系的简化步骤如下: 1)选取简化中心O:题目指定点或自选点(一般选在多个力交点上) 2) 建立直角坐标系Oxy 3) 求主矢 4) 求主矩:逆正顺负,画在图中 5) 简化结果讨论 2.平面力系的简化结果 一个力系的主矢与简化中心的选取无关;一般情况下,主矩与简化中心的选取有关。 平面一般力系向作用面内一点简化结果,有四种情况: 1) 简化为一个力偶的情形: 力系的主矢等于零,而力系对于简化中心的主矩不等于零。即: F R′=0,M o≠0 2) 简化为一合力的情形 力系向点O简化的结果为主矩等于零,主矢不等于零。即: F R′≠0,M o=0 3)若F R′≠0,M o≠0 平面力系与一力偶等效,此力偶为平面力系的合力偶,其力偶矩用主矩M o 度量,这时主矩与简化中心的选择无关。 原力系合成为作用点为O′的力F R,合力作用线在点O的哪一侧,由主矢和

平面一般力系的平衡 作业及答案

平面一般力系的平衡 一、 判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。( ) 图 1 2.图示三个不为零的力交于一点,则力系一定平衡。( ) 图 2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。( ) 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度 轴,那么Σ =0。( ) 图 3 图 4

5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。( ) 图 5 图 6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。( ) 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。( ) 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同( ) 图 7 图 8 9.图8所示梁,若求支反力 时,用平面一般力系的平衡方程不能全部求出。 ( ) 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。( ) 图 9 图 10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。( )

12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ( )。 13.平面任意力系,其独立的二力矩式平衡方程为 ∑Fx=0, ∑M A =0, ∑M B=0,但要求矩心A、B的连线不能与x轴垂直。( ) 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影( )。 A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同 2.图11所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。这说明( )。 图 11 A. 支反力R0与P平衡 B. m与P平衡 C. m简化为力与P平衡 D. R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3. 图12所示三铰刚架,在D角处受一力偶矩为m的力偶作用, 如将该力力偶移到E角出,支座A、B的支反力 ( )。 图12 A.A、B处都变化 B.A、B处都不变 C.A处变,B处不变

第四章平面一般力系

第4章平面一般力系 1、图示平面机构,正方形平板与直角弯杆ABC 在C 处铰接。平板在 板面内受矩为M=8N ·m 的力偶作用,若不计平板与弯杆的重量,则当系统平衡时,直角弯杆对板的约束反力大小为( C )。 2 2 2、悬臂梁承受均匀分布载荷,支座A 处的反力有四种结果,正确的是( B )。 =ql, M A =0 =ql, M A =21 q l 2 =ql, M A =q l 2 =ql, M A =31 q l 2 3、图示平面结构,由两根自重不计的直角弯杆组成,C 为铰链。不计各接触处摩擦,若在D 处作用有水平向左的主动力F ,则支座 A 对系统的约束反力为( C )。 ,方向水平向右

B.2F ,方向铅垂向上 22 ,方向由A 点指向C 点 22 ,方向由A 点背离C 点 4、图示平面直角弯杆ABC ,AB=3m ,BC=4m ,受两个力偶作用,其力偶矩分别为M 1=300N ·m 、M 2=600N ·m ,转向如图所示。若不计杆重及各接触处摩擦,则A 、C 支座的约束反力的大小为( D )。 =300N ,F C =100N =300N ,F C =300N =100N ,F C =300N =100N ,F C =100N 5、力系向某点平移的结果,可以得到( D )。 A.一个主矢量 B.一个主矩 C.一个合力 D.一个主矢量和一个主矩 6、平面一般力系向一点O 简化结果,得到一个主矢量R ′和一个主

矩m0,下列四种情况,属于平衡的应是( B )。 ′≠0 m0=0 ′=0 m0=0 ′≠0 m0≠0 ′=0 m0≠0 7、以下有关刚体的四种说法,正确的是( D )。 A.处于平衡的物体都可视为刚体 B.变形小的物体都可视为刚体 C.自由飞行的物体都可视为刚体 D.在外力作用下,大小和形状看作不变的物体是刚体 8、力的作用线都相互平行的平面力系称(D )力系。 A.空间平行B:空间一般 C:平面一般D:平面平行 9、力的作用线既不汇交于一点,又不相互平行的力系称(B )力系。A:空间汇交B:空间一般C:平面汇交 D:平面一般 10、平面力偶系合成的结果是一个(B )。 A:合力B:合力偶C:主矩D:主矢和主矩 11、平面汇交力系合成的结果是一个(A )。 A:合力B:合力偶C:主矩D:主矢和主矩12、平面平行力系合成的结果是(D )。

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

运动微分方程推导

以应力表示的黏性流体运动微分方程的推导 1. 黏性流体的内应力 黏性流体在运动时,表面力不仅有法向应力,还有切向应力,因此黏性流体的表面力不垂直于作用面。 如在任一点取一微小的正六面体,如图所示,作用在平面ABCD 上的力 有法向应力 xx p ,与切向应力xy τ和xz τ。应力符号的第一个字母表示作 用面的外法线方向,第二个脚标表示应力方向。 流体场内任一点的应力状况,即该点流体微团在任一方向的作用面上的应力,都可以用通过该点的三个相互垂直的作用面上的九个应力分量来表示。 2. 以应力表示的运动微分方程 在黏性流体中取一边长为dx,dy,dz 的长方体。各表面应力的方向如图所示。为清晰起见,其中两个面上的应力符号未标。各应力的值均为代数值,正直表示应力沿相应坐标系的正向,反之亦然。由于流体不能承受拉力,因此,

xx p yy p ,zz p 必为负值。 由牛顿第二定律,x 方向的运动微分方程为: Xdxdydz ρ+xx p dydz +[-(xx p - xx p x ??dy )dydz ]+ yx τdxdz +[-(yx τ- yx y τ??dy )dxdz ]+ zx τdxdy +[-(zx τ- zx z τ??dz )]x du dxdy dxdydz dt ρ= 等式两边分别除以 ρ,然后分别对x,y,z 求偏导,得到: 1 1 ( )zx x XX du P yx X X y z dt τρρ τ??+ + +=???? (1) 同理,在y 方向,由牛顿第三定律得:

[()][)][()] yy yy yy xy xy xy zy zy zy y Ydxdydz dxdz dy dxdz y dydz dx dydz x dxdy dz dxdy z dxdydz dt p p p du ρρττ τ ττ τ + +-- + ?+-- + ?+ +-- ?=??? 等式两边同时除以 ρ,然后分别对x,y,z 求偏导得: 1 1 ( )yy zy xy y Y y z x dt p du ρρ ττ+ ++ = ?????? (2)

热传导方程

前言 本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。 一、概念与常量 1、温度场: 指某一时刻下,物体内各点的温度分布状态。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。 补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。 2、等温面与等温线: 三维物体内同一时刻所有温度相同的点的集合称为等温面; 一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。 3、温度梯度: 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient)。用grad t表示。 定义为: 补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。

在直角坐标系中: 3、导热系数 定义式:单位 导热系数在数值上等于单位温度降度(即1)下,在垂直于热流密度的单位面积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 补充:由物质的种类、性质、温度、压力、密度以及湿度影响。 二、热量传递的三种基本方式 热量传递共有三种基本方式:热传导;热对流;热辐射 三、导热微分方程式(统一形式:) 直角坐标系: 圆柱坐标系: 球坐标系: 其中,称为热扩散系数,单位,为物质密度,为物体比热容,为物体导热系数,为热源的发热率密度,为物体与外界的对流交换系数。 补充: 1处研究的对象为各向同性的、连续的、有内热源、物性参数已知的导热物体。 2稳态温度场,即则有:,此式称为泊松方程。 3无内热源的稳态温度场,则有:,此式称为拉普拉斯方程。 四、单值条件 导热问题的单值条件通常包括以下四项: 1几何条件:表示导热物体的几何形状与大小(一维、二维或三维)

质点运动微分方程

第3篇 动力学 第10章 质点运动微分方程 一、目的要求 1.对质点动力学的基本概念(如惯性、质量等)和动力学基本定律要在物理课程的基础上进一步理解其实质。 2.深刻理解力和加速度的关系,能正确地建立质点的运动微分方程,掌握质点动力学第一类基本问题的解法。 3.掌握质点动力学第二类基本问题的解法,特别是当作用力分别为常力、时间函数、位置函数和速度函数时,质点直线运动微分方程的积分求解方法。对运动的初始条件的力学意义及其在确定质点运动中的作用有清晰的认识,并会根据题目的已知条件正确提出运动的初始条件。 二、基本内容 1.基本概念: 动力学的基本定律,质点的运动微分方程;质点动力学的两类基本问题。 2.主要公式: (1)牛顿第二定律:a m F =(式中,质点的质量为m ,所受合力为F ,其加速度为a 。) (2)质点运动微分方程 1)矢径形式:22dt r d m F =或F r m =,∑=i F F 2)直角坐标形式:∑=x F dt x d m 22,∑=y F dt y d m 22,∑=z F dt z d m 22 3)自然坐标形式:2n m F υρ=∑,d m F dt τυ =∑,∑ = b F 0 强调:动力学基本定律仅在惯性参考系中成立,因此,公式中的速度、加速度指的是绝对速度和绝对加速度。 三、重点和难点 1.重点: (1)建立质点运动微分方程。 (2)求解质点动力学的两类基本问题。 2.难点: 在质点动力学第二类问题中,根据题目所要求的问题对质点运动微分方程进行变量交换后再积分的方法。 四、教学提示 1.建议 (1)在复习物理课程有关内容的基础上,进一步理解动力学各定律的实质,了解古典力学的适用范围。 (2)复习和运用静力学中的合力投影定理与点的运动学知识,学习如何建立不同形式的质点运动微分方程。 (3)注意区分质点动力学的两类基本问题及其解题特点,归纳动力学问题的解题步骤。 2.建议学时 课内(2学时)课外(3学时) 3.作业 10-5,10-12,10-14

第一章 热理论和导热微分方程

第一章 导热理论和导热微分方程 相互接触的物体各部分之间依靠分子、原子和自由电子等微观粒子的热运动而传递热量的过程称为导热。在纯导热过程中物体各部分之间没有宏观运动。 与固体物理的理论研究方法不同,传热学研究导热问题时不是对导热过程的微观机理作深入的分析,而是从宏观的、现象的角度出发,以实验中总结出来的基本定律为基础进行数学的推导,以得到如温度分布、温度-时间响应和热流密度等有用的结果。这种处理方法的物理概念简单明了,但所要求的数学知识和技能仍是复杂和困难的。本书在材料的选取上,注意在介绍有重要应用价值的结果的同时,也给予求解导热问题的典型数学方法以足够的重视,以培养和发展读者独立解决问题的能力。 1-1 导热基本定律 1-1-1 温度场 由于传热学以宏观的、现象的方式来研究导热问题,团此必须引入连续介质假定,以便用连续函数来描述温度分布。温度场就是在一定的时间和空间域上的温度分布。它可以表示为空间坐标和时间的函数。由于温度是标量,温度场是标量场。常用的空间坐标系有三种:直角坐标系、柱坐标系和球坐标系。在直角坐标系中,温度场可以表示为 (,,,)t f x y z τ= (1-1-1) 式中:t 表示温度;x 、y 、z 为三个空间坐标;τ表示时间。 若温度场各点的温度均不随时间变化,即0t τ??=,则称该温度场为稳态温度场,否则为非稳态温度场。若温度场只是一个空间坐标的函数,则称为一维温度场;若温度场是两个或三个空间坐标的函数,则称为二维或三维温度场。 1-1-2 等温面与温度梯度 物体内温度相同的点的集合所构成的面叫做等温面。对应不同温度值的等温面构成等温面族。等温面与任一截面的交线形成等温线。由于等温线具有形象直观的优点,二维温度场常用等温线来表示温度分布。 由于在同一时刻物体的一个点上只能有一个温度值,所以不同的等温面不可能相交。它们或者在域内形成封闭曲线,或者终止于物体的边界。 如图1-l 所示,在物体内某一点P 处,沿空间某一方向l 的温度的变化率 图1-l 等温线和温度梯度

平面任意力系习题

第三章 习题3-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。 习题3-2.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是:

取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且: 如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是:

向A点简化的结果是一个力R A和一个力偶M A,且: 如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。 习题3-3.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核:

结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 (3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:

列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 习题3-4.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

2第二章 力系的简化和平衡方程习题+答案

第二章力系的简化和平衡方程 一、填空题 1、在平面力系中,若各力的作用线全部,则称为平面汇交力系。 2、求多个汇交力的合力的几何法通常要采取连续运用力法则来求得。 3、求合力的力多边形法则是:将各分力矢首尾相接,形成一折线,连接其封闭边,这一从最先画的分力矢的始端指向最后面画的分力矢的的矢量,即为所求的合力矢。 4、平面汇交力系的合力作用线过力系的。 5、平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。 6、平面汇交力系合成的结果是一个合力,这一个合力的作用线通过力系的汇交点,而合力的大小和方向等于力系各力的。 7、若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。 8、如果共面而不平行的三个力成平衡,则这三力必然要。 9、在平面直角坐标系内,将一个力可分解成为同一平面内的两个力,可见力的分力是量,而力在坐标轴上的投影是量。 10、合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。 11、已知平面汇交力系合力R在直角坐标X、Y轴上的投影,利用合力R与轴所夹锐角a的正切来确定合力的方向,比用方向余弦更为简便,也即tg a= | Ry / Rx | 。 12、用解析法求解平衡问题时,只有当采用坐标系时,力沿某一坐标的分力的大小加上适当的正负号,才会等于该力在该轴上的投影。 13、当力与坐标轴垂直时,力在该坐标轴上的投影会值为;当力与坐标轴平行时,力在该坐标轴上的投影的值等于力的大小。 14、平面汇交力系的平衡方程是两个的方程,因此可以求解两个未知量。 15、一对等值、反向、不共线的平行力所组成的力系称为_____。 16、力偶中二力所在的平面称为______。 17、在力偶的作用面内,力偶对物体的作用效果应取决于组成力偶的反向平行力的大小、力偶臂的大小及力偶的______。 18、力偶无合力,力偶不能与一个_____等效,也不能用一个______来平衡. 19、多轴钻床在水平工件上钻孔时,工件水平面上受到的是_____系的作用。 20、作用于物体上并在同一平面内的许多力偶平衡的必要和充分条件是,各力偶的_____代数和为零。 21、作用于刚体上的力,可以平移到刚体上的任意点,但必须同时附加一力偶,此时力偶的_____等于_____对新的作用点的矩。 22、一个力不能与一个力偶等效,但是一个力却可能与另一个跟它_____的力加一个力偶等效。 23、平面任意力系向作用面内的任意一点(简化中心)简化,可得到一个力和一个力偶,这个力的力矢等于原力系中所有各力对简化中心的矩的_____和,称为原力系主矢;这个力偶的力偶矩等于原力系中各力对简化中心的矩的和,称为原力对简化中心的主矩。 24、平面任意力系向作用面内任一点(简化中心)简化后,所得的主矢与简化中心的位置____,而所得的主矩一般与简化中心的位置______。 25、平面任意力系向作用面内任一点和简化结果,是主矢不为零,而主矩不为零,说明力系无论向哪一点简化,力系均与一个_____等效。 26、平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个______等效。 27、平面任意力系向作用面内任一点简化后,若主矢_____,主矩_____,则原力系必然是平衡力系。 28、平面任意力系向作用面内的一点简化后,得到一个力和一个力偶,若将其再进一步合成,则可得到一个_____。 29、平面任意力系只要不平衡,则它就可以简化为一个______或者简化为一个合力。 30、对物体的移动和转动都起限制作用的约束称为______约束,其约束反力可用一对正交分力和一个力偶来表示。 31、建立平面任意力系的二力矩式平衡方程应是:任取两点A、B为矩心列两个力矩方程,取一轴X轴为投影列一个投影方程,但A、B两点的连线应_____于X轴。

热传导+对流微分方程推导

热传导微分方程 导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象。此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。 1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q ——热流密度,是一个向量,2/()Kcal m h gradT ——温度梯度,也是一个向量,℃/m 。 λ——导热系数,又称热导率,/()Kcal mh C o ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(thermal conductivity )及其影响因素 导热系数λ( /()Kcal mh C o )是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。 导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。单位是:W/(m·K)。 在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程。 3.热传导微分方程推导 在t 时刻w 界面的温度梯度为 x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 22??+??=???? +??

单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ?? ? ? ????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ 单位时间内流入六面体的总热量为: dxdydz z T y T x T ??? ?????+??+??222222λ (3-1)

平面一般力系的平衡 作业及答案

平面一般力系得平衡 一、判断题:?1、下图就是由平面汇交力系作出得力四边形,这四个力构成力多边形封闭,该力系一定平衡。( ) 图1 2、图示三个不为零得力交于一点,则力系一定平衡。( ) ?图 2 3、如图3所示圆轮在力F与矩为m得力偶作用下保持平衡,说明力可与一个力偶平衡。( ) 4、图4所示力偶在x轴上得投影ΣX=0,如将x轴任转一角度轴,那么Σ =0。( ) ?图 3 图4 5、如图5所示力偶对a得力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。( )

图 5 图 6 6、图6所示物体得A、B、C、D四点各有一力作用,四个力作出得力多 7、如果两个力偶得力偶矩大边形闭合,则此物体处于平衡状态。( )? 小相等,则此两个力偶等效.( )? 8、图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果就是否相同() ?图 7 图 8 9、图8所示梁,若求支反力时,用平面一般力系得平衡方程不能全部 10、图9所示物体接触面间静摩擦系数就是f,要使物体求出. ()? 向右滑动。试判断哪种施力方法省力。( ) 图 9 图10 11、力在坐标轴上得投影与该力在该轴上分力就是相同得。( ) ?12、如果将图10所示力F由A点等效地平移到B点,其附加力矩M=

13、平面任意力系,其独立得二力矩式平衡方程为∑Fx=0,Fa ( )。? ∑MA=0, ∑MB=0,但要求矩心A、B得连线不能与x轴垂直。()?二、选择题? 1、同一个力在两个互相平行得同向坐标轴上得投影()。?A、大小相等,符号不同 B、大小不等,符号不同 C、大小相等,符号相同D、大小不等,符号相同 2、图11所示圆轮由O点支承,在重力P与力偶矩m作用下处于平衡. 这说明( )。 图 11 A. 支反力R0与P平衡 B。m与P平衡 C. m简化为力与P平衡?D.R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3、图12所示三铰刚架,在D角处受一力偶矩为m得力偶作用, 如将该力力偶移到E角出,支座A、B得支反力(). 图12 A.A、B处都变化?B。A、B处都不变? C.A处变,B处不变?E.B处变,A处不变 4、图13所示一平面上A、B、C、D四点分别有力作用,这四个力?画出得力多边形自行闭合,若向平面内任一点O简化可得( ). 图13 A.M0=0, R′=0?B、M0≠0,R′=0 C。M0≠0,R′≠0 D、 M0=0,R′≠0 5、图14所示物体放在平面上,设AB间与BC间得最大静摩擦力分别为FAB与FBC,外力P在什么情况下,使A、B一起运动?( ) 图14 A.P>F AB〉F BC B、FAB〈 P 〈 F BC? C、 F BC<P 〈F AB

运动微分方程

JLU 物理与光电工程学院第一章质点力学之1.4运动微分方程

JLU 物理与光电工程学院§1.4 质点运动定律 1. 第一定律是第二定律所不可缺少的前提, 因为第一定律为整个力学体系选定了一类特殊的参考系-----惯性参考系 着重明确: 力的独立作用原理牛顿三定律完整的牛顿力学理论体系牛顿力学:牛顿三定律为基础的动力学理论和牛顿的万有引力定律(引力理论).

JLU 物理与光电工程学院3. 牛顿第三定律 两个质点间的作用力和反作用力总是同时成对出现, 大小相等, 方向相反, 作用在同一条直线上. 2.第二定律中的质量是惯性质量,与万有引力中的质量相比,近年来的实验结果已经证实相差不到10-12. 爱因斯坦把引力质量等于惯性质量作为广义相对论的基本公设.

JLU 物理与光电工程学院4. 力的独立作用原理: 如果一个质点同时受多个力的作用, 这些力各自产生的动力学效果不受其他力存在的影响. m F a 11r r =m F a 22r r =m F a n n r r =… n a a a a r L r r r +++=21n a m a m a m a m r L r r r +++=21∑=+++=i n F F F F r r L r r 21),,(t r r F r m i &r r r &&r ∑=力的独立作用原理指出, 力不可以是加速度的函数.

JLU 物理与光电工程学院5.经典力学中的力 1)在牛顿力学中, 力由牛顿第二定律定义. 牛顿第二、第三定律指出: 力是物体间的相互作用, 力的动力学效果是使受力质点产生加速度. 2)万有引力定律: 任何两质点间均存在相互作用引力, 方向沿两质点连线, 大小为: 2 2 1 /r m Gm F =3)经典力学中其他常见的力:重力;弹簧弹性力;柔软绳的张力;刚性线或面的支撑力;刚性线或面的摩擦力;洛伦兹力;质点在流体中受流体阻力.6.力学相对性原理和经典力学时空观 (1)力学相对性原理:对任何惯性系,力学运动规律完全相同.或者说,对力学运动规律而言,一切惯性系都是等价的.

圆柱坐标系下三维非稳态导热微分方程

笛卡尔坐标系下三维非稳态导热微分方程为: ?Φ+????+????+????=??)()()(z t z y t y x t x t c λλλτρ (a 式) 如何得到圆柱坐标下的方程?有2种方法,一是按照类似笛卡尔坐标的方法,通过能量守恒及傅里叶定律得到(我还没推出来);二是由笛卡尔坐标变换得到,ppt 中为第二种方法。 以下给出变换过程:转换的目的是用r ?z 消去xyz 。 涉及多元复合函数求导,可参见同济版《微积分》(下)第80页例题9。 (b 式) (c 式) 怎么理解这个公式?x ??表示某个式子对变量x 求偏导,例如x z y x t ??),,(表示函数),,(z y x t ?对变量x 求偏导,不要被这种写法吓到。直角坐标时,xyz 是基本未知量;圆柱坐标时,r ?z 是基本未知量。它们是一一对应的,彼此可以互相表示对方。(b 式)就是用r ?z 表示x (当然,z 跟x 是不存在函数关系的,即0=??x z ,ppt 上这么写只是为了形式上的对应。) 这个公式是怎么来的?涉及多元复合函数求导法则,见同济版《微积分》(下)第77页“情形2”,用一个简图来理解:假设有一个温度场函数),,(z y x t ,温度t 是xyz 的函数,把 r ?z 看成中间变量,22y x r += ,x y arctan =? t ?y z z z x z x r x r x ????+????+????=????r x y x z y z y r y r y ????+ ????+????=????

0+????+????=????+????+????=??x t x r r t x z z t x t x r r t x t ???? 类似地,就有0+????+????=????+????+????=??y t y r r t y z z t y t y r r t y t ???? z t z t ??=??(圆柱坐标下z 跟直接坐标完全没有变化) 理解了b 式子以后,我们发现这个式子中仍然含有x y ,要进一步运算消掉x y : ?cos r x =,?sin r y =,22y x r +=,x y arctan =? 求导得(如果忘了怎么求看《微积分》(上)) ??cos cos )(2222==+=?+?=??r r y x x x y x x r r r r y x y x x y x ???sin sin )(arctan 222-=-=+-=??=?? 上面两项代入b 式,得 ? ??????-??=????+????+????=??r r x z z x x r r x sin cos (d ) 类似地, ??sin sin )(2222==+=?+?=??r r y x y y y x y r r r r y x x y x y y ???cos cos )(arctan 222==+=??=?? 上面两项代入c 式,得 ? ??????+??=????+????+????=??r r y z z y y r r y cos sin (e ) (d )(e )式实现了用r ?取代x y 的目的。

平面一般力系平衡方程的其他形式

第九讲内容 一、平面一般力系平衡方程的其他形式 前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。 1.二力矩形式的平衡方程 在力系作用面内任取两点A 、B 及X 轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 ?? ? ?? =∑=∑=∑000B A M M X (4-6) 式中X 轴不与A 、B 两点的连线垂直。 证明:首先将平面一般力系向A 点简化,一般可得到过A 点的一个力和一个力偶。若0A =M 成立,则力系只能简化为通过A 点的合力R 或成平衡状态。如果0B =∑M 又成立,说明R 必通过B 。可见合力R 的作用线必为AB 连线。又因0=∑X 成立,则0X =∑=X R ,即合力R 在X 轴上的投影为零,因AB 连线不垂直X 轴,合力R 亦不垂直于X 轴,由0X =R 可推得0=R 。可见满足方程(4-6)的平面一般力系,若将其向A 点简化,其主矩和主矢都等于零,从而力系必为平衡力系。 2.三力矩形式的平衡方程 在力系作用面内任意取三个不在一直线上的点A 、B 、C ,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即

?? ? ?? =∑=∑=∑000C B A M M M (4-7) 式中,A 、B 、C 三点不在同一直线上。 同上面讨论一样,若0A =∑M 和0B =∑M 成立,则力系合成结果只能是通过A 、B 两点的一个力(图4-14)或者平衡。如果0C =∑M 也成立,则合力必然通过C 点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,0C =∑M 才能成立。因此,力系必然是平衡力系。 综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、 式(4-6)、式(4-7),在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。 【例4-7】 某屋架如图4-15(a )所示,设左屋架及盖瓦共重 kN 31=P ,右屋架受到风力及荷载作用,其合力kN 72=P ,2P 与BC 夹角 为?80,试求A 、B 支座的反力。 【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X 轴和Y 轴,如图4-15(b )所示,列出三个平衡方程 kN 39.2342.0770cos 0 70cos 02A 2A =?=?==?-=∑P X P X X 30tan 470cos 1270sin 416 0221B A =????+??-?-?=∑P P P Y M

平面力系合成与平衡习题0

平面力系合成与平衡习题 1、判断题: (1)无论平面汇交力系所含汇交力的数目是多小,都可用力多边形法则求其合力。()(2)应用力多边形法则求合力时,所得合矢量与几何相加时所取分矢量的次序有关。()(3)若两个力在同一轴上的投影相等,则这两个力的大小必定相等。() (4)两个大小相等式、作用线不重合的反向平行力之间的距离称为力臂。() (5)平面力偶系合成的结果为一合力偶,此合力与各分力偶的代数和相等。() (6)平面任意力系向作用内任一点简化的主矢,与原力系中所有各力的矢量和相等。()(7)一平面任意力系向作用面内任一点简化后,得到一个力和一个力偶,但这一结果还不是简化的最终结果。() (8)平面任意力系向作用面内任一点简化,得到的主矩大小都与简化中心位置的选择有关。() (9)只要平面任意力系简化的结果主矩不为零,一定可以再化为一个合力()。 (10)在求解平面任意力系的平衡问题时,写出的力矩方程的矩心一定要取在两投影轴的交点处。() (11)平面任意力系平衡方程的基本形式,是基本直角坐标系而导出来的,但是在解题写投影方程时,可以任意取两个不相平行的轴作为投影轴,也就是不一定要使所取的两个投影轴互相垂直。() 2、填空题: (1)在平面力系中,若各力的作用线全部,则称为平面汇交力系。 (2)平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。 (3)若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。(4)合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。 (5)平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个______等效。 (6)平面任意力系向作用面内的一点简化后,得到一个力和一个力偶,若将其再进一步合成,则可得到一个_____。 (7)平面任意力系向作用面内任一点简化后,若主矢_____,主矩_____,则原力系必然是平衡力系。 (8)平面任意力系只要不平衡,则它就可以简化为一个______或者简化为一个合力。(9)建立平面任意力系的二力矩式平衡方程应是:任取两点A、B为矩心列两个力矩方程,取一轴X轴为投影列一个投影方程,但A、B两点的连线应_____于X轴。 (10)平面任意力系的平衡方程可以表示成不同的形式,但不论哪种形式的独立方程应为______个。 (11)平面平行力系的平衡方程,也可以是任取A、B两点为矩心而建成两个力矩方程,但

平面任意力系

第三章 平面任意力系 一、目的要求 1.掌握平面任意力系向一点简化的方法,会应用解析法求主矢和主矩,熟知平面任意力系简化的结果。 2.深入理解平面力系的平衡条件及平衡方程的三种形式。 3.能熟练地计算在平面任意力系作用下单个刚体和物体系统平衡问题。 4.正确理解静定与静不定的概念,会判断物体系统是否静定。 5.理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法及其综合作用。 二、基本内容 1.力的平移定理:可以把作用在刚体上点A 的力F 平行移到任一点B ,但必须同时附加一个力偶,这个附加力偶矩等于原来的力F 对新作用点B 的矩。 2.平面力系的简化 步骤如下: ①选取简化中心O :题目指定点或自选点(一般选在多个力交点上) ②建立直角坐标系Oxy ③主矢:平面力系各力的矢量和,即 ∑∑∑===+==n i n i n i i R Y X 111'j i F F 其中 ?????∑∑=∑+∑=??????∑=∑=X Y Y X Y X R Ry Rx αtan :)()(:2 2'''方向大小F F F 其中α为F R 与x 轴所夹锐角,所在象限由ΣX 、ΣY 符号确定,并画在简化中心O 上。 主矩:平面力系中各力对于任选简化中心之矩的代数和,即 11()()n n o o i i i i i i i M M x Y y X ====-∑∑F 一个力系的主矢与简化中心的选取无关;一般情况下,主矩与简化中心的选

取有关。 ④简化结果讨论 a. 若 0 ,0'≠=o R M F :平面力系与一力偶等效,此力偶为平面力系的合力偶,其力偶矩用主矩M o 度量,这时主矩与简化中心的选择无关。 b. 若0 ,0'=≠o R M F :平面力系等效于作用线过简化中心的一个合力F R ,且有F R =F 'R 。 c. 若0 ,0'≠≠o R M F :平面力系简化结果为一合力F R ,其大小、方向与主矢相同,作用线在距简化中心O 为'R o F M d = 处。 d. 0 ,0'==o R M F ,则该力系为平衡力系。 3.平面力系的平衡条件和平衡方程 平面力系平衡的充分必要条件是该力系的主矢和对作用面内任意一点的主矩同时为零。其解析表达式有三种形式,称为平衡方程。 1)基本形式 ?????=∑=∑=∑0)(0 00F M Y X 2)二矩式 ?????=∑=∑=∑0)(0 )(0F F B A M M X 附加条件为:A 、B 两点连线不垂直于x 轴 3)三矩式 ?????=∑=∑=∑0)(0 )(0)(F F F C B A M M M 附加条件为:A 、B 、C 三点不共线 特殊力系的平衡方程 1)共线力系:0=∑i F 2)平面汇交力系:???=∑=∑00Y X

相关文档