文档库 最新最全的文档下载
当前位置:文档库 › 平面四杆机构毕业设计说明书

平面四杆机构毕业设计说明书

平面四杆机构毕业设计说明书
平面四杆机构毕业设计说明书

1 绪论

1.1 课题背景

平面连杆机构在重型机械、纺织机械、食品机械、包装机械、农业机械中都有广泛的应用。但是要在尽可能短的时间内设计出一个满足多种性能要求的机构却不是一件很容易的事情。过去人们已建立了一些四杆机构的设计方法,然而这些方法与工程设计的要求还有一段距离,常常花费很多时间却只得到一个不可行的设计方案。因为机构的运动性能如急回特性K,压力角α,从动件的摆角Ψ,极位夹角θ与构件尺寸有关,本身的这些运动性能之间也都相互影响,比如,四杆机构中,从动件急回特性K完全取决于极位夹角θ的作用。

本篇论文主要研究工程中应用比较多的Ⅰ、Ⅱ曲柄摇杆机构的传动角γ,极位夹角θ与机构尺寸之间的关系,然后运用工程分析软件ADAMS针对机构进行运动学分析,从而能给出设计平面四杆机构时为保证有较好的特性时,选取构件尺寸的建议。进而为工程应用提供依据。

1.2 平面四杆机构的基本型式

平面四杆机构可分为铰链四杆机构和含有移动副的四杆机构。其中只有转动副的平面四杆机构称为铰链四杆机构[1]。

在铰链四杆机构中,能作整周回转的称为曲柄,只能在一定角度范围内摆动的称为摇杆。由于曲柄和摇杆长度的不同,又可以将铰链四杆机构分为曲柄摇杆机构、双曲柄机构和双摇杆机构[2]。

平面四杆机构最基本的型式为图1-1所示的曲柄摇杆机构。图1-1中,AD为机架,AB和DC为连架杆。其中构件AB能绕其固定铰链中心A作整周转动而称为曲柄。构件DC只能绕其固定铰链中心D在一定范围内往复摆动而称为摇杆。构件BC不与机架直接相联而仅仅连接两连架杆AB和DC,因而称为连杆。连杆机构正是因为连杆的存在而得名[3]。

图1.1 曲柄摇杆机构

两连架杆均为曲柄的铰链四杆机构称为双曲柄机构[4]。图1-2中,AD为机架,AB和DC为曲柄。其中构件AB、DC能绕其固定铰链中心A、D作整周转动而称为曲柄。若两对边构件长度相等且平行,则称为正平行四边形机构。

图1.2 双曲柄机构

两连架杆均为摇杆的铰链四杆机构称为双摇杆机构[5]。如图1-3中,AD为机架,构件AB、DC只能绕其固定铰链中心A、D在一定范围内往复摆动而称为摇杆。

图1.3 双摇杆机构

1.3 平面四杆机构的演化

1. 回转副演化成移动副

下图1-4表示了曲柄摇杆机构先演化为曲柄滑块机构过程。在实际中,曲柄滑块机构在金属切削机床、内燃机和空气压缩机等各种机械中得到了广泛的应用。

图1.4 移动副的演化过程

2. 取不同的构件为机架

铰链四杆机构的三种基本型式,可看作是由曲柄摇杆机构改变机架而得到的,如图1-5所示。

图1.5 曲柄摇杆机构的演化过程

对于曲柄滑块机构,若选取不同构件为机架,同样也可以得到不同型式的机构,如图1-6所示。

曲柄滑块机构导杆机构摇块机构直动滑杆机构

图1.6 改变曲柄滑块机构的机架得到的不同型式

3. 扩大回转副

由于结构的需要和受力的要求,使曲柄与连杆连接处的回转副的销轴扩大,形成一个几何中心与其回转中心不重合的圆盘,此盘就称为偏心轮。回转中心与几何轴心的距离称为偏心距(即曲柄长度),这种机构称为偏心轮机构(如图1-7)。显然,这种机构与曲柄滑块机构的运动特性完全相同。常用于要求行程短、受力大的场合,如冲床、剪床等机械中[6]。

图1.7曲柄滑块机构演化成偏心轮机构

1.4 平面四杆机构的主要工作特性

在讨论平面四杆机构的运动特性之前,就与机构运动性能有关的一些基本知识作一些简单的介绍。

1.4.1 铰链四杆机构的曲柄存在条件

铰链四杆机构的曲柄存在条件:(1)在曲柄摇杆机构中,曲柄是最短杆;(2)最短杆与最长杆长度之和小于或等于其余两杆长度之和。以上两条件是曲柄存在的必要条件。

因此,当各杆长度不变而取不同杆为机架时,可以得到不同类型的铰链四杆机构。

(a)取最短杆相邻的构件(如杆2)为机架时,最短杆1为曲柄,而另一连架杆3为摇杆,故图1.8所示的机构为曲柄摇杆机构。

(b)取最短杆为机架,其连架杆2和4均为曲柄,故图1.9所示为双曲柄机构。

(c)取最短杆的对边(杆3)为机架,则两连架杆2和4都不能作整周转动,故图1.10所示为双摇杆机构。

图1.8 曲柄摇杆机构

图1.9 双曲柄机构

图1.10 双摇杆机构

如果铰链四杆机构中的最短杆与最长杆长度之和大于其余两杆长度之和,则该机构中不可能存在曲柄,无论取哪个构件作为机架,都只能得到双摇杆机构。

由上述分析可知,最短杆和最长杆长度之和小于或等于其余两杆长度之和是铰链四杆机构存在曲柄的必要条件。满足这个条件的机构究竟有一个曲柄、两个曲柄或没有曲柄,还需根据取何杆为机架来判断[7]。

1.4.2 行程速度变化系数

当原动件(曲柄)做匀速定轴转动时,从动件相对于机架作往复运动(摆动或移动)的连杆机构,从动件正行程和反行程的位移量相同,而所需的时间一般并不相等,正反两个行程的平均速度也就不相等。这种现象称为机构的急回特性。在工程实际中,为了提高生产率,保证产品质量,常常使从动件的慢速运动行程为工作行程,而从动件的快速运动行程为空回行程。因此,正确分析平面连杆机构的急回特性,在机构分析和设计中具有很重要意义。为反应急回特性的相对程度,引入从动件行程速度变化系数,用K表示,其值为从动件快行程平均速度与从动件慢行程

平均速度的比值(K ≥1)

在图1.11所示的曲柄摇杆机构中,曲柄与连杆重叠共线的AB 1和拉直共线的AB 2分别对应于从动件的两个极限位置C 1D 和C 2D ,矢径AB 1和AB 2将以A 为圆心、曲柄长为半径的圆分割为圆心角不等的两部分,其中圆心角较大的用α1(≥180°)表示,小者用α2(≤180°)表示,由

α1=180°+θ,α2=180°-θ

可得

θ=(α1-α2)/2

若曲柄以匀速转过α1和α2对应的时间为t 1(对应于从动件慢行程)和t 2(对应于从动件快行程),则根据行程速度变化系数的定义,有:

1

1801

k k θ-=+

因此,机构的急回特性也可以用θ角来表示,由于θ与从动件极限位置对应的曲柄位置有关,故称其为极位夹角。对于曲柄摇杆机构,极位夹角即为∠C 1AC 2。其值与机构尺寸有关,可能小于90°,也可能大于90°,一般范围为0°到180°。

图1.11 曲柄摇杆机构的行程速比系数分析

除曲柄摇杆机构外,偏置曲柄滑块机构和导杆机构也有急回特性。如图1.12所示的偏置曲柄滑块机构,极位夹角为θ=∠C 1AC 2<90° 滑块慢行程的方向与曲柄的转向和偏置方向有关。当偏距e=0时,θ=0,即对心曲柄滑块机构无急回特性。

图1.12 偏置曲柄滑块机构

图1.13表示了摆动导杆机构的极位夹角,其取值范围为(0°,180°),并有ψ=θ。导杆慢行程摆动方向总是与曲柄转向相同[8]。

图1.13 转动导杆机构

4.3 压力角和传动角

在图1.14所示的曲柄摇杆ABCD中,若不考虑构件的惯性力和运动副中的摩擦力的影响,当曲柄AB为主动件时,则通过连杆BC作用于从动件摇杆CD上的力P即沿BC方向。该力P的作用线与其作用点C的绝对速度υc之间所夹的锐角α称为压力角。

图1.14 曲柄摇杆机构的压力角分析

由图可见,力P可分解为沿点C绝对速度υ

c 方向的分力P

t

及沿构件CD方向的分力P

n

,P

n

只能使铰链C及D产生径向压力,而分力P

t 才是推动从动件CD运动的有效分力,其值P

t

=Pcosα=Psinγ.显然,压力角α越小,其有效分力P

t

则越大,亦即机构的传动效益越高。为了便于度量,引入压力角α的余角γ=90°-α,该角γ称为传动角。显

然,角γ越大,则有效分力P

t 则越大而P

n

就越小,因此在机构中常用其传动角γ的大

小及其变化情况来表示机构的传力性能。

传动角γ的大小是随机构位置的不同而变化的。为了保证机构具有良好的传动性能,综合机构时,通常应使γ

max

≥40°。尤其对于一些具有短暂高峰载荷的机构,可

利用其传动角接近γ

max

时进行工作,从而节省动力[9]。

1.4.4 死点

在曲柄摇杆机构中,如图1.15所示,若取摇杆作为原动件,则摇杆在两极限位置时,通过连杆加于曲柄的力P将经过铰链A的中心,此时传动角γ=0,即α=90°,

故P

t

=0,它不能推动曲柄转动,而使整个机构处于静止状态。这种位置称为死点。对传动而言,机构有死点是一个缺陷,需设法加以克服,例如可利用构件的惯性通过死点。缝纫机在运动中就是依靠皮带轮的惯性来通过死点的。也可以采用机构错位排列的办法,即将两组以上的机构组合起来,使各组机构的死点错开。

图1.15 曲柄摇杆机构死点位置

构件的死点位置并非总是起消极作用。在工程中,也常利用死点位置来实现一定的工作要求。例如图1.16所示工件夹紧机构,当在P力作用下夹紧工件时,铰链中心B﹑C﹑D共线,机构处于死点位置,此时工件加在构件1上的反作用力Q无论多大,也不能使构件3转动,这就保证在去掉外力P之后,仍能可靠夹紧工件。当需要取出工件时,只要在手柄上施加向上的外力,就可以使机构离开死点位置,从而松脱工件[10]。

图1.16 工件夹紧机构

1.5 连杆机构的特点与应用

平面连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面复杂运动,从而可用于实现已知运动规律和已知轨迹。连杆机构之所以能被广泛地应用于各种机械及仪表中,这是由于它具有显著的优点:由于运动副元素为圆柱面和平面而易于加工、安装并能保证精度要求,且因各构件之间为面接触而压强小,便于润

滑,故其磨损小且承载能力大,两构件之间的接触是靠其本身的几何封闭来维系的,它不象凸轮机构有时需利用弹簧等力来保持接触;当主动件的运动规律不变时,仅改变机构中构件的相对长度,则可使从动件得到多种不同的运动规律:另外,也可利用连杆曲线的多样性来满足工程上的各种轨迹要求[11]。

1.6 简单介绍本篇论文中所用到的软件

(1) VB软件

a. 概述

Visual Basic(VB)的开发基础:Microsoft公司的Basic语言。Visual—“可视化”、“形象化”的意思,指的是开发图形用户界面(GUI—Graphical User Interfaces)的方法。Basic—是“Beginners All-purpose Symbolic Instruction Code”的缩写,即“初学者通用符号指令代码”,是专为初学者设计的高级语言。

b. 特点

1.是面向对象的可视化编程工具不需要编写大量的代码。

2.仍然采用三种基本结构化程序设计方法。

3.采用事件驱动的编程机制。

4.提供了易学易用的应用程序集成开发环境。

5.支持多种数据库系统的访问(MS Access 、Foxpro 、SQL Sever)。

6.支持对象链接与嵌入技术(OLE—Object Linking and Embedding)。

7.完备的联机帮助系统(MSDN)。

(2) ADAMS软件

a. 概述

在机构设计中,要求机构的从动件必须满足某种运动规律,这就需要对机构进

行必要的运动分析。常规的分析方法是图解法和解析法。但是,前者的设计精度

低;后者的计算工作量大,必须借助计算机编程处理。如果借助ADAMS软件,通过仿真,可以确定构件的运动情况,检验构件之间是否干涉、执行件的运动是否与期望

的相符。ADAMS软件是由美国MSC公司开发研制的集建模、求解、可视化技术于一体

的虚拟样机软件,主要针对机械系统的仿真分析。ADAMS软件由一下几个模块构成的。核心模块、功能扩展模块、专业模块、工具箱和接口模块。最主要的模块为ADAMS/Ⅵew(用户界面模块)和ADAMS/Solver(求解器)。通过这两个模块,可以对大部分的机械系统进行仿真。该模型既可以在ADAMS下直接建模,也可以从其它CAD软

件中调入造型逼真的几何模型,然后在模型上施加力或力矩的运动激励,再施加一定的运动约束副,最后执行一组与实际运动状况相近的运动仿真测试,得到仿真结果就是实际运动情况。过去需要数星期、数个月完成的工作,在ADAMS软件下仅需要几个小时就可以完成,并可看到物理样机工作情况[12]。

b. 在机构设计分析中的应用

机械制造业发展的总趋势智能化和信息化。要想在竞争日趋激烈的市场上获胜,缩短开发周期,提高产品质量,降低成本都是商家们所追求的。运用ADAMS可以把零件部件的设计和分析技术柔和在一起。在计算机上建造整体模型,并对产品进行生产前的仿真分析,预测其性能,可以完成物理样机无法完成的无数次的仿真试验,进而改进产品,提高市场的响应力[13]。

2 铰链四杆机构的相对尺寸模型

铰链四杆机构的杆长组合有无穷多种,若在这无穷多种机构尺寸中随意取出一些来研究,那是很难找出机构运动性能的变化规律的。图2.1所示是两个对应杆长度成比例的四杆机构,研究表明两者许多性能是完全相同的。因此我们可以不必研究四杆机构的全部尺寸型,而仅研究其相对尺寸型。因此,可采用下述方法将对应各杆长度成比例的相似机构统一为一个尺寸型[14]。

图2.1 对应杆长度成比例的四杆机构

设铰链四杆机构的实际杆长分别为L

1、L

2

、L

3

、L

4

、四个杆的平均长度为L,即:

L= (L

1+L

2

+L

3

+L

4

)/4

于是可得实际机构尺寸经过标准化了的相对机构尺寸为: a= L 1/L 、b = L 2/L 、c=L 3/L 、d=L 4/L

式中a 、b 、c 、d 分别为原动件、连杆、从动件和机架的相对杆长。这样,任意铰链四杆机构的四个相对杆长之和恒为:a+b+c+d=4

由于4个杆长必须构成闭式运动链,任一杆长都必须小于其余三个杆长之和,因此4个相对杆长必须满足下列不等式:0< a 、b 、c 、d < 2

3 曲柄摇杆机构的工作特性分析

3.1 曲柄摇杆机构传动角分析

传动角γ是曲柄摇杆机构传力性能的主要指标,当机构运转时,其传动角的大小是变化的,为了保证机构传动良好,设计时通常应使γ

min

≥40°[15]。

如图3.1,若连杆b 与从动件c 的夹角设为δ,其可能取值范围为0°-180°。显然,当δ≤90°时,γ=δ;当δ>90°时,γ=180°-δ。设δ角的极限值为δm 和δ

,则

图3.1 曲柄摇杆机构δ角极值位置

222

()cos 2m b c d a bc δ+-+=

222

0()cos 2b c d a bc

δ+--=

利用如图3.2所示的程序框图可以计算所有组合尺寸的δm 和δ0,在确定了曲柄摇杆机构的类型后,可得出该机构的最小传动角。如Ⅰ型曲柄摇杆机构的最小传动角γ

min

=δ0,Ⅱ型曲柄摇杆机构的最小传动角γ

min

=180°-δm 。

图3.2 传动角极值计算流程图

图3.3 VB中传动角的计算

图3.2的功能可以通过VB编程来实现,窗口如图3-3所示,应用这个程序,可以

根据a、c、d的值快捷的求出b和最大、最小传动角的值。

图3.2的程序见附录A

例如,当a=0.43,c=0.7,d=1.51时,得出的结果如图3.4所示:

图3.4 VB编程显示结果

3.2 Ⅰ、Ⅱ型曲柄摇杆机构慢行程最小传动角位置

机构的最小传动角γ

min

的大小是衡量其传力性能的重要指标,故设计曲柄摇杆机

构时,均要求γ

min

尽可能地大,一般应大于40°或50°。在以往的教科书中,均指出最小传动角出现在曲柄与机架重叠共线(I型机构)或拉直共线(II型机构)的位置[16]。但是,该两位置刚好位于机构空回(快)行程的阶段内。本节将着重剖析工程中应用较多的Ⅰ、Ⅱ型曲柄摇杆机构工作行程中最小传动角的位置以及最小传动角与构件尺寸之间的关系等一系列问题。

(1)Ⅰ型曲柄摇杆机构:K>1且摇杆慢行程摆动方向与曲柄转向相同。如图

3.7,其结构特征为:A、D位于C

1C

2

两点所确定的直线的同侧,构件尺寸关系为

a2+d2

(2)Ⅱ型曲柄摇杆机构:K>1且摇杆慢行程摆动方向与曲柄转向相反。如图3.8,其结构特征为:A 、D 位于C 1C 2两点所确定的直线的的异侧,构件尺寸关系为a 2+d 2>b 2+c 2[17] 。

3.2.1Ⅰ型曲柄摇杆机构慢行程最小传动角的位置分析

图3.5 I 型曲柄摇杆机构慢行程传动角位置分析

如图3.5所示,设a,b,c,d 分别表示曲柄摇杆机构中曲柄、连杆、摇杆、机架的相对尺寸长度,θ为极位夹角,γ为传动角,在I 型机构中,Φ为慢行程过程中机架AD 与曲柄AB 所夹的角[18]。其变化范围为[Φ0,Φmax ], Φ0,Φmax 为机构在极限位置时,机架与曲柄AB 2,AB 1沿逆时针方向的夹角。在三角形AC 2D 中,由余弦定理得

-++-Φ=+222

1

0()cos

2()d a b c a b d

(3.1)

而 θΦ=Φ max

0++180 (3.2)

在三角形AC 1D 中,由余弦定理得

-+--∠-222

1

1()=cos 2()d b a c C AD b a d

θ=∠-Φ10C AD =-+---222

1

()cos 2()d b a c b a d

—Φ0

故θΦ∈ΦΦ++?00[,180]

1)当Φ∈Φ?0[,180]时,即当机构处于ABCD 位置时,在三角形ABD 和三角形BCD 中,

由余弦定理得: COS ∠BCD =+--+Φ

22222cos 2b c a d ad bc

因cosΦ为减函数,当Φ=Φmin=Φ0时,∠BCD取极小值,记为∠BCD min

当Φ=180o时,∠BCD取极大值,记为∠BCD

max

2)当Φ∈(180°, Φ

max

]时,即机构处于ABC’D位置时,在三角形AB’D和三角形BC’D 中由余弦定理得:

COS∠B’C’D=

+--+Φ22222cos

2

b c a d ad

bc

因cos Φ,为增函数,当Φ,=Φ

max 时,∠B’C’D 取极小值,记为∠B’C’D

min

故慢行程最小传动角γ’

min =min{∠BCD

min

, 180°-∠BCD

max

, ∠B’C’D

min

}

对∠BCD 与∠B’C’D 进行比较:

当Φ

0≤360°-Φ

max

,即cosΦ0≥cosΦmax ,(Φmax>180°),则∠BCD min<∠B’C’D

min ;而360°-Φ

max

=360°-(Φ

+θ+180°)=180°-θ-Φ

,即Φ

≤90°

-θ/2 。

当Φ

0>360°-Φ

max

,即Φ

>90°-θ/2时,则∠BCD

min

>∠B’C’D

min

因此可以得出对于I型曲柄摇杆机构在慢行程时最小传动角的位置为:

当Φ

0 ≤90°-θ/2时,慢行程最小传动角γ’

min

出现在曲柄与连杆拉直共线或曲柄

与机架拉直共线的位置,即γ’

min =min[∠BCD

min

, 180°-∠BCD

max

, ]

当Φ

0 >90°-θ/2时,慢行程最小传动角γ’

min

出现在曲柄与连杆重叠共线或曲柄

与机架拉直共线的位置,即min[ 180°-∠BCD

max , ∠B’C’D

min

]。

3.2.2 Ⅱ型曲柄摇杆机构慢行程最小传动角的位置分析

如图3.6所示,在II型机构慢行程中,Φ为机架与曲柄间的夹角,其变化范围为

[-Φ

max ,Φ

], Φ

max

为机架与曲柄AB

1

沿顺时针方向的夹角,Φ

为机架与曲柄AB

2

逆时

针方向的夹角,AB

1、 AB

2

为曲柄与连杆重叠,延长共线位置[19]。

图3.6 II 型曲柄摇杆机构慢行程传动角位置分析

在三角形AC 2D 中,由余弦定理得:

Φ0 = 222

1

()cos 2()d a b c a b d

θ-++-+

Φmax =180°-(Φ0 -θ)= 180°﹢θ-Φ0

在实际计算时为了方便起见,将Φ分为两个区间,即:(0°,Φ0],[0°, Φ

max

] ;对II 型,22a d +>22b c +,则22a d +-2b -2c >0,故cos Φ0 >0,即0<θ

<90°,

当Φmax <180°,即(0°,Φ0] ?[0°,Φmax ],故只需讨论Φ∈[0°,Φmax ]范围内的γ

min

即可[20]。

当Φ∈[0°, Φmax ],在三角形ABD 和三角形BCD 中,由余弦定理得:

cos ∠BCD= 22222cos 2b c a d ad bc

+--+Φ

因cos Φ为减函数,当Φ=Φmax 时,∠BCD 取极大值,记为∠BCD max ;当Φ=0,cos Φ=1,∠BCD 取极小值,记为∠BCD min ,所以γ’min =min[∠BCD min , 180°-∠BCD max ]。

由此得出Ⅱ型曲柄摇杆机构慢行程最小传动角γ’min 出现在曲柄与机架或与连杆重叠共线的位置[21]。

3.3 Ⅰ、Ⅱ型曲柄摇杆机构慢行程最小传动角的位置分析总结

对于Ⅰ型曲柄摇杆机构:当Φ0 ≤90°-θ/2时,慢行程最小传动角γ’min 出现在曲柄与连杆拉直共线或与机架拉直共线的位置,即γ’min =min[∠BCD min , 180°-∠

BCD max ,]。当Φ0 >90°-θ/2时,慢行程最小传动角γ’min 出现在曲柄与连杆重叠共线或曲柄与机架拉直共线的位置,即γ’min =min[ 180°-∠BCD max , ∠B ’C ’D

min

]。

对于Ⅱ型曲柄摇杆机构,慢行程最小传动角γ’min 出现在曲柄与几家或与连杆重

叠共线的位置,即γ’min = min[∠BCD min , 180°-∠BCD max , ]

3.4 Ⅰ、Ⅱ型曲柄摇杆机构最小传动角受构件尺寸变化的影响情况。

将构件尺寸转化为相对尺寸,其相对杆长a 为严格最小。对于Ⅰ型曲柄摇杆机构,最小传动角γ

min

出现在曲柄与机架重叠共线位置

[22]

,其值可表示为:

222

1

min

()cos 2b c d a bc

γ-+--= (3.3)

对于Ⅱ型曲柄摇杆机构,最小传动角γmin

出现在曲柄与机架拉直共线位置,其值可表

示为:

222

1

min

()cos 2d a b c bc

γ-+--= (3.4)

由上面两个式子可得如下结论[21]:

结论1 对于a, d 一定的Ⅰ、Ⅱ型曲柄摇杆机构,交换b 与c 两值的机构和原机构的最小传动角相同[23]。

结论2 对于a 、d 一定的I 型曲柄摇杆机构,|b-c |越小,则机构的最小传动角γmin

大;当b=c 时,γ

min

取得极大值。

结论3 对于a 、d 一定的II 型曲柄摇杆机构,|b-c |越大,则机构的最小传动角γmin

大。

结论1可以从式3.3﹑式3.4明显得出 结论2证明如下:

当a ﹑d 一定时,d+a 为定值,由于a+b+c+d=4,故b+c 也为定值。令:

222

1()2b c d a f bc

+--=

显然有:2222

1()2()()()122b c bc d a b c d a f bc bc

+---+--=

=- (3.5) 因γ

min

∈ ( 0,90°),所以0

M=4-(a+d )为常数。显然:当b=c=M /2时,函数g 取得极大值;当b 或c ∈ (a,M/2]

时,函数g 为单调增函数;当b 或c ∈ (M/2,4-2a-d)时,函数g 为单调减函数。可见

当|b-c |越小时,bc 值越大由式

2222

1()2()()()122b c bc d a b c d a f bc bc

+---+--==-知道f 1 越小,因余弦函数

在(0,90°)为单调递减函数,故γmin

就越大。当b=c=M/2时,f 1取得极小值,γ

min

相应

取得极大值,结论2得证。 结论3证明如下:

a 、d 一定,则a+d 为定值,由于a+b+c+d=4,故b+c 也为定值。令:

222

2()2d a b c f bc

+--=

显然有:

222()()22d a b c bc f bc +-++==1-22

()()2b c d a bc

+-+ (3.6)

由式3.8中只有2bc 为变量,类似前面分析可得出| b -c|越大,bc 值越小,f 2就越小,因余弦函数在(0,90°)内为单调递减函数,所以γ

min

将变大,进而得出结论3。

4 曲柄摇杆机构极位夹角分析

4.1 极位夹角与构件尺寸的关系

本节深入分析工程上应用较多的Ⅰ、Ⅱ型曲柄摇杆机构的极位夹角与构件尺寸的内在关系,得出相应的结论。

1.曲柄摇杆机构极位夹角θ大于或等于90°的充要条件

对于图 3.7,3.8所示平面曲柄摇杆机构,构件4为机架,四个构件的长度满足杆长之和条件。以下讨论均假设[24]:

1) 曲柄1为主动件作等角速转动,摇杆3为从动件作往复摆动; 2) 构件1为严格最短,即b 、c, d 均大于a; 3) 不存在运动不确定位置,即四构件不共线。

图3.7 Ⅰ型曲柄摇杆机构 图3.8 Ⅱ型曲柄摇杆机构

在此假设前提下,有结论1 结论1

曲柄摇杆机构极位夹角θ大于90°当且仅当以下两式同时成立

22222()()d b a c d b a +-<<++ (4.1)

222222

22222

()2()d c c a b b a a b --->-+ (4.2)

结论1证明如下:

如图3.3,3.4所示,记α1= ∠ C 1AD ,α2=∠C 2AD ,其中α1α2∈(0°,180°),根据极位夹角的定义,有θ= |α1-α2 |,即

121212cos cos()cos cos sin sin θαααααα=-=+ (4.3)

式中:2221()cos 2()d b a c d b a α+--=- ,2222()cos 2()d b a c d b a α++-=+ (4.4)

θ>90°?cos 0θ<

再记1122cos ,

cos t t αα== ,则对于α1α2∈(0°,180°)有211sin 1t α=-,

222sin 1t α=

-,所以式4.3可写为

22

1212

cos (1)(1)tt t t θ=+-- (4.5) 显然 cos 0θ

12(1)(1)0tt t t +--< (4.6) 由上式知,t 1﹑t 2均不能为零,且必有其一小于零。由式4.4知

22210()t c d b a >?<+- (4.7)

22220()t c d b a ++ (4.8) 显然4.7和4.8不能同时成立,故不存在1200t t ><且的情况。因此有

平面四杆机构教学设计

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 平面四杆机构教学设计 平面四杆机构 1/ 29

目录 CONTENTS教学分析2教学过程4Teaching AnalysisTeaching Process1教学设计Teaching Design3教学反思Teaching Refletion

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 目录 CONTENTS教学分析2教学过程4Teaching AnalysisTeaching Process1教学设计Teaching Design3教学反思Teaching Refletion 3/ 29

教学分析Teaching Analysis教材分析内容分析目标分析学情分析重难点分析7.1平面机构自由度与运动副材料力学工程力学机械设计液压传动第七章平面运动机构第八章齿轮传动机构第九章其他常用机构第十章滚动轴承第十一章轴和轴毂连接7.2平面机构运动简图 7.3机构具有确定运动的条件7.4平面四杆机构机电一体化专业基础课

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 教学分析Teaching Analysis教材分析内容分析目标分析学情分析重难点分析应用广泛日常的生产生活中很多装置及设备都应有平面四杆机构或者其变形形式类型多样拥有多种类型及其变形形式,需注意辨别0102平面四杆机构基础机构最简单的连杆机构,为以后学习多杆机构打下基础。 032学时04实用性强为以后从事机械设计工作打下理论基础 5/ 29

平面四杆机构教学设计

教学设计 设计思路: 本次课程的主要内容:首先通过PPT图片引出本次课程的学习内容平面四杆,然后通过介绍平面四杆机构的概念,并进行详细的讲解让学生理解并记住,引出新名词曲柄摇杆概念让学生分组进行讨论研究。教师介绍平面四杆机构的基本类型,并对每个类型讲解,列举生活中的应用实例,最后介绍四杆机构的判别方法,最后教师进行总结。教学内容:平面四杆机构。 教学目标: 知识与能力目标:1、引领学生对平面四杆机构进行学习。2.提升学 生理论知识与实际应用结合的能力。 过程与方法目标:培养学生提出问题、解决问题的能力。 情感态度与价值观目标:1.引导学生学习,调动学生学习积极性。 2.培养学生的自信心。 教学重点:平面四杆机构的组成。 教学难点:平面四杆机构的分类。 教学方法:案例教学法、分组讨论法 教材准备:《机械基础》 学情分析:学生在之前课时中已经学习过高副低副以及构件的概念。教材分析:《机械基础》是中等职业教育规划新教材,本次课《键连接和销连接》选自课本第四章第一节,介绍了键和销连接功能、类型、结构形式及应用是本书重点内容之一。为后面学习第五章构件、机械

的基础知识、工作原理和基本技能等知识打好理论知识基础,在机械专业中具有不容忽视的重要的地位。 教学过程: 1.首先教师通过复习之前课程学习过的高副低副以及构件的基本概 念并介绍平面四杆机构的概念,提问学生生活中有哪些类型的四杆机构?让学生进行思考。 2.教师通过展示平面四杆机构的图片,让学生对于平面四杆机构有 一个大致的了解,然后详细介绍每一构件。 3.教师讲解平面四杆机构的各种类型,并列举生活中的应用实例, 让同学们有进一步的了解。 4.教师通过讲授法给学生讲解平面四杆机构的判别方法。 5.教师最后进行评价总结,知识建构。 教学评价:根据学生在课堂上的表现,课堂学习的氛围,师生之间的互动情况反思教学设计思路是否合理,教学内容的选择和教学过程的安排是否合理,学生是否能跟上教师的节奏,内容的转换是否突兀,讲解的内容是否符合由浅入深的教学原则,并作出相应的修改和调整。案例教学是互动式的教学,学生可以变被动听讲为主动参与,有利于调动其学习积极性和主动性,激励学员独立思考,提高学生理解、运用和驾驭知识的能力,改善教学效果。

铰链四杆机构优秀教案 (公开课)

铰链四杆机构优秀教案 (公开课) 《机械基础》课教案 授课专业:机加工授课时间:90分钟 项城中专:张秋峰 总课题: 铰链四杆机构的课题基本性质名称分课题:曲柄存在的条件组织形式演示与电化教学讲授主要内容重点难点教学目标教学方法教学准备 1 课型新授课 1、曲柄存在的条件; 2、曲柄摇杆机构的构成条件; 3、双曲柄机构的构成条件; 4、双摇杆机构的构成条件。 1、曲柄摇杆机构的构成条件; 2、双曲柄机构的构成条件; 3、双摇杆机构的构成条件。曲柄存在的条件。 1、认知目标:了解曲柄存在的条件,掌握曲柄摇杆机构、双曲柄机构和双摇杆机构的构成条件。 2、能力目标:培养学生的自学能力,使他们能在实习或生产中解决相关的技术问题,特别是能运用归纳和演绎两种推理方法解决相关技术难题。 3、思想目标:培养学生的归纳演绎的方法和分析、解决问题的思考方法。十步教学法,直观演示教学法,启发—研究法、电化教学法。 1、白板笔,示教板、用木材自制的两个铰链四杆机构及用Flash制作的相应

内容的动画课件、展示台、投影仪一套、教师用机; 2、学案,师生人手一份组织教学: 1、学生按时进入课室,师生互相问候。 2、检查学生出勤、装束、精神状态情况。 3、宣布本次课题的内容及任务。教学过程: 一、复习有关内容: 1、铰链四杆机构有三种基本形式,即曲柄摇杆机构、双曲柄机构和双摇杆机构。 2、曲柄:与机架用转动副相连并能绕着该转动副作连续整周旋转运动的构件。 3、摇杆:与机架用转动副相连并能绕着该转动副作往复摆动的构件。 4、曲柄摇杆机构:一连架杆为曲柄、另一连架杆为摇杆的铰链四杆机构,其中曲柄作连续整周旋转运动,摇杆在一定范围内作往复摆动。 5、双曲柄机构:两连架杆都为曲柄的铰链四杆机构,其中两曲柄都作连续整周旋转运动。 6、双摇杆机构:两连架杆都为摇杆的铰链四杆机构,其中两摇杆都在一定范围内作往复摆动。二、导入新课:通过曲柄摇杆机构的实物模型演示其两共线位置,设疑提问,引导学生思考曲柄的存在必须满足一定的条件。三、讲授新课:曲柄存在的条件: 1、已知:AB=a,BC=b,CD=c,AD=d,如图5-17所示,进行详细分析。 2、第一次共线时: AC1D构成一个三角形,

(完整word版)铰链四杆机构教学设计

《铰链四杆机构的类型及判定》教学设计 一、教学设计思路 本着以学生能力培养为本位,尊重学生的认知规律和职业成长规律,结合所教学生的实际情况(中职学生好动),在本次课堂教学中以铰链四杆机构的真实工作情境导入教学内容,提出本次课的工作任务,并以教学载体为主线组织教学,完成工作任务。学生课前做模型,老师评,课后按所学新知改进模型,体现“做中学,学中做”的教学思路。通过解析教学载体,使学生掌握知识点,培养学生的动手能力、协作能力。 二、教材分析: 本课内容选自中等职业教育国家规划教材《机械基础》第六章第二节。本教材前面五章的内容都是机械零件的静止运动,常用机构的教学内容需构建运动的思维,是一个由静向动的变化过程,学生应动起来(思维动起来、手动起来)。在教学中,课程第一章中机构的知识得到了运用与提升,同时本学习单元内容也为后续常用机构的学习垫定了基础。 三、教学目标 1、知识目标: (1)、熟悉高、低副接触的运动特点和四杆机构的组成条件。 (2)、掌握铰链四杆机构类型及其判定条件,了解其应用。 2、能力目标: (1)、课前预习并分小组制作铰链四杆机构模型,课后运用所学知识分析存在的问题,改进模型。 (2)、能够判断四杆机构是否存在曲柄,并能够根据已知条件确定四杆机构的形式。 3、情感目标: (1)、培养学生细心观察、分析问题及灵活运用所学知识解决问题的能力。 (2)、通过小组做模型,使学生养成学以致用,大胆实践的精神,同时增强同学间的团队协作意识。 四、教学重难点 教学重点:铰链四杆机构曲柄存在条件的判别及四杆机构类型的确定。 教学难点:铰链四杆机构类型判定条件的应用。 教学关键:杆件的长度、位置与铰链四杆机构类型的关系 突破:做模型、动画、课件 五、教学准备 1、学生准备 (1)、知识储备:掌握运动副、构件、铰链四杆机构的组成等知识;具备初步分析机构运动特点能力。 (2)、预习新课,并在课前试做铰链四杆机构。 2、教师准备 (1)、准备制作铰链四杆机构的材料、课件、动画、教案、教学载体。 (2)、教学方法:讲授法、任务设计法、案例教学法(以教学载体为主线)、小组协作法。 (3)、教学资源:多媒体课件、投影仪、黑板、动画、机构模型

平面连杆机构及其设计(参考答案)

一、填空题: 1.平面连杆机构是由一些刚性构件用低副连接组成的。 2.由四个构件通过低副联接而成的机构成为四杆机构。 3.在铰链四杆机构中,运动副全部是转动副。 4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 6.在铰链四杆机构中,与连架杆相连的构件称为连杆。 7.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 8.对心曲柄滑快机构无急回特性。9.偏置曲柄滑快机构有急回特性。 10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。 11.机构处于死点时,其传动角等于0。12.机构的压力角越小对传动越有利。 13.曲柄滑快机构,当取滑块为原动件时,可能有死点。 14.机构处在死点时,其压力角等于90o。 15.平面连杆机构,至少需要4个构件。 二、判断题: 1.平面连杆机构中,至少有一个连杆。(√) 2.平面连杆机构中,最少需要三个构件。(×) 3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。(√) 4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 5.有死点的机构不能产生运动。(×) 6.机构的压力角越大,传力越费劲,传动效率越低。(√) 7.曲柄摇杆机构中,曲柄为最短杆。(√) 8.双曲柄机构中,曲柄一定是最短杆。(×) 9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 10.平面连杆机构中,压力角的余角称为传动角。(√) 11.机构运转时,压力角是变化的。(√) 三、选择题: 1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A <=; B >=; C > 。 2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。 A 最短杆或最短杆相邻边; B 最长杆; C 最短杆的对边。3.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时,有两

平面机构8个教案.

教案编号 1 课题平面连杆机构授课人曹国伟课型新授 课时8 教具Ppt 电脑 原设计者戴春灿授课时间 3、8 教学目标1.了解平面运动副及分类。 2.掌握铰链四杆机构的基本类型、特点及应用。3.掌握铰链四杆机构类型的判定。 4.了解含有一个移动副的四杆机构的类型和应用。5.理解曲柄摇杆机构的急回运动特性和死点位置。6.了解凸轮机构的组成、类型及应用。 7.了解棘轮机构的组成、类型及运动特点。 教学重点1、掌握铰链四杆机构的基本类型、特点及应用。 2、掌握铰链四杆机构类型的判定。 3、理解曲柄摇杆机构的急回运动特性和死点位置。 教学难点 掌握铰链四杆机构类型的判定。

教学过程(复习提问、精讲设计、课前或中预习内容及要求、设计当堂测试和作业、随堂小结等)

第一课时 一、组织教学:清点人数,端正坐姿 二、复习内容:机器和机构的区分 三、导入新课 人们的生活离不开机械,在日常生活中都随处可见(例如:螺钉、自行车、汽车、挖掘机),它通常有两类:一类是可以使物体运动速度加快的称为加速机械(自行车、飞机);一类是使人们能够对物体施加更大力的称为加力机械(旋具、机床)。 四、讲授新课 运动副的概念及应用特点 1.运动副:两构件之间直接接触并能产生一定形式相对运动的可动联接。根据接触情况 可分为高副和低副。 (1)低副:两构件间作面接触的运动副。根据运动特征分为转动、副移动副和螺旋副。(2)高副:两构件间作点或线接触的运动副。按接触形式不同分为滚轮接触、凸轮接触和齿轮接触。 2.运动副的应用特点 (1)低副特点:单位面积压力小,传力性能好,滑动摩擦,摩擦阻力大,效率低。不能 传递较复杂的运动。 (2)高副特点:单位面积压力大,两构件接触处容易磨损,制造和维修困难,能传递较 复杂的运动。 3.低副机构与高副机构 机构中所有运动副均为低副的机构称为低副机构;机构中至少有一个运动副是高副的机 构称为高副机构。 (a)转动副(b) 移动副(c) 螺旋副

平面四杆机构的基本类型及其演化

第三讲 课题:§3-1 平面四杆机构的基本类型及其演化 教学目的:理解平面四杆机构的各种类型及其应用。 教学重点:铰链四杆机构类型及其演化,理解曲柄存在条件。 教学难点:导杆机构 教学方法:课堂演示、多媒体 教学互动:每个知识点后提问或讨论。 教学安排: §3-1 平面四杆机构的基本类型及其演化 复习旧课:机构组成,运动副,运动简图等。 平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。 一、四杆机构的类型 1.曲柄摇杆机构 两连架杆一为曲柄,一为摇杆。 功能:将等速转动转换为变速摆动或将摆动转换为连续转动。 应用:雷达天线机构、缝纫机踏板机构。 2.双曲柄机构 两连架杆都为曲柄 功能:将等速转动转换为等速同向、不等速同向、不等速反向转动。 应用:惯性筛机构 若两曲柄的长度相等,连杆与机架的长度也相等,则该机构称为平行双曲柄机构。如铲斗机构

还有反平行四边形机构,例:公共汽车车门启闭机构。3.双摇杆机构 两连架杆都为摇杆 功能:一种摆动转换为另一种摆动。 应用:鹤式起重机、飞机起落架 二、铰链四杆机构的曲柄存在条件 证明: 结论:铰链四杆机构存在一个曲柄的条件是: 1.最短杆与最长杆长度之和小于或等于其余两杆长度之和。2.曲柄为最短杆。 铰链四杆机构存在曲柄的条件是: 1.最短杆与最长杆长度之和小于或等于其余两杆长度之和。2.机架或连架杆为最短杆。 三、四杆机构类型判别 否Lmax+Lmin≤L′+L″是 不可能有曲柄可能有曲柄 最短杆对边最短杆 最短杆邻边 双摇杆机构曲柄摇杆机构双曲柄机构 四、铰链四杆机构的演化 1.曲柄滑块机构 2.偏心轮机构 3.导杆机构 ①摆动导杆机构(牛头刨床)

《铰链四杆机构》教学设计

《铰链四杆机构》教学设计 一、课程和任务分析 《机械基础》是机电专业中一门综合性的专业基础课,它主要研究了机械零件的材料、受力分析、机械传动及液压传动相关知识和常用机构各构件间的相对运动关系等。本节课是掌握各机构的运动特性和在实践中的应用的基础。 前次课已经学习了运动副的概念、分类及铰链四杆机构的组成,且对实物进行分析。而本次课的重点是掌握铰链四杆机构类型的判别的方法及曲柄摇杆机构运动特性分析和应用。 二、教学目的 1、明确铰链四杆机构的类型判断。 2、了解不同类型铰链四杆机构的运动。 3、明确曲柄摇杆机构的运动及应用 三、教学重点 1、铰链四杆机构的类型判别。 2、曲柄摇杆机构的运动及应用分析。 四、教学难点 明确铰链四杆机构的类型。 五、课前准备 1、四个设定长度的杆,并在指定位置加工出小孔:四个小螺栓或曲别针(每桌一组)。 2、家中(或市场)观察缝纫机工作时的运动情况或进行操作。 六、教学设想(教法、学法) 因为本课程时间性很强,为了更好的让学生理解和接受,教学中要求教师充分运用实物,模型等教学媒体辅助教学,使学生通过教具来加强感性认识,并提出相关启发学生积极思考,形成概念,加深理解和记忆。 教法:讲授演示结合法 教具:四杆机构、挂图 七、课时安排:(1课时45min ) 八、课前提问:(4min ) ①什么是铰链四杆机构? ②铰链四杆机构中各杆的名称 九、导入新课:(1min )铰链四杆机构中,机架和连架杆总是存在的,但是曲柄不一定存在。 那么我们来分析在一个四杆机构中曲柄是否存在呢?他又有那种基本形式呢? 十、教学过程:(30min )(师生互动) §6-1平面连杆机构 二、铰链四杆机构 2、铰链四杆机构的基本形式①铰链四杆机构的类型判别 a:为了让学生能更好得理解概念及“铰链四杆机构”的基本形式,让学生将课前准备好的四杆机构按要求在给定位置用螺栓连接,之后放好。 b:拿出自己课前做好的四杆机构进行演示(演示过程,变换主动件)。使学生对此机构有初步的了解认识,并得出结论: 是否有曲柄存在,取决于杆长,当Lmin+Lmax≤l′+l″时,则有: ①若取与最短杆相邻的任一杆为机架,则最短杆为曲柄。 ②若取最短杆为机架,则该机构为双曲柄机构。 ③若取最短杆的相对杆为机架则该机构为双摇杆机构。 C:变换最长杆的连接位置,使Lmin+Lmax>l′+l″并演示。

完整word版铰链四杆机构教学设计

教学设计 《铰链四杆机构的类型及判定》教学设计 一、教学设计思路 本着以学生能力培养为本位,尊重学生的认知规律和职业成长规律,结合所教学生的实际情况(中职学生好动),在本次课堂教学中以铰链四杆机构的真实工作情境导入教学内容,提出本次课的工作任务,并以教学载体为主线组织教学,完成工作任务。学生课前做模型,老师评,课后按所学新知改进模型,体现“做中学,学中做”的教学思路。通过解析教学载体,使学生掌握知识点,培养学生的动手能力、协作能力。 二、教材分析: 本课内容选自中等职业教育国家规划教材《机械基础》第六章第二节。本教材前面五章的内容都是机械零件的静止运动,常用机构的教学内容需构建运动的思维,是一个由静向动的变化过程,学生应动起来(思维动起来、手动起来)。在教学中,课程第一章中机构的知识得到了运用与提升,同时本学习单元内容也为后续常用机构的学习垫定了基础。 三、教学目标 、知识目标:1(1)、熟悉高、低副接触的运动特点和四杆机构的组成条件。(2)、掌握铰链四杆机构类型及其判定条件,了解其应用。 2、能力目标: (1)、课前预习并分小组制作铰链四杆机构模型,课后运用所学知识分析存在的问题,改进模型。 (2)、能够判断四杆机构是否存在曲柄,并能够根据已知条件确定四杆机构的形式。 3、情感目标: (1)、培养学生细心观察、分析问题及灵活运用所学知识解决问题的能力。 (2)、通过小组做模型,使学生养成学以致用,大胆实践的精神,同时增强同学间的团队协作意识。 四、教学重难点 教学重点:铰链四杆机构曲柄存在条件的判别及四杆机构类型的确定。 教学难点:铰链四杆机构类型判定条件的应用。 教学关键:杆件的长度、位置与铰链四杆机构类型的关系 突破:做模型、动画、课件 五、教学准备 1、学生准备 (1)、知识储备:掌握运动副、构件、铰链四杆机构的组成等知识;具备初步分析机构运动特点能力。 (2)、预习新课,并在课前试做铰链四杆机构。 2、教师准备 (1)、准备制作铰链四杆机构的材料、课件、动画、教案、教学载体。

平面四杆机构教案

《机械基础》教案第10次课 2学时授课时间90分钟

课前教学准备 1.白板笔,示教板、用木材自制的两个铰链四杆机构及用 Flash制作的相应内容的动画课件、展示台、投影仪一套、 教师用机; 2.学案(包括教学目标、重点、难点、自学练习题),师生 人手一份。 组织教学 1.学生按时进入课室,师生互相问候。 2.检查学生出勤、装束、精神状态情况。 3.宣布本次课题的内容及任务。 教学过程 一、复习有关内容 1.什么是机构?什么是平面机构? 2.什么是低副?低副有哪几种类型? 二、导入新课 用多媒体播放世界上最大的起重机。 导入语:每一个机器都是由若干个机构或构件所组成,那么视屏中 的起重机中那些机构和我们今天所学的知识有联系呢?我们带着疑 问开始今天的课程! (5分钟) (6分钟) 电教演示自制课 件(打开多媒体课 件) 教学内容 备注 (包括:教学手段、 时间分配、临时更改 等)

三、讲授新课 一、平面连杆机构 1、定义:由若干 构件和低副组成 的平面机构。 二、铰链四杆机构 1、定义:由四个 杆件通过铰链 (转动副)连 接而成的平面 四杆机构。 2、结构特征 (1)、四个构件 (2)、运动副全为转动副 机架 曲柄-整转副3、组成连架杆 摇杆-摆转副 连杆 4、铰链四杆机构的类型(4分钟)(4分钟)(4分钟) (5分钟) 教学内容 备注 (包括:教学手段、时间分配、临时更改等) 铰链四杆机构曲柄摇杆机构 双曲柄机构 双摇杆机构 搅拌机 惯性筛机构 鹤式起重机

以曲柄为主动件:回转摆动举例-搅拌机构 以摇杆为主动件:摆动回转举例-缝纫机机构 (2)、双曲柄机构 ○1一般双曲柄机构:等速回转变速回转;举例-惯性筛机构 ○2平行双曲柄机构:转向相同、转速相等(两曲柄长度相等且平行);举 例-机车联动装置 ○3反向双曲柄机构:转向相反、转速不等(两曲柄长度相等但不平行); 举例-车门启闭装置 (3分钟) (3分钟) (3分钟) 教学内容 备注 (包括:教学手 段、时间分配、 临时更改等) 321 D C F E B 3 5 21 (a) (b) A 4

图解法设计平面四杆机构

图解法设计平面四杆机构 3.4.1按连杆位置设计四杆机构 1.给定连杆的三个位置 给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐图解过程。 ::1::::2:: 2.给定连杆的两个位置 给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。 ①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。 ②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。连接A B1、C1D、B1C1、 A D,A B1C1D即为所求的四杆机构。 ③测量A B1、C1D、A D计算l A B、L C D L A D的长度, 由于A点可任意选取,所以有无穷解。在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。 例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长和两个位置B1C1、B2C2.。要求固定铰链中心A、D在同一水平线上并且A D=B C。自己可以试着在纸上按比例作出图形,再求出各杆长度。若想对答案请点击例题祥解 3.4.2 按行程速度变化系数设计四杆机构 1.设计曲柄摇杆机构 按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。怎样用作图法设计曲柄摇杆机构? 2.设计曲柄摆动导杆机构

最新中职机械基础教案:铰链四杆机构

章节名称铰链四杆机构 授 课 形 式 讲授 课 时 2 班 级 教学 目的 掌握铰链四杆机构的基本类型以及平面四杆机构曲柄存在的条件。 教学重点1、铰链四杆机构的基本类型; 2、平面四杆机构曲柄存在的条件。 教学 难点 四杆机构类型的判别 辅助手段教学模型 课外 作业 练习册 课后 体会 通过教学,学生能掌握铰链四杆机构中曲柄存在条件以及四杆机构类型的判别。 一.四杆机构的组成 铰链四杆机构是由转动副联结起来封闭系统。 其中被固定的杆4被称为机架 不直接与机架相连的杆2称之为连杆 与机架相连的杆1和杆3称之为连架 凡是能作整周回转的连架杆称之为曲柄,只能在小于 360°的范围内作往复摆动的连架杆称之为摇杆。 二.链四杆机构的类型 铰链四杆机构根据其两个连架杆的运动形式不同,可以分为曲柄摇杆机构、双曲柄机构和双摇杆机构三种基本形式。 1)曲柄摇杆机构 若铰链四杆机构中的两个连架杆,一个是曲柄而另一个是摇杆,则该机构称为曲柄摇杆机构。 用来调整雷达天线俯仰角度的曲柄摇杆机构。 汽车前窗的刮雨器。当主动曲柄AB回转时,从动摇杆作往复摆动,利用摇杆的延长部分实现刮雨动作。 2 ) 双曲柄机构 如果铰链四杆机构中的两个连架杆都能作360°整周回转,则这种机构称为双曲柄机构。 在双曲柄机构中,若两个曲柄的长度相等,机架与连架杆的长度相等(这种双曲柄机构称为平行双曲柄机构。 蒸汽机车轮联动机构,是平行双曲柄机构的应用实例。平行双曲柄机构在双曲柄和机架共线时,可能由

于某些偶然因素的影响而使两个曲柄反向回转。机车车轮联动机构 采用三个曲柄的目的就是为了防止其反转。 3)双摇杆机构 铰链四杆机构的两个连架杆都在小于360°的角度内作摆 动,这种机构称为双摇杆机构。 三、曲柄存在的条件 由上述以知,在铰链四杆机构中,能作整周回转的连架杆称为 曲柄。而曲柄是否存在。则取决于机构中各杆的长度关系,即要使连架杆能作整周转动而成为曲柄,各杆长度必须满足一定的条件,这就是所谓的曲柄存在的条件。 可将铰链四杆机构曲柄存在的条件概括为: 1.连架杆与机架中必有一个是最短杆; 2.最短杆与最长杆长度之和必小于或等于其余两杆长度之和。 上述两条件必须同时满足,否则机构中无曲柄存在。根据曲柄条件,还可作如下推论: (1)若铰链四杆机构中最短杆与最长杆长度之和必小于或等于其余两杆长度之和,则可能有以下几种情况: a.以最短杆的相邻杆作机架时,为曲柄摇杆机构; b.以最短杆为机架时,为双曲柄机构; c.以最短杆的相对杆为机架时,为双摇杆机构。 (2)若铰链四杆机构中最短杆与最长杆长度之和大于其余两杆长度之和,则不论以哪一杆为机架,均为双摇杆机构。 四、铰链四杆机构的演化 1.曲柄滑块机构 在曲柄摇杆机构中,如果以一个移动副代替摇杆 和机架间的转动副,则形成的机构称为曲柄滑块机 构。 它能把回转运动转换为往复直线运动,或作相反 的转变。 2.导杆机构 a 曲柄摇杆机构 b 导杆机构 c 摆动滑块机构 d 固定

平面四杆机构教案设计

《机械基础》教案 第 10 次课 2 学时授课时间 90分钟

课前教学准备 1.白板笔,示教板、用木材自制的两个铰链四杆机构及用 Flash制作的相应内容的动画课件、展示台、投影仪一套、 教师用机; 2.学案(包括教学目标、重点、难点、自学练习题),师生 人手一份。 组织教学 1.学生按时进入课室,师生互相问候。 2.检查学生出勤、装束、精神状态情况。 3.宣布本次课题的内容及任务。 教学过程 一、复习有关内容 1.什么是机构?什么是平面机构? 2.什么是低副?低副有哪几种类型? 二、导入新课 用多媒体播放世界上最大的起重机。 导入语:每一个机器都是由若干个机构或构件所组成,那么视屏中 的起重机中那些机构和我们今天所学的知识有联系呢?我们带着疑 问开始今天的课程! (5分钟) (6分钟) 电教演示自制课 件(打开多媒体课 件) 教学内容 备注 (包括:教学手段、 时间分配、临时更改 等)

三、讲授新课 一、平面连杆机构 1、定义:由若干 构件和低副组成 的平面机构。 二、铰链四杆机构 1、定义:由四个 杆件通过铰链 (转动副)连 接而成的平面 四杆机构。 2、结构特征 (1)、四个构件 (2)、运动副全为转动副 机架 曲柄-整转副3、组成连架杆 摇杆-摆转副 连杆 4、铰链四杆机构的类型(4分钟)(4分钟)(4分钟) (5分钟) 教学内容 备注 (包括:教学手段、时间分配、 铰链四杆机构曲柄摇杆机构 双曲柄机构 双摇杆机构 搅拌机 惯性筛机构 鹤式起重机

临时更改等) (1)、曲柄摇杆机构 以曲柄为主动件:回转摆动举例-搅拌机构 以摇杆为主动件:摆动回转举例-缝纫机机构 (2)、双曲柄机构 ○1一般双曲柄机构:等速回转变速回转;举例-惯性筛机构 ○2平行双曲柄机构:转向相同、转速相等(两曲柄长度相等且平行);举 例-机车联动装置 ○3反向双曲柄机构:转向相反、转速不等(两曲柄长度相等但不平行); 举例-车门启闭装置 (5分钟) (3分钟) (3分钟) (3分钟) 321 D C F E B 3 5 21 (a) (b) A 4

(完整版)图解法设计平面四杆机构

3.4 图解法设计平面四杆机构 3.4.1按连杆位置设计四杆机构 1.给定连杆的三个位置 给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐?图解过程。 ::1:: 2.给定连杆的两个位置 给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。 ①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。 ②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。 ③测量A B1、C1D、A D计算l A B、L C D L A D的长度, 由于A点可任意选取,所以有无穷解。在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。 例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长0.5m和两个位置B1C1、B2C2.。要求固定铰链中心A、D在同一水平线上并且A D=B C。自己可以试着在纸上按比例作出图形,再求出各杆长度。若想对答案请点击例题祥解 3.4.2 按行程速度变化系数设计四杆机构 1.设计曲柄摇杆机构 按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。怎样用作图法设计曲柄摇杆机构? 2.设计曲柄摆动导杆机构 已知机架长度l4和速度变化系数K,设计曲柄导杆机构。 ①求出极位夹角 ②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。 ③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点, A B1(或A B2)即为曲柄。测量A B1。求出曲柄长度。 例设计一偏置曲柄滑块机构,已知滑块行程H=88m m,偏心距e=44m m,速度变化系数K=1.4。 自己可以试着在纸上按比例作出图形,再求出各杆长度。

平面连杆机构及其设计答案.docx

第八章平面连杆机构及其设计 一、填空题: 1. 平面连杆机构是由一些刚性构件用转动副和移动副连接组成的。 2. 在铰链四杆机构中,运动副全部是低副。 3. 在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 4. 在铰链四杆机构中,只能摆动的连架杆称为摇杆。 5. 在铰链四杆机构中,与连架杆相连的构件称为连杆。 6. 某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 7. 对心曲柄滑块机构无急回特性。 8. 平行四边形机构的极位夹角V -. θ0 ________ ,行程速比系数K= ___ 。 9. 对于原动件作匀速定轴转动,从动件相对机架作往复直线运动的连杆机构,是否有急回 特性,取决于机构的极位夹角是否为零。 10. 机构处于死点时,其传动角等于丄。 11. 在摆动导杆机构中,若以曲柄为原动件,该机构的压力角:■ =____ 。 12. 曲柄滑块机构,当以滑块为原动件时,可能存在死点。 13. 组成平面连杆机构至少需要4个构件。 二、判断题: 14. 平面连杆机构中,至少有一个连杆。(√) 15. 在曲柄滑块机构中,只要以滑块为原动件,机构必然存在死点。(√) 16. 平面连杆机构中,极位夹角二越大,K值越大,急回运动的性质也越显著。(√) 17. 有死点的机构不能产生运动。(×) 18. 曲柄摇杆机构中,曲柄为最短杆。(√) 19. 双曲柄机构中,曲柄一定是最短杆。(×) 20. 平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 21. 在摆动导杆机构中,若以曲柄为原动件,则机构的极位夹角与导杆的最大摆角相等。 (√ ) 22. 机构运转时,压力角是变化的。(√ ) 三、选择题:

平面四杆机构教学设计

《平面四杆机构》教案设计 【课题】平面四杆机构(高等教育出版社《机械基础(多学时)》第 6 章第2 节) 【课时】2 课时(80 分钟) 【教材分析】 本节课是高等教育出版社《机械基础》第六章第二节“平面四杆机构”中的第一部分的内容。本课时是真正意义上,由“静”至“动”的转折性课程,学生从静态力学知识的学习,转到了动态机构知识的学习,这将是提升学生学习兴趣的大好机会,也是信息化教学的良好切入点。【学情分析】 我所教授的班级是高二机械制图班,该班学生的就业方向是制图员以及三维造型师。因此他们已经学过三维软件,能进行零件装配,具备了本次课学习的必要条件。而他们较强的表现欲望和动手能力,激发了我的思绪,能否抓住学生已有的优点和知识并加以引导,通过已经学习过的知识,去化解枯燥的没有学的知识呢?我相信这样做能提高学生的学习效率,更能增加学生的自信心。 【教材处理】 结合以上学生的特点和知识结构,对教材进行简单调整: 1.以学生验证、发现为主,简化知识的理论推导。 2.以学生自主动手为主,虚拟现实替代图纸模型。 3.去除陈旧案例,案例贴近学生生活。 【教学目标】

【教学重点难点】 ①重点:铰链连杆机构类型的判别方法 ②难点:掌握铰链四杆机构曲柄存在的条件。 要落实重点,突破难点,关键在于学生对知识的自主探索和验证。 【教法与学法】 本课以信息化为平台,以“动手-发现-验证-分析-总结”为主要脉络,以任务驱动为主要 教法,发现学习法为主要学法,将理论知识和本课任务有机结合起来。 通过游戏式的任务驱动法结合学生感兴趣的三维软件,将原本以教师理论教学为主的讲 演内容,转变成以学生完成任务为主实践内容。进一步发挥学生的主观能动性,活跃课堂气氛。 运用好的学习方法往往能激发学生的兴趣,集中学生的注意力,故我设定的学习方法为:一、发现学习法。利用职高学生的优点,培养学生发现问题,解决问题的能力。 二、自主归纳法。发挥学生的主观能动性,培训学生自主归纳知识技能 三、小组合作学习法。单独的行为参与不利于学生高层次思维能力的发展,只有积极的情 感体验和思维交流,才能促进学生全面素质的提高。 【课前准备】 1、上课开始前,给学生准备了几样东西,学习工具-三维软件,学习平台-计算机, 学习资源-任务资源包,学习指导-电子任务书。 2、从机房实际出发,把学生分成 13 组,每组三人的小团队,优势互补、方便交流和讨论。 【教学设计思路】 本次课结合了机械软件课程与机械基础课程,以课前教学资源共享,课中教学环节合并, 课后作业整合等方式将知识点交织利用,配以电子任务书和教学互动博客等信息化手段,来搭建立体的辅助学习平台,以“做中学,学中做”为指导思想,来培养学生知识运用能力和自学能力。让学生在“任务中学,任务中练,任务中验,任务中用”,打破传统教授的方式,由学生自己去探究,发现,验证并理解知识,还学生以自由学习的空间。

平面四杆机构的设计与运动分析Matlab代码

平面四杆机构的设计与运动分析M代码平面四杆机构的设计M代码---- A=[cos(50*pi/180),cos((50-35)*pi/180),1;cos(75*pi/180),cos((75-80)*pi/180),1;cos(105*pi/180), cos((105-125)*pi/180),1]; B=[cos(35*pi/180);cos(80*pi/180);cos(125*pi/180)]; P=A\B m= P(1) n=-m/ P(2) l=sqrt(m^2+n^2+1-2*n*P(3)) 运行设计结果显示:

平面四杆机构的运动分析M代码---- %参数赋值 clc,clear l0=1.2512; l1=1.0; l2=1.5829; l3=1.5815; M=-1; Omiga1=10; Theta1=0:0.01:360; Theta1=Theta1*pi/180; %求解各个构件位移、速度、加速度 A=2*l1*l2*sin(Theta1); B=2*l2*(l1*cos(Theta1)-l0); C=l1^2+l2^2+l0^2-l3^2-2*l1*l0*cos(Theta1); E=2*l1*l3*sin(Theta1); F=2*l3*(l1*cos(Theta1)-l0); G=l2^2-l1^2-l3^2-l0^2+2*l1*l0*cos(Theta1); Theta3=2*atan((E+M*sqrt(E.^2+ F.^2- G.^2))./(F-G)); Theta2=2*atan((A+M*sqrt(A.^2+B.^2-C.^2))./(B-C)); Omiga2=Omiga1*l1*sin(Theta1-Theta3)./(l2*sin(Theta3-Theta2)); Omiga3=Omiga1*l1*sin(Theta1-Theta2)./(l3*sin(Theta3-Theta2)); Alfa3=(Omiga1^2*l1*cos(Theta1-Theta2)+Omiga2.^2*l2-Omiga3.^2*l3.*cos(Theta3-Theta2))./ (l3*sin(Theta3-Theta2)); Alfa2=(-Omiga1^2*l1*cos(Theta1-Theta3)+Omiga3.^2*l3-Omiga2.^2*l2.*cos(Theta2-Theta3))./ (l2*sin(Theta2-Theta3)); %绘图 Theta1=Theta1*180/pi; Subplot(3,1,1) plot(Theta1,Theta3*180/pi),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角位移(^。) '); Subplot(3,1,2) plot(Theta1,Omiga3),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角速度(rad/s) '); Subplot(3,1,3) plot(Theta1,Alfa3),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角加速度(rad/s^2) '); by Xu jianping

(完整版)《铰链四杆机构的演化》教学设计.docx

《铰链四杆机构的演化》教学设计 设计者 案例摘要本课要求学生在幻灯片中运用已学知识主动探究铰链四杆机构的演化过程与方 法,并灵活运用于设计之中,进一步掌握曲柄滑块机构在生产实践中的应用。 教学题目第六章常用机构第一节平面连杆机构 所属学科机电学时安排 1 课时年级14 机电 所选教材《机械基础》(高等教育出版社李世维编著第二版) 一、学习目标与任务 1.学习目标描述(知识与技能、过程与方法、情感态度与价值观) 知识与技能: 1)掌握曲柄滑块机构的演化过程,并能利用演化得来的曲柄滑块机构理解生活中 的实例。 2)初步学会偏心轮机构、导杆机构的演化方式及应用。 过程与方法: 1)通过质疑、引思、讨论、归纳等程序让学生感受分析、判断、解决问题和求变 思维的探究过程。 2)通过讲练结合方式让学生经历学以致用的科学精神。 情感态度与价值观:通过观察 - 讨论 - 设计等形式,培养学生勤思善想、乐于动手、团结合作的 良好习惯,激发学生的学习热情和学习兴趣,让学生体验成功的乐趣,感悟知 识的力量,形成积极向上的价值观与人生观。 2.学习内容与学习任务说明(学习内容的选择、学习形式的确定、学习结果的描述、学习重 点及难点的分析) 本节课是中等职业教育国家规划教材《机械基础》第六章常用机构第一节平面连杆机构的 知识拓展与延伸部分,是在学习了铰链四杆机构的基础上,对本部分内容的演化与创新,内容 涵盖的知识点虽然不多,但理论性强,是对前面所学内容的深化和延伸,目的在于培养学生观 察、分析、综合归纳能力及勇于创造、创新的优秀职业道德素养,对生产实践起着重要的指导 意义,是本章的重点内容之一,也是高职考试大纲要求的内容之一。 通过 flash动画展示铰链四杆机构的演化方式及运动特点,使抽象的理论知识形象化,利 用观察 - 讨论 - 设计等形式,结合质疑、引思、讨论、归纳等程序,解决学生理解上的困难,使 学生更加直观地理解铰链四杆机构的演化方式及运动特点。 教学重点:铰链四杆机构的演化形式; 教学难点:含有一个移动副的铰链四杆机构的运动形式及特点。

机械基础教案(教研组)教案:铰链四杆机构.doc

章节 名称铰链四杆机构 授课 形式 讲授 课 时 2 班 级 10综(3) 教学 目的 掌握铰链四杆机构的基本类型以及平面四杆机构曲柄存在的条件。 教学重点1、铰链四杆机构的基本类型; 2、平面四杆机构曲柄存在的条件。 教学 难点 四杆机构类型的判别辅助 手段教学模型 课外 作业 练习册 课后 体会 通过教学,学生能掌握铰链四杆机构中曲柄存在条件以及四杆机构类型的判别。 一.四杆机构的组成 铰链四杆机构是由转动副联结起来封闭系统。 其中被固定的杆4被称为机架 不直接与机架相连的杆2称之为连杆 与机架相连的杆1和杆3称之为连架 凡是能作整周回转的连架杆称之为曲柄,只能在小于360°的 范围内作往复摆动的连架杆称之为摇杆。 二.链四杆机构的类型 铰链四杆机构根据其两个连架杆的运动形式不同,可以分为曲柄摇杆机构、双曲柄机构和双摇杆机构三种基本形式。 1)曲柄摇杆机构 若铰链四杆机构中的两个连架杆,一个是曲柄而另一个是摇杆,则该机构称为曲柄摇杆机构。 用来调整雷达天线俯仰角度的曲柄摇杆机构。 汽车前窗的刮雨器。当主动曲柄AB回转时,从动摇杆作往复摆动,利用摇杆的延长部分实现刮雨动作。 2 ) 双曲柄机构 如果铰链四杆机构中的两个连架杆都能作360°整周回转,则这种机构称为双曲柄机构。 在双曲柄机构中,若两个曲柄的长度相等,机架与连架杆的长度相等(这种双曲柄机构称为平行双曲柄机构。 蒸汽机车轮联动机构,是平行双曲柄机构的应用实例。平行双曲柄机构在双曲柄和机架共线时,可能由 于某些偶然因素的影响而使两个曲柄反向回转。机车车轮联动机构采用三个曲 柄的目的就是为了防止其反转。

3)双摇杆机构 铰链四杆机构的两个连架杆都在小于360°的角度内作摆动,这种机构称为双摇杆机构。 三、曲柄存在的条件 由上述以知,在铰链四杆机构中,能作整周回转的连架杆称为曲柄。而曲柄是否存在。则取决于机构中各杆的长度关系,即要使连架杆能作整周转动而成为曲柄,各杆长度必须满足一定的条件,这就是所谓的曲柄存在的条件。 可将铰链四杆机构曲柄存在的条件概括为: 1.连架杆与机架中必有一个是最短杆; 2.最短杆与最长杆长度之和必小于或等于其余两杆长度之和。 上述两条件必须同时满足,否则机构中无曲柄存在。根据曲柄条件,还可作如下推论:(1)若铰链四杆机构中最短杆与最长杆长度之和必小于或等于其余两杆长度之和,则可能有以下几种情况: a.以最短杆的相邻杆作机架时,为曲柄摇杆机构; b.以最短杆为机架时,为双曲柄机构; c.以最短杆的相对杆为机架时,为双摇杆机构。 (2)若铰链四杆机构中最短杆与最长杆长度之和大于其余两杆长度之和,则不论以哪一杆为机架,均为双摇杆机构。 四、铰链四杆机构的演化 1.曲柄滑块机构 在曲柄摇杆机构中,如果以一个移动副代替摇杆和机架 间的转动副,则形成的机构称为曲柄滑块机构。 它能把回转运动转换为往复直线运动,或作相反的转 变。 2.导杆机构 a 曲柄摇杆机构 b 导杆机构 c 摆动滑块机构 d 固定

相关文档
相关文档 最新文档