文档库 最新最全的文档下载
当前位置:文档库 › 最经典的霍尔效应与范德堡测试方法

最经典的霍尔效应与范德堡测试方法

范德堡测试方法与变温霍尔效应

摘要:本实验采用范德堡测试方法,测量样品霍耳系数及电导率随温度的变化,可以确定一些主要特性参数——禁带宽度,杂质电离能,电导率,载流子浓度,材料的纯度及迁移率,从而进一步探讨导电类型,导电机理及散射机制。

关键词:霍尔效应、范德堡测试法、霍尔系数、电导率

引言:对通电导体或半导体施加一与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,此即为霍耳效应。利用霍尔效应测量霍耳系数及电导率是分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,是半导体材料研制工作中必不可少的一种常备测试方法。

一、原理部分:

(一)、半导体内的载流子

根据半导体导电理论,半导体内载流子的产生有两种不同的机制:本征激发和杂质电离。

1、本征激发

在一定的温度下,由于原子的热运动,价键中的电子获得足够的能量,摆脱共价键的束缚,成为可以自由运动的电子。这时在原来的共价键上就留下了一个电子空位,邻键上的电子随时可以跳过来填充这个空位,从而使空位转移到邻键上去,因此空位也是可以移动的。这种可以自由移动的空位被称为空穴。半导体不仅靠自由电子导电,而且也靠这种空穴导电。半导体有两种载流子,即电子和空穴。

从能带来看,构成共价键的电子也就是填充价带的电子,电子摆脱共价键而形成一对电

子和空穴的过程,就是一个电子从价带到导带的量子跃迁过程,如图1 所示。

纯净的半导体中费米能级位置和载流子浓度只是由材料本身的本征性质决定的,这种半导体称本征半导体。本征半导体中,在电子—空穴

对的产生过程中,每产生一个电子,同时也产生一个空穴,所以,电子和空穴浓度保持相等, 这个共同的浓度用i n 表示,称为本征载流 图1 本征激发示意图

子浓度。这种由半导体本身提供,不受外来掺杂影响的载流子产生过程通常叫做本征激发。 2.、杂质电离

绝大部分的重要半导体材料都含有一定量的浅杂质,它们在常温下的导电性能,主要由浅杂质决定。浅杂质分为两种类型,一种是能够接收价带中激发的电子变为负离子,称为受主杂质。由受主杂质电离提供空穴导电的半导体叫做P 型半导体如图2(a )所示。还有一种可以向半导体提供一个自由电子而本身成为正离子,称为施主杂质。这种由施主杂质电离提供电子导电的半导体叫做n 型半导体,如图2(b )所示。

图2 (a )受主杂质提供空穴到导电 (b )施主杂质电离提供电子导电

设P 型半导体中含有一种受主杂质,能级为A E ,空穴密度为A N ,价带顶能级为V E ,

V N 为价带有效能级密度。在足够低的温度下,载流子是价带中电子激发到受主能级后所留

下的空穴。这时价带中的空穴数目P 和占有电子的受主能级数目相等。在T 很低, kT 比

V A E E -小很多时,

(1)

上式两边取对数得

(2)

做T

1

lnp -

曲线,它近似成直线,由此直线的斜率可求得受主杂质的电离能。 在T 较高时, A N p ≈ (3)

说明这时受主杂质已几乎完全电离,价带中的空穴数已接近受主杂质数,处于杂质电离饱和区。同理对n 型半导体可以得出电子浓度:

(4)

式中C N 为导带有效能级密度,C E 为导带底能级,D N 为受主密度,D E 为受主杂质能级。

两边取对数:

(5)

T

1

n ln —

曲线,它近似为一直线,由此直线斜率可求得施主杂质的电离能。 (二)、 载流子的电导率

在一般电场情况下,半导体导电也服从欧姆

定律,电流密度与电场成正比:

j = σE (6)

从理论可知,电导率σ与导电类型和载流子浓度有关,当混合导电时:

图3 电导率与温度

其中n μ和p μ分别为电子和空穴的迁移率,可见电导率决定于两个因素:载流子浓度和迁移率。图3 表示电导率σ 随温度变化的规律,可分为三个区域:杂质部分电离的低温区(B 点右侧)、杂质电离饱和的温度区(A ,B 之间)、本征激发的高温区(A 点左侧)。 (三)、霍耳效应

1、霍耳效应

霍耳效应是一种电流磁效应(如图4)。当样品通以电流I ,并加一磁场垂直于电流,则在样品的两侧产生一个霍耳电势差:

(7)

H V 与样品厚度d 成反比,

与磁感应强度B 和电流I 成正比。比例系数H R 叫做霍耳系数 。 当电流通过样品(假设为p 型)时,垂直磁场对运动电荷产生一个洛伦兹力,使电荷产生横向的偏转。偏转的载流子停在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F = qE 与磁 图4 霍尔效应示意图 场作用的洛伦兹力相抵消为止,即

(8)

这时电荷在样品中流动时将不再偏转,霍耳电势场就是由这个电场建立起来的。

如果样品是n 型,则横向电场与前者相反,所以n 型样品的霍耳系数有不同的符号,据此可以判断材料的导电类型。 2、一种载流子导电的霍耳系数

设p 型样品的p >> n ,宽度为w ,通过样品电I = pqvwd ,,则空穴的速度v = I/ pqwd ,

代入式(8),有pqwd

IB B v E =?= 可以得到

(9)

与(7)式相比得

pq

1

R H =

(10) 对于n 型样品,其霍耳系数为 pq

1

R H -

= (11) 由式(9)、(10)可得霍耳系数

(12)

式中的H V 是霍耳电压,单位为V ;I,B 和 d 的单位分别是 A,T 和cm.

考虑到载流子运动的速度是遵循麦克斯韦速度分布,不断受到晶格和电离杂质散射等影响而改变的,霍耳系数的公式(10)和(11)应修正为: P 型半导体

(13)

N 型半导体

(14)

式中n μ和p μ分别是电子和空穴的电导迁移率,H μ为霍耳迁移率,σμH H R = ,它可以通过H R 及σ 计算得到。 3、两种载流子导电的霍耳系数

在磁场作用下,电子和空穴本来都朝同一边积累,霍耳电场的作用是使它们中间一个加强,另一个减弱,这样,使横向的电子流和空穴流大小相等,由于它们的电荷相反,所以横向的总电流为零。

假设载流子服从经典的统计规律,在球形等能面,只考虑晶格散射及弱磁场的条件下,对于电子和空穴混合导电的半导体,可以证明:

(15)

令p n

b μμ=

,则有

(16)

4、p 型半导体的变温霍耳系数

以p 型为例分四个温度范围讨论

T

1

R H -

之间关系,并根据曲线斜率求

出禁带宽度g E , 杂质电离能i E ,曲线如图5,图中表示的是绝对值,此曲线包括以下四个部分:

1、杂质电离饱和区,所有的杂质都已经电离,载流子浓度保持不变。P 型半导体中p >> n ,于是式(16)就简化为式(13)。在这段区域内,R H >0。

2、温度逐渐升高时,价带上的电子开始激发到导带,由于电子迁移率大于空穴迁移率,b >1,当温度升高到使p=nb 2时,H R = 0,如果取对数,就出现图5 中 图5 p 型半导体和n 型半导体的Ln|R H |-1/T 曲线 标有“2”的一段。

3、温度再升高时,价带上的电子开始激发到导带,p

(17)

式中HS R 是杂质电离饱和区的霍耳系数。由上式可见,通过极值H R 及HS R ,可以估算出电子迁移率与空穴迁移率的比值b 。

4、当温度继续升高,到达本征范围内,载流子浓度远远超过受主的浓度,霍耳系数与导带中电子浓度成反比。因此,随温度的上升,曲线基本上按指数下降。由于此时载流子浓度几乎与受主浓度无关,所以代表杂质含量不同的各种样品的曲线都聚合在一起。 (四)、范德堡尔法测量任意形状薄片的电阻率及霍

耳系数

范德堡法可应用于厚度均匀的任意形状的片状样品。在样品侧面制作四个电极,如图6 所示。在电阻率测

量中,一对相邻的电极用来通入电流,在另一对电极之间测量电位差。利用M 、P 和M 、N 通入电流分别作两次测量,得到

(18)

(19)

图5范德堡样品

电阻率可由下式给出

(20)

式中f 是比值

op

mn,op

,mp R R 的函数,由下式确定

(21)

范得堡法也可用于作霍尔效应的测量。一对不相邻的电极,例如M 、O 用来通入电流,另外一对电极P 、N 用来测量电位差。霍尔系数由下式给出

(22)

式中B 为垂直于样品的磁感应强度值。pn V 代表加磁场后P 、N 之间电位差的变化。 (五)、实验中的副效应及其消除方法

在霍耳系数的测量过程中,伴随着下列一些热磁副效应所产生的电位,叠加在测量值

H V 上,引起测量误差。

1、爱廷豪森效应:载流子在电场和磁场作用下发生偏转时,其动能以热能形式释放出来,则在霍尔电压方向上产生温差,从而产生温差电动势BI V E ∝。E V 和霍耳电压一样,与I 和B 的方向都有关系。

2、能斯特效应:即使没有电流通过样品,只要在电流方向有热流Q ,在霍尔电压方向上就会叠加上电动势BQ V N ∝,其方向由B 决定。

3、里纪—勒杜克效应:当沿电流方向有热流Q 通过样品时,则在霍尔电压方向上存在温度梯度场RL )T

T

(??,引起温差电位V RL ∝ QB ,其方向由B 决定。

由此可见,除了爱廷豪森效应以外,采用范得堡尔法测量霍耳电压时,可以通过磁场换向及电流换向的方法消除能斯特效应和里纪—勒杜效应。

二、所需仪器:

本实验使用的VTHM-1 型变温霍耳效应仪是由DCT —U85 电磁铁及恒流电源,SV-12 变温恒温器,TCK-100 控温仪,CVM-2000 电输运性质测试仪,连接电缆,装在恒温器内冷指上碲镉汞单晶样品组成。如图7 所示。

1、样品:厚0.94 毫米碲镉汞单晶,最大电流50 毫安。在低温下是典型的P 型半导体,而在室温下又是典型的N 型半导体,范得堡法样品,其电阻率较低。

2、磁场部分

本实验中稳定磁场是利用一个DCT-U85型电磁铁和一个DCT-U85D 型稳流源产生的。调节稳流源电流大小可获得不同B 值,并预先用高斯计进行定标。为了避免磁阻效应,必须在弱场条件下进行测量,一般取值为0—0.45T 。 3、温度的测量与控制

TCK-100 型控温仪是以XSC/A-HRTZCORS232 型PID 控制仪为基础,配专门设计软

件与外围电路的科学实验用低温温度控制器。SV-12 恒温器是利用稳态气泡原理(SVB )控温的低温恒温器。其主液池中装有液氮,通过调节锥形气塞间隙,改变气—液界面的成核沸腾条件,使恒温块的漏热稳定在一定值上,再通过TCK-100 控温仪调节加热电流就可以使样品在低温液体温度到室温之间快速变温,并准确的平衡在设定温度上。

图7 变温霍尔效应系统示意图 4、测量部分

CVM-2000 型电输运性质测试仪是由三部分组成的仪器。

(1)、霍耳效应测量仪,它能容纳两块样品,设有样品选择键,既可测量标准样品,也能测量范德堡样品。其余四个量程按扭分别为待测电压H V , V ,M V ,N V ,这四个按扭同一时间只能按一个,如按H V 按扭后,H V 指示灯亮,微伏表上显示待测电压H V 值,其余三个按扭类同。

(2)、样品电流源,是一个精度高,电流变化范围宽,输出阻抗高的高精度直流恒流源。本恒流源有六个量程,输出电流从0.1nA 到200mA ,精度达0.05%。本实验中样品电流50mA ,应注意调节电流,以保持它恒定。

(3)、直流数字微伏表,电压测量从1μV 到2000mV ,分为20mv 、200mv 、2000mv 三档量

程,精度达0.05%。测量时要注意量程的正确选取,不要超出量程而使仪器损坏。开始测量以前要先对直流数字微伏表进行面板调零。 三、实验内容: 1、抽真空

1)、打开复合真空计开关

2)、连接真空系统和样品池之间的真空活扣

3)、关上真空阀2,合上墙上真空泵开关,打开样品池上方真空阀1 4)、复合真空计指示1Pa 后,关上样品池上方的真空阀1、真空泵开关。 5)、拧开真空阀2,放气后,打开真空活扣,准备测试。 2、磁场的测定

首先打开电磁铁冷却水,然后打开电磁铁恒流电源,向一个方向缓慢调电磁铁恒流电源输出,用高斯计标定电磁铁在此气隙下磁场强度,磁场强度从0.1T 开始每隔0.05T 测一点,直到0.3T ,记录相应输出电流。 3、室温下的霍尔测量

开机预热,调整样品电流到50.00毫安,加电磁场到0.3T ,选择样品1,按下S1开关。按下开关H V ,测霍尔电压H1V ,如果电压较小,改在200毫伏或20毫伏档;按电流换向开关,测H2V ;将恒温器轻轻提起,缓慢旋转180度后再放入磁铁气隙中,测H3V ;电流换向,测H4V 。

按M V 开关,测M1V ;按电流换向开关,测M2V ;按N V 开关,测N1V ;按电流换向开关,测N2V 。 4、变温测量:

取出恒温器中心杆,注入液氮(依测量点的多少决定加液氮量)。等控温仪显示温度最

低时,重复测量过程3,测量此温度下各项霍尔参数。开始控温。顺时针转动中心杆至最低位置,再回旋约180 度至720 度即可通过控温仪设定控温。温度控制稳定后,重复测量过程3,测得此温度点的各项霍尔系数。改变设定温度,测另一个温度点的霍尔参数。

中心杆旋高则冷量增大,适于快速降温和减低温度的实验。控温精度与PID 参数有关,适当调整中心杆高度,可提高不同温区的精度。

5 、关机

将电磁铁恒流电源降到0,关闭电磁铁恒流电源。拧松、提起中心杆,防止热膨胀胀坏恒温器。关闭控温仪、测试仪开关及冷却水。

四、数据记录及相关处理

1、磁场标定

I/mA 0.00 0.34 0.55 0.75 0.96 1.16 B/T -0.0266 -0.1001 -0.1504 -0.2007 -0.2503 -0.3006 本实验所需磁场为0.3T,故电磁铁恒流电源输出须保持在1.16mA附近。

2、变温霍尔效应

样品号:S1 样品名称:碲镉汞样品厚度(t):0.94mm 磁场强度(B):0.3T 电流强度(I):50.02mA

T ℃

H

V/mv

H

V

mV

H

R

M

V/mV

N

V/mV

ρ

Ω.m +

B样品对N

-

B样品对S

+

I

-

I

-

I

+

I

+

I

-

I

-

I

+

I

85.0 0.37 -1.10 -2.55 1.81 -0.7225 -0.04510 -13.49 12.614.4-14.54 1.172

2 1 9

89.8 0.46 -1.22 -2.57 1.77 -0.6650 -0.04151 -13.43 12.5

0 14.4

-14.55 1.169

100. 6 0.57 -1.37 -2.56 1.80 -0.6050 -0.03776 -12.40 11.3

9

13.4

6

-13.63 1.083

8

110. 0 0.77 -1.56 -2.57 1.80 -0.5100 -0.03183 -12.20 11.0

1

13.1

-13.37 1.058

3

120. 0 0.97 -1.77 -2.59 1.76 -0.4025 -0.02512 -11.90 10.7

5

13.0

-13.20 1.040

6

132. 0 1.24 -2.07 -2.50 1.72 -0.2275 -0.01420 -11.70 10.6

3

12.9

-13.21 1.031

9

140. 4 1.44 -2.28 -2.43 1.65 -0.0900 -0.00562 -11.70 10.3

9

12.8

8

-13.19 1.025

9

145. 0 1.68 -2.47 -2.38 1.62 0.0375 0.00234

1

-11.79 10.6

3

12.8

4

-13.27 1.033

8

149. 0 1.70 -2.56 -2.30 1.52 0.1100 0.00686

6

-11.70 10.3

12.9

-13.30 1.026

8

160. 1 2.12 -2.94 -2.08 1.23 0.4375 0.02730

7

-11.80 10.3

6

12.8

-13.30 1.028

168. 7 2.37 -3.22 -1.75 1.04 0.7000 0.04369

2

-11.60 10.1

12.8

-13.15 1.015

180. 2.84 -3.66 -1.17 0.54 1.1975 0.07474-11.68 10.412.8-13.16 1.023

4 4 2 0 8

190. 5 3.23 -3.99 -0.68 0.09 1.6125 0.10064

7

-11.24 10.0

7

12.6

7

-13.04 1.001

6

200. 5 3.54 -4.25 -0.09 -0.51 2.0525 0.12811

1

-11.34 10.3

8

12.4

-12.85 1.000

6

210. 5 3.92 -4.50 0.75 -1.21 2.5950 0.16197

2

-10.87 9.95 12.0

7

-12.43 0.965

4

220. 4 4.09 -4.61 1.57 -1.84 3.0275 0.18896

7

-11.00 10.2

7

11.6

7

-11.90 0.955

2

230. 0 4.37 -4.81 2.04 -2.30 3.3800 0.21096

9

-10.40 9.73 11.4

7

-11.60 0.920

2

240. 2 4.54 -4.91 2.54 -2.71 3.6750 0.22938

2

-10.32 9.97 10.8

7

-11.02 0.898

5

249. 8 4.61 -4.80 3.05 -3.09 3.8875 0.24264

6

-9.66 9.31 10.5

1

-10.45 0.850

6

260. 5 4.65 -4.76 3.33 -3.33 4.0175 0.25076

-9.42 9.40 9.87 -9.92 0.822

5

280. 5 4.32 -4.34 3.72 -3.65 4.0075 0.25013

6

-8.37 8.32 8.87 -8.77 0.731

3

299. 8 3.93 -3.88 3.67 -3.62 3.7750 0.23562

4

-7.57 7.60 7.61 -7.72 0.649

7

相关公式: 4V V V V V H4H3H2H1H -+-=

IB

t

V R H H =

五、结论和主要建议:

利用Excel 做Ln|R H | -1/T 曲线及ρ-1/T 曲线如下图所示:

由左图1可

看出,霍尔系数随温度的变化。

温度较低时,处于杂质电离饱和区,所有的杂质都已经电离,

载流子浓度保持不变。P 型半导体中p >> n ,在这段区域内,R H >0。温度逐渐升高时,价带上的电子开始

图1 Ln|RH| -1/T 曲线

激发到导带,由于电子迁移率大于空穴迁移率,b >1,当温度升高到使p=nb 2

时,H R = 0,如果取对数,就出现图中的拐点。温度再升高时,价带上的电子开始激发到导带,p

使

H R <0,随后R H 将会达到一个极值。

由表中数据霍尔系数由负的变为正的,可看出半导体由n 型转化为p 型。

1f ≈-7

-6-5-4-3-2-100

0.005

0.01

0.015

1/T(/℃)

l n |R h |

系列1

00.20.40.60.811.21.4

0.0050.01

0.015

1/T(/℃)

电阻率ρ(Ω.m )

系列1

图2 ρ-1/T 曲线

由图2,可看出随温度升高,电阻率逐渐变小。

六、参考资料:

《固体物理学》 黄昆 高等教育出版社

《变温霍尔效应》 北京师范大学物理系近代物理实验教研室提供

霍尔效应实验和霍尔法测量磁场

DH-MF-SJ组合式磁场综合实验仪 使用说明书 一、概述 DH-MF-SJ组合式磁场综合实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场,可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。 二、主要技术性能 1、环境适应性:工作温度 10~35℃; 相对湿度 25~75%。 2、通用磁学测试仪 2.1可调电压源:0~15.00V、10mA; 2.2可调恒流源:0~5.000mA和0~9.999mA可变量程,为霍尔器件 提供工作电流,对于此实验系统默认为0-5.000mA恒流源功能; 2.3电压源和电流源通过电子开关选择设置,实现单独的电压源和电 流源功能; 2.4电流电压调节均采用数字编码开关; 2.5数字电压表:200mV、2V和20V三档,4位半数显,自动量程转换。 3、通用直流电源 3.1直流电源,电压0~30.00V可调;电流0~1.000A可调; 3.2电流电压准确度:0.5%±2个字; 3.3电压粗调和细调,电流粗调和细调均采用数字编码开关。 4、测试架 4.1底板尺寸:780*160mm; 4.2载物台尺寸:320*150mm,用于放置螺线管和双线圈测试样品; 4.3螺线管:线圈匝数1800匝左右,有效长度181mm,等效半径21mm; 4.4双线圈:线圈匝数1400匝(单个),有效直径72mm,二线圈中心 间距 52mm; 4.5移动导轨机构:水平方向0~60cm可调;垂直方向0~36cm可调,最小分辨率1mm; 5、供电电源:AC 220V±10%,总功耗:60VA。 三、仪器构成及使用说明

DH-MF-SJ组合式磁场综合实验仪由实验测试台、双线圈、螺线管、通用磁学测试仪、通用直流电源以及测试线等组成。 1、测试架 1.双线圈; 2.载物台(上面绘制坐标轴线); 3,4 双线圈励磁电源输入接口; 5.霍尔元件; 6.立杆; 7.刻度尺; 8.传感器杆(后端引出2组线,一组 为传感器工作电流Is,输出端号码管标识为Input;一组为霍尔电势V H输出,输出端号码管标识为Output); 9.滑座; 10.导轨; 11. 螺线管励磁电源输入接口; 12.螺线管; 13.霍尔工作电流I S输入,号码管标有Input(红正,黑负); 14.霍尔电势V H输出,号码管标有Output(红正,黑负); 15.底座 图1-1组合式磁场综合实验仪(测试架图) 2、通用磁学测试仪(DH0802) 1.电压或电流显示窗口(霍尔元件工作电流或电压指示); 2.恒流源指示灯; 3.恒压源指示灯; 4.调节旋钮(左右旋转用于减小或增加输出;按下弹起按钮用于

700223霍尔效应法测螺线管磁场(实验23)

霍耳效应法测螺线管磁场实验报告 【一】实验目的及实验仪器 实验目的 1.了解和熟悉霍尔效应的重要物理规律 2.熟悉集成霍尔传感器的特性和应用,掌握测试霍尔效应器件的工作特性 3.学习用霍尔效应测量磁场的原理和方法 4.学习用霍尔器件测绘长直螺线管的轴向磁场分布 实验仪器FD-ICH-II 新型螺线管磁场测定仪 【二】实验原理及过程简述 霍尔元件如图4-23-1所示。若电流I流过厚度为d的半导体薄片,且磁场B垂直于该半导体,于是电子流方向由洛伦磁力作用而发生改变,在薄片两个横向面a,b之间应产生电势差,这种现象称为霍尔效应。在与电流I、磁场B垂直方向上产生的电势差称为霍尔电势差,通常用UH 表示。霍尔效应的数学表达式为: 随着科技的发展,新的集成元件不断被研制成功。本实验采用的SS95A型集成霍尔传感器,是一种高灵敏度集成化传感器,它由霍尔元件放大器和薄膜电阻剩余电压补偿组成,测量时输出信号大,并且剩余电压的影响已被消除。SS95A型集成霍尔传感器,他的工作电流已设定被称为标准,工作电流使用传感器时,必须使工作电流处在该标准状态,在实验 室只要在磁感应强度为零条件下调节v +v - 所接的电源电压是输出电压为 2.500伏,则传感器就可处在标准工作状态之下。 当螺线管内有磁场且集成霍尔传感器的标准工作电流时 螺线管是由绕在圆柱面上的导线构成的,对于密绕的螺线管可以看成是一列有共同轴线的圆形线圈的并列组合,因此一个载流长直螺线管轴线上某点的磁感应强度,可以从对各圆电流在轴线上该点所产生的磁感应强度进行积分求和得到,对于一限长的螺线管,在距离两端等远的中心点磁

感应强度为最大,且等于 过程简述 1.装置接线 2.断开开关K2,调节使集成霍尔传感器达到标准化工作状态。 3.测量霍尔传感器的灵敏度 4.测量通电螺线管中的磁场分布 【三】实验数据处理及误差计算: 5让风吹 1.根据实验所测,描绘螺线管中间位置霍尔电势差与螺线管通电电流的关系; 2.求出K/ 和r以及K; ∴K’=0.4169V/A r=1

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

霍尔效应的原理及应用

学号:1003618095河南大学民生学院毕业论文 (2014届) 年级2010级 专业班级电子信息科学与技术 学生姓名范博 指导教师姓名翟俊梅 指导教师职称副教授 论文完成时间2014-04-22 河南大学民生学院教务部 二○一三年印制

目录 目录 摘要 (1) 一霍尔效应 (2) 1.1经典霍尔效应 (2) 1.2经典霍尔效应误差 (3) 二量子霍尔定律 (3) 三霍尔元件 (6) 3.1霍尔器件 (6) 3.2霍尔元件 (7) 3.3霍尔元件的特点 (8) 四霍尔效应的应用 (8) (1)工程技术中的应用 (9) (2)日常生活中的应用 (10) (3)科学技术中的应用 (11) 五结语 (11) 六参考文献 (12)

霍尔效应的原理及应用 范博 (河南大学民生学院,河南开封,475004) 摘要 霍尔效应是电磁效应,这种现象是美国的物理学家霍尔于1879年在校读研期间将载流子的导体放入磁场中的做受力作用实验的时候发现的。实验中电流垂直在导体的外磁场并通过导体时,导体垂直磁场与电流两个方向的端面之间就会产生出一种电势差,产生的这种现象就是霍尔效应。在实在验中产生的电势差被名为霍尔电势差。 Principle and Application of Hall effect Abstract:Hall effect is a kind of electromagnetic effect,This phenomenon is caused by the American physicist A-H-Hall in 1879 when the carriers do during graduate conductors in a magnetic field by the force of the experimental findings.When the current is perpendicular to the external magnetic field and through the conductor, the conductor is perpendicular to the magnetic field and electric current produces electric potential difference between the two direction of end face, this phenomenon is called the hall effect. The electric potential difference caused by experiment have been called hall electric potential difference.

实验8 霍尔效应法测量磁场A4

实验八 霍尔效应法测量磁场 【实验目的】 1.了解霍尔器件的工作特性。 2.掌握霍尔器件测量磁场的工作原理。 3.用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1.霍尔器件测量磁场的原理 图1 霍尔效应原理 如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =?作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场H E ,该电场对电子的作用力H H F eE =,与m e F ev B =?反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 I

如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足: H H H IB U R K IB d =? =?, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。 由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,与B 有一一对应关系。 2.误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B 、I 方向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2,将线路完全接通后,可以调节滑动触头2,使数字电压表所测 电压为零,这样就消除了1、2两引线间的不等势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实验前要首先进行霍尔输出电压的调零,以消除霍尔器件的“不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差。 3.载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是一系列园线圈并排起来组成的。如果其半径为R 、总长度为L ,单位长度的匝数为n ,并取螺线管的轴线为x 轴,其中心点O 为坐标原点,则 (1)对于无限长螺线管L →∞或L R >>的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: 00B NI μ= 图2

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

实验十三 霍尔效应测磁场---注意事项及操作步骤(姜黎霞)

实验十三 霍耳效应测磁场 一、注意事项 1. 双刀双掷开关上的连线已经固定连接好,请不要擅自拆卸。 2. 双刀双掷开关引出的导线红“+”、黑“-”,各表头对应的接线柱也是红“+”、黑“-”,连线时双刀双掷开关引出的导线并联到接线柱上,即“红接红,黑接黑”。导线连好后经老师检查,然后开电源。 3. 双刀双掷开关向上合闸规定为“+”,向下合闸规定为“-”。在整个实验过程中,霍耳电压H U 对应的双刀双掷开关向上合闸,固定不变,只有工作电流H S ()I I 和励磁电流M I 对应的双刀双掷开关会要求上、下换向合闸,其中励磁电流M I 对应的双刀双掷开关在合闸时动作要快,否则会产生电火花。 4. 实验结束后,先断电,后拆线。只拆自己连接的部分,其它线路保留。 5. 本实验有两种型号的仪器,工作电流分别表示为H I 或S I ,灵敏度分别表示为 H K 或H S 。 6. 每套仪器的灵敏度不同,具体数值标在仪器箱内的面板上,注意:有一种型号的仪器灵敏度单位不是国际单位制,要化为国际单位制,具体换算是: 1mV /mA KG 10V /A T ?=?( G :高斯,T :特斯拉) 二、操作步骤 1. 将三个双刀双掷开关引出的导线分别并联到与开关名目相同的接线柱上,经老师检查后,打开电源。 2. 将三个双刀双掷开关全部向上合闸,然后调节工作电流H S () 2.00mA I I =,励磁电流M 0.6A I =。注意:(1)励磁电流调节好后就固定了,直到实验结束都不需再调节。(2)有一种型号的仪器工作电流和励磁电流用同一个表头显示,需要用旁边的红色按钮转换。 3. 调节霍耳元件移动螺杆旋钮,测量霍耳元件在电磁铁两极间隙中5个不同任选位置的霍耳电压H U ,并将数据填入表13-1的草表中。

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

实验十二_霍尔效应法测定螺线管轴向磁感应强度分布

实验十二_霍尔效应法测定螺线管 轴向磁感应强度分布 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.掌握测试霍尔元件的工作特性。 2.学习用霍尔效应法测量磁场的原理和方法。 3.学习用霍尔元件测绘长直螺线管的轴向磁场分布。 二、实验原理 1.霍尔效应法测量磁场原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a )所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流Is ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力 B v e F g = (1) 其中e 为载流子(电子)电量, 为载流子在电流方向上的平均定向漂移速率,B 为磁感应强度。 无论载流子是正电荷还是负电荷,F g 的方向均沿Y 方向,在此力的作用下,载流子发生便移,则在Y 方向即试样A 、A′电极两侧就开始聚积异号电荷而在试样A 、A′两侧产生一个电位差V H ,形成相应的附加电场E —霍尔电场,相应的电压V H 称为霍尔电压,电极A 、A′称为霍尔电极。电场的指向取决于试样的导电类型。N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有 型) (型)(P 0 0) (),(??H H E N E Z B X Is 显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受 一个与F g 方向相反的横向电场力 H E eE F = (2) 其中E H 为霍尔电场强度。 F E 随电荷积累增多而增大,当 (a ) (b ) 图(1)样品示意图

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

霍尔效应实验仪原理及其应用

一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直 螺线管的励磁电流 m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 B f 作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流s I ,在z方向加磁场B ,则在y方向即样品A、A′电 极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然, 当载流子所受的横向电场力 E B f f <时电荷不断聚积,电场不断加强,直到 E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。

设 H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度; 样品的宽度为b ,厚度为d , 载流子浓度为n ,则有: s I nevbd = (1-1) 因为 E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?= ?= (1-2) 其中 1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算3 (/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由 H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 s I 和B 的方向(即测量中的+ s I ,+B ),若测得的 H V <0(即A′的电位低于A的电位), 则样品属N型,反之为P型。 (2)由 H V 求载流子浓度n ,即 1/() H n K ed =。应该指出,这个关系式是假定所有载流 子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入3/8π的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。 (3)结合电导率的测量,求载流子的迁移率μ。电导率σ与载流子浓度n 以及迁移率μ之间有如下关系:

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

霍尔效应法测量螺线管磁场

研胳wZprtf 霍尔效应法测量螺线管磁场实验报告 【实验目的】 1?了解霍尔器件的工作特性。 2?掌握霍尔器件测量磁场的工作原理。 3?用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1?霍尔器件测量磁场的原理 图1霍尔效应原理 如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电 极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速 ur ir u 度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累 urn 过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir 的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由 数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,可以推导出 式中,R H为霍耳系数,通常定义K H R H /d , 由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下, U H R H U H满足: 世K H IB , d K H称为灵敏度。

研 島加吋 与B有一一对应关系。 2?误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B、丨方 向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间 连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节 滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等 势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电 压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实 验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差3?载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是 一系列园线圈并排起来组成的。如果其半径为R、总长度为L,单位长度的匝数为n,并取螺线管的轴线 为x轴,其中心点0为坐标原点,贝U (1)对于无限长螺线管L 或L R的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: uu B o o NI 式中0――真空磁导率;N ――单位长度的线圈匝数;I ――线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: uu 1 B! —oNI 2 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图2 图3

霍尔效应

霍尔效应 1879年,24岁的美国人霍尔在研究载流导体在磁场中所受力的性质时看,发现了一种电磁效应,即如果在电流的垂直方向加上磁场,则在同电流和磁场都垂直的方向上将建立一个电场。这个效应后来被称为霍尔效应。产生的电压(U H),叫做霍尔电压。好比一条路, 本来大家是均匀的分布在路面上, 往前移动。当有磁场时, 大家可能会被推到靠路的右边行走,故路(导体) 的两侧, 就会产生电压差。这个就叫“霍尔效应”。根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能,广泛地应用于工业自动化技术、检测技术及信息处理等方面。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。 许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。采用功率霍尔开关电路可以减小这些现象。 实验目的 1. 了解霍尔效应实验原理 2. 测量霍尔电流与霍尔电压之间和励磁电流与霍尔电压之间的关系 3. 学会用霍尔元件测量磁场分布的基本方法 4. 学会用“对称测量法”消除负效应的影响 实验原理 1. 霍尔效应 霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。当电流I沿X轴方向垂直于外磁场B(沿Z方向)通过导体时,在Y方向,即导体的垂直于磁场和电流方向的两个端面之间会出现电势差V H,如图1所示,这现象称为霍尔效应。这个电势差也被叫做霍尔电压。

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

霍尔效应实验报告(DOC)

大学 本(专)科实验报告 课程名称: 姓名: 学院: 系: 专业: 年级: 学号: 指导教师: 成绩: 年月日

? (实验报告目录) 实验名称 一、实验目的和要求 二、实验原理 三、主要实验仪器 四、实验内容及实验数据记录 五、实验数据处理与分析 六、质疑、建议

霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的s H I V -,M H I V -曲线了解霍尔电势差H V 与霍尔元件控制(工作)电流s I 、励磁电流M I 之间的关系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。 如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N型半 导体材料),它沿着与电流s I 相反的X负向运动。 由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y轴负方向的B 侧偏转,并使B侧形成电子积累,而相对的A 侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。 设电子按均一速度V 向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为L f =-e V B 式中e 为电子电量,V 为电子漂移平均速度,B 为磁感应强度。 同时,电场作用于电子的力为 l eV eE f H H E /-=-= 式中H E 为霍尔电场强度,H V 为霍尔电压,l 为霍尔元件宽度

相关文档
相关文档 最新文档