文档库 最新最全的文档下载
当前位置:文档库 › 正反转

正反转

正反转
正反转

十(2)、有一台生产设备用的三相异步电动机拖动

电机型号为:Y112M-4,电机铭牌标注为4KW,380V,11.5A,△,电机运行控制电路要求具有双重联锁正反转启动,电机启动与停止时串电阻限流保护,同时具有过载保护,短路保护,失压保护,欠压保护等功能。停止时要求具有反接制动功能。

设计任务

一、根据控制要求进行电气控制系统电路设计,包括主电路,控

制电路。

1、主电路设计:

机床的三相电源由电源开关Q引

入,电源的每一相上配有短路保护

FU1(熔断器)、电动机M的过载保

护,由热继电器FR实现。根据电机

运行控制电路的要求,设计出如右图

主电路、有接触器KM1、KM2分别

代表电动机的正、反转,KM3为短

接制动电阻接触器。

2、控制电路设计:

根据主电路设计如下图的控制电路,KA1、KA2、KA3、KA4为中间继电器,KS为速度继电器,其中KS-1为正转闭合触头,KS-2为反转闭合触头。R电阻启动时起定子串电阻减压启动用,停车时,

R

电阻又作为反接制动电阻。

表——电机正反转启动控制信号说明

输入输出

文字符号说明文字符号说明

SB1 电动机停止按钮KM1 电动机的正转

SB2 电动机正转按钮KM2 电动机的反转

SB3 电动机反转按钮KM3 短接制动电阻接触器Q 电源开关

FR 电动机过载保护热继

电器

FU2 电动机短路保护熔断

安装该控制电路幷进行模拟运行。

编写设计说明书,包括内容:

1.设计过程和有关说明。

2.电气控制系统电路图。

3.电器元器件的选择和有关计算。

4.电气设备明细表。

5.参考资料,参考书及参考手册。

6.其他需要说明的问题,例如操作说明书,程序的调试过程,遇

到的问题及解决方法,对课程设计的认识和建议等。

一、PLC接线图:

二、PLC梯形图:

三、PLC程序:

四、调试过程:

按下开关x1,y0亮(机器正转);按下开关x2,y0暗(机器停止),y1亮(机器反转);机器运行时,按下停止开关x0,y0、y1暗(机器停止)

电机正反转电路图

电机正反转电路图

三相异步电动机接触器联锁的正反转控制的电气电子原理图如图3-4所示。线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。

220v单相电机正反原理 单相电机不同于三相电机,三相电进入电机后,由于存在120°电角度,所以产生N S N S旋转磁场,推动转子旋转。而单相电进入电机后,产生不了N S N S磁场,所以加了一个启动绕组,启动绕组在定子内与工作绕组错开90°电角度排列,外接离心开关和启动电容后与工作绕组并联接入电源,又因为电容有阻直通交的作用,交流电通过电容时又滞后一个电角度,这样就人为地把进入电机的单相电又分出来一相,产生旋转磁场,推动转子旋转。反转时,只要把工作绕组或者启动绕组的两个接线对调一下就行,产生S N S N的磁场,电机就反转了。 网友完善的答案好评率:75% 单相电机的接线方法,是在副绕组中串联(不是并联)电容,再与主绕组并联接入电源;只要调换一下主绕组与副绕组的头尾并联接线,电机即反转 如果电机是3条出线的,其中一条是公共点!(分别与另外2条线的测电阻其值较小)接电源零线!然后把剩下的两条线并联电容,在电容的一端接220V电源相(火)线,就可以了!若要改变电机转向只要把220V电源相(火)线接在电容的另一端就可以了!

笼型电动机正反转的控制线路(电路图) 发布: | 作者: | 来源: jiasonghu | 查看:775次 | 用户关注: 接通电源让KMF--线圈通电其主触点闭合三相电源ABC分别通入电机三相绕组UVW,电动机正转。KMF线圈断电,主触点打开,电机停。让KMR线圈通电----其主触点闭合三相电源ABC通入电机三相绕组变为A—U未变,但B—W,C—V。电动→笼型电动机正反转的控制线路要使电动机给够实现反转,只要把接到电源的任意两根联线对调一头即可。为此用两个接触器来实现这一要求。设KMF为实现电机正转的接触器,KMR为实现电机反转的接触器。合上--S 笼型电动机正反转的控制线路 要使电动机给够实现反转,只要把接到电源的任意两根联线对调一头即可。为此用两个接触器来实现这一要求。 设 KMF 为实现电机正转的接触器, KMR 为实现电机反转的接触器。 接通电源→合上--S 让 KMF--线圈通电其主触点闭合 三相电源 ABC 分别通入电机三相绕组 UVW ,电动机正转。 KMF 线圈断电,主触点打开,电机停。 让 KMR 线圈通电----其主触点闭合 三相电源 ABC 通入电机三相绕组变 为 A — U 未变,但 B — W ,C — V。电动机将反转

三相异步电动机正反转控制电路图原理及plc接线与编程

三相异步电动机正反转控制电路图原理及plc 接线与编程 在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为O N,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0 线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PL C的一个输入点。 有的热继电器有自动复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点自动恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复

电机正反转控制电路及实际接线图(个人学习用)

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。 在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可

以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有自动复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点自动恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用电子式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

按钮、接触器双重联锁正反转控制线路.

按钮、接触器双重联锁正反转控制线路 ⑴提问 1三相异步电动机缺相运行的故障现象是什么? 2怎样接线可使三相异步电动机从正转变为反转? ⑵由问题2引出并简述接触器联锁正反转控制线路工作原理 1电源电路 由三相电源线L1、L2、L3、组合开关QS、熔断器FU2等组成,简述各元件 的作用。 2主电路 由FU1、KM1、KM2、FR及电动机M组成。 KM1:正转用接触器,其主触头所接通的电源相序按L1、L2、L3相序接线。 KM2:反转用接触器,其主触头所接通的电源相序按L3、L2、L1相序接线。 提问:在三相异步电动机的正反转控制线路中正反转接触器是否可以同时闭合? KM1、KM2不能同时闭合,否则主电路短路,由控制电路中的联锁触头实现 接触器联锁。 3控制电路 正转控制电路:由SB1、KM1线圈及1、2、3、4、5号线等组成。 反转控制电路:由SB2、KM2线圈及1、2、3、6、7号线等组成。 简述原理,提问:接触器联锁的缺点是什么? 线路缺点:操作不便 从正转变为反转,必须先按停止按钮SB3,后按反转启动按钮SB2。 线路优点:工作安全可靠。由缺点引出按钮联锁正反转控制线路 ⑶简述按钮联锁正反转控制线路工作原理

电源电路及主电路原理同接触器联锁正反转控制线路。正、反转按钮SB1、SB2换成复合按钮,并使两复合按钮的常闭触头代替接触器联锁触头。 工作原理:基本同接触器联锁,从正转变为反转,不用先按停止按钮, 可直接按下反转按钮SB2即可实现。 线路优点:操作方便。 线路缺点:容易产生电源两相短路故障,有不安全隐患。 在实际工作中经常采用按钮、接触器双重联锁正反转控制线路。 2.讲授新内容: 四.按钮、接触器双重联锁正反转控制线路(128页) ⑴电路组成 正、反转按钮SB1、SB2采用复合按钮,同时加上接触器联锁。电源电路、主电路不变。 ⑵工作原理 先合上电源开关QS 1正转控制 按下正转按钮SB1 SB1常闭触头先分断对KM2联锁,切断反转控制电路。 SB1常开触头后闭合,KM1线圈得电。 KM1自锁触头闭合自锁 KM1主触头闭合,电动机M启动连续正转 KM1联锁触头分断对KM2联锁,切断反转控制电路。 2反转控制 按下反转按钮SB2 SB2常闭触头先分断,切断正转控制电路,KM1线圈失电。

电机正反转控制电路及实际接线图个人学习用

三相异步电动机正反转控制电路图原理及plc接线与编程 在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。 图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合。其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用。 有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合。这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点。 有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状。如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故。因此有自动复位功能的热继电器的常闭触点不能接在PLC的输出回路,必须将它的触点接在PLC的输入端(可接常开触点或常闭触点),用梯形图来实现点击的过载保护。如果用式电机过载保护来代替热继电器,也应注意它的复位. 电动机正反转实物接线图

电机正反转控制原理电路图、电路分析及相关

双重联锁(按钮、接触器)正反转控制电路原理图 电机双重联锁正反转控制 一、线路的运用场合Array正反转控制运用生产机械要求运动部件 能向正反两个方向运动的场合。如机床工作 台电机的前进及后退控制;万能铣床主轴的 正反转控制;圈板机的辊子的正反转;电梯、 起重机的上升及下降控制等场所。 二、控制原理分析 (1)、控制功能分析: 怎样才能实现正反转控制?为什么要 实现联锁? 电机要实现正反转控制:将其电源的相 序中任意两相对调即可(简称换相),通常是 V相不变,将U相及W相对调,为了保证两 个接触器动作时能够可靠调换电动机的相 序,接线时应使接触器的上口接线保持一致, 在接触器的下口调相。。由于将两相相序对 调,故须确保2个KM线圈不能同时得电, 否则会发生严重的相间短路故障,因此必须 采取联锁。为安全起见,常采用按钮联锁(机 械)和接触器联锁(电气)的双重联锁正反 转控制线路(如原理图所示);使用了(机械) 按钮联锁,即使同时按下正反转按钮,调相 用的两接触器也不可能同时得电,机械上避 1 / 111 / 11

2 / 112 / 11 免了相间短路。另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。 (2)、工作原理分析: A 、正转控制: 按下 SB1常闭触头先断开(对KM2实现联锁) SB1常开触头闭合 KM1线圈得电 KM1电机M 启动连续正转工作 KM1KM1联锁触头断开(对KM2实现联锁) B 、反转控制: M 失电,停止正转 SB2 按下 线圈得电 SB2 KM2 电机M 启动连续反转工作 KM2主触头闭合KM2联锁触头断开(对KM1实现联锁) C 、停止控制: 按下SB3,整个控制电路失电,接触器各触头复位,电机M 失电停转;

电机双重联锁正反转

实验四三相鼠笼式异步电动机接触器和按钮双重联锁的正 反转控制 通过对三相鼠笼式异步电动机接触器和按钮双重联锁的正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。加深对电气控制系统各种保护和对自锁、联锁等环节的理解。学会分析、排除继电—接触控制线路故障的方法。掌握三相鼠笼式异步电动机接触器和按钮双重联锁的正反转的工作原理和控制方法。 按接触器和按钮双重联锁的正反转控制线路图接线,三相鼠笼式异步电动接成△接法;实验线路电源端接三相自耦调压器输出端U、V、W,供电线电压为380V。经指导教师检查后,方可进行通电操作。 (1) 打开控制台电源开关,接通380V三相交流电源。 (2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。按停止按钮SB3,使电动机停转。 (3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。按停止按钮SB3,使电动机停转。 (4) 按正向(或反向)起动按钮,电动机起动后,再去按反向(或正向)起动按钮,观察有何情况发生? (5) 电动机停稳后,同时按正、反向两只起动按钮,观察有何情况发生? (6) 失压与欠压保护 a、按起动按钮SB1(或SB2)电动机起动后,断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相电源,但不按SB1(或SB2),观察电动机能否自行起动? b、重新起动电动机后,逐渐减小三相自耦调压器的输出电压,直至接触器释放,观察电动机是否自行停转。 实验完毕,断开控制台电源开关,切断实验线路电源。

思考题 在控制线路中, 短路、过载、失压、 欠压保护等功能是如何实现的? 在实际运行过程中,这几种保护有何意义? 线路故障分析 1、接通电源后,按起动按钮(SB1或SB2),接触器吸合,但电动机不转且发出“嗡嗡”声响,这种故障大多是主回路一相断线或电源缺相造成的。 2、接通电源后,按起动按钮(SB1或SB2), 若接触器通断频繁,且发出连续的劈啪声或吸合不牢,发出颤动声,此类故障原因可能是: (1) 线路接错,将接触器线圈与自身的动断触头串在一条回路上了。(2) 自锁触头接触不良,时通时断。(3) 接触器铁心上的短路环脱落或断裂。(4) 电源电压过低或与接触器线圈电压等级不匹配。 Q

各种投影正反转换说明

各种投影正反转换说明 一、编者语 本程序是常用地图投影系列小程序之一,程序能用于不同基准面上单点及批量数据的墨卡托投影正、反转换,正投影时的输入经纬度数据可以是度、度分及度分秒格式。 本套系列程序原来包括“3°、6°带高斯-克吕格投影正反转换程序”、“墨卡托投影正反 转换程序”及“兰勃特等角投影正反转换程序”。2005年3月根据用户反馈作了更新,更新后增加了“UTM投影正反转换程序”,其中包括UTM与高斯-克吕格投影的相互转换功能,此 外更新后反投影精度提高,反算能完全精确到小数后六位的度。编制这套程序原因有三:之一,本人工作中常需要投影计算,现有软件使用不太方便;之二,常发现用十进制度坐标数据作正式成果图的现象,可能是手头没有合适的投影软件所至;之三,常发现WGS84定 位数据被当作北京54(克拉索夫斯基椭球体)坐标数据投影,可能是沿用早年的投影转换程序所至。这些原因促成了我编制一套简单实用、在Windows环境下的常用地图投影小程序 的想法,现在完成了,而且在大家的促使下作了第一次更新,提供给大家免费使用,使用过程中如遇budge请别忘了告诉我,此外需要投影动态连接库接口的可以通过Email与我联 系,我的Email地址:qddqinfen@https://www.wendangku.net/doc/0913224469.html, 二、地图投影的选择 选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。 我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1

:100万)中,大于等于50万的多采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切 椭圆柱投影,是横轴墨卡托投影(Transverse Mercator)的一个变种;小于50万的地形图采 用等角正轴割园锥投影,又叫兰勃特等角投影(Lambert Conformal Conic);海上小于50万 的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。 三、大地基准面的选择 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克 拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协 会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所 得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即 以地心作为椭球体中心的坐标系。相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。需要说明的是,在“常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数,与实际基准面无关。 本程序中采用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”):

电动机双重连锁正反转

电机双重联锁正反转控制盘安装标准化工艺流程 一、电机正反转控制的应用及培训的知识目标 电机正反转控制运用于生产机械要求运动部件能向正反两个方向运动的场合。通过培训和练习可以新员工了解各种电气元件的用途及电路工作原理,电气元件的结构,掌握各种控制线路的工作原理、电路特点,掌握“自锁”及“互锁”的概念。 二、电机双重联锁正反转控制电气原理图(见下图)

三、电机双重联锁正反转控制盘安装所需配件(见下表) 四、电机双重联锁正反转控制盘安装需要使用的工具(见下表)

五、电机双重联锁正反转控制盘实物接线图 六、电机双重联锁正反转控制盘安装工艺流程 1、穿戴好劳动保护用品。 2、准备好所需的工具和电气配件。 3、参考控制盘实物接线图,布置并固定好所需的电气元件。 4、根据电机功率准备好主回路导线及控制回路导线。 5、先布置控制回路的导线,然后布置主回路的导线。

6、布线时必须按横平竖直、高低一致、排列整齐、走线集中、减少架空和交叉, 转弯成直角、主控分类的标准布线,每个接点最多只能接两根线。 7、布线完毕后,用万用表检查主回路和控制回路接线,确保接线完全正确。 8、检查电源工作电压。 9、通电试验: (1)正向启动: A、合上空气开关QF接通三相电源 B、按下正向启动按钮SB3→SB3常闭触头先分断对KM2连锁(切 断反转控制回路)、→ SB3常开触头后闭合→KM1线圈得电→KM1常开触头闭合自锁→KM1主触头闭合→KM1连锁触头分断对KM2连锁(切断反转控制回路)→电动机正转运行。 (2)反向启动: A、按下SB2→SB2常闭触头先分断→KM1线圈失电→KM1自锁触头 接触自锁→KM1主触头分断→电机失电停转→KM1连锁触头恢复闭合→SB2常开触头闭合→KM2线圈得电→KM2常开触头闭合自锁→KM2主触头闭合→KM2连锁触头分断对KM1连锁(切断正转控制回路)→主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。若要停止,按下SB1,整个控制回路失电,主触头分断,电动机停转.

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

电机正反转联动控制电路图

按钮联锁正反转控制线路 图2—12 按钮联锁正反转控制电路图 图2-12 按钮联锁正反转控制电路图接触器联锁正反转控制线路

双重联锁正反转控制线路 元件安装图

元件明细表 1、线路的运用场合: 正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;电梯、起重机的上升与下降控制等场所。 2、控制原理分析 (1)、控制功能分析:A、怎样才能实现正反转控制? B、为什么要实现联锁? 这两个问题是本控制线路的核心所在,务必要透彻地理解,否则只会接线安装,那只是知其然而不知其所以然。另外,问题的提出,一方面让学生学会去思考,另一方面也培养学生发现问题、分析问题的能力。教学中,计划先让学生温书预习(5分钟)、寻找答案,再集中讲解。先提问抽查,让学生能各抒己见、充分发挥,最后再总结归纳,解答所提出的问题,进一步统一全班思路。答案如下: A、电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W 相对调。 B、由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。为安全起见,常采用按钮联锁和接触器联锁的双重联锁正反转控制线路(如原理图所示)

(2)、工作原理分析 C、停止控制: 按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转 (3)双重联锁正反转控制线路的优点: 接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。双重联锁正反 转控制线路则兼有两种联锁控制线路的优点,操作方便,工作安全可靠。 3、怎样正确使用控制按钮? 控制按钮按用途和触头的结构不同分停止(常闭按钮)、起动按钮(常开按钮)和复合按钮(常开和常闭组合按钮)。按钮的颜色有红、绿、黑等,一般红色表示“停止”,绿色表示“起动”。接线时红色按钮作停止用,绿色或黑色表示起动或通电。 三、注意事项

电动机正反转控制电路图及其原理分析

如对您有帮助,请购买打赏,谢谢您! 正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示 图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

正反转控制电路原理

三相异步电动机正反转控制电路图原理讲解 在图1是三相异步电动机正反转控制的主电路 和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器。 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转起动按钮SB2,X0变为ON,其常开触点接通,Y0的线圈“得电”并自保持,使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变为ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0和Y1的常闭触点分别与对方的线圈串联,可以保证它们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮联锁”,即将反转起动按钮X1的常闭触点与控制正转的Y0的线圈串联,将正转起动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这时如果想改为反转运行,可以不按停止按钮SB1,直接按反转起动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的常开触点接通,使Y1的线圈“得电”,电机由正转变为反转。 梯形图中的互锁和按钮联锁电路只能保证输出模块中与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个接触器还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。可以用正反转切换时的延时来解决这一问题,但是这一方案会增加编程的工作量,也不能解决不述的接触器触点故障引起的电源短路事故。如果因主电路电流过大或接触器质量

PLC实现步进电机的正反转和调整控制

实训课题三PLC实现步进电机正反转和调速控制 一、实验目的 1、掌握步进电机的工作原理 2、掌握带驱动电源的步进电机的控制方法 3、掌握DECO指令实现步进电机正反转和调速控制的程序 二、实训仪器和设备 1、FX2N-48MR PLC一台 2、两相四拍带驱动电源的步进电机一套 3、正反切换开关、起停开关、增减速开关各一个 三、步进电机工作原理 步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图。从图中可以看出,它分成转子和定子两部分。定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)组成一对。共有3对。每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。 反应式步进电动机的动力来自于电磁力。在电磁力的作用下,转子被强行推动到最大磁导率(或者最小磁阻)的位置,如图3-1(a)所示,定子小齿与转子小齿对齐的位置,并处于平衡状态。对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1(b)所示,即定子小齿与转子小齿不对齐的位置。 把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态。 本实验的电机采用两相混合式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。因为

PLC正反转和星三角转换

基本指令训练一 本节课学习了基本顺控指令。 ●[LD]指令名称为”取”功能为;A触点逻辑运算开始。[LDI]指令名 称为“取反”,其功能是:B触点逻辑运算开始。LD,LDI指令是用于将触点连接到母线上。其他用法于后述的ANB指令组合,在分支起点处也可使用。 ●[OUT]指令名称为“输出”,其功能为:线圈驱动。OUT是对输出继 电器、辅助继电器、状态、定时器、计数器的线圈驱动指令。对输入继电器不能使用。 ●对于定时器的计时线圈或计数器的计数线圈,使用OUT指令后, 必须设定常数K。此外,也可用数据寄存器编号间接指定。常数K 的设定范围、实际的定时器常数、相对于OUT指令的程序步数(包含设定值)如下表所示。 ●[AND]名称为“与”,其功能是A触点并联连接。[ANI]名称为“与 非”,其功能是B触点并联连接。用AND,ANI指令可串联连接一个触点。并联触点数量不受限制,该指令可多次使用。 ●OUT指令后,通过触点对其他线圈使用OUT指令,称之为纵接输 出。这样的纵接输出如果顺序不错,可重复多次。串联触点数量

和纵接输出次数不受限制,但在使用DOS版编程序件和A6GPP/A7PHP等时,在标示量及打印的印字功能上有限制。建议在使用这样的外围设备时,尽量做到1行不超过10个触点和一个线圈,总共不超过24行。 ●[OR]名称为“或”,A触点并联连接。[ORI]名称为“或非”B触点 并联连接。OR ,ORI被用作1个触点的并联连接指令。如果有两个以上的触点并联连接,并将这两串联回路块与其他回路并联时,采用后述的ORB指令。 ●OR ORI是指从该指令的步开始,与前述的LD,LDI指令步,进行 并联连接。并联连接的次数不受限制,但是用DOS版编程软件和A6GPP/ATPHP等时(显示数量和印字符功能等)收限制。使用这些外围设备时,建议在24行以下。 1.正反转顺序控制

电机正反转联动控制电路图

电机正反转联动控制电路图

————————————————————————————————作者:————————————————————————————————日期:

[电工]双重联锁正反转控制线路安装 2005-10-31 生产实习课教案 课题名称总课题:双重联锁 正反转控制线路 授 课主要 内容 1、控制原理分析 2、工作原理分析 3、安装接线 授 课 课 时 18 h 需 用 课 日 3 天 分课题: 按钮联锁与接触器联锁 起 止 日 期 9.1-9.3 课题要求 技术理 论知识 线路运用场合、控制原理、工作原理、正确使用控制按钮实际技 术操作 双重联锁正反转控制线路安装接线 设备、工、 刃量具准备 一字及十字螺丝刀、电笔、尖嘴钳、剥线钳、电动机材料 准备 转换开关、熔断器、接触器、热继电器、按钮、端子排; BVV-2.5mm2、BVV-1mm2、BVV-1mm2接地线示范操 作准备 线耳的制作示范、接线技巧的示范 产品名称 是否 生 产产 品 图 号 件 数 定额工时 余(缺) 工时安排 备注 工 人 学 生 合 计 否

课题实习结束小结1、正反转控制线路的运用场合 2、正反转控制原理 3、双重联锁正反转控制线路工作原理 4、线路安装接线情况总结 5、通电试验情况总结 分课题: 按钮联锁正反转控制线路 图2—12 按钮联锁正反转控制电路图 图2-12 按钮联锁正反转控制电路图接触器联锁正反转控制线路

双重联锁正反转控制线路 元件安装图

元件明细表 序号代号名称型号规格 数 量 1 M 三相异步电 机 Y112M-4 4kW、380V、△接法、8.8A、1440r/min 1 2 QS 组合开关HZ10-25/ 3 三极、25A 1 3 FU1 熔断器RL1-60/25 500V、60A、配熔体25A 3 4 FU2 熔断器RL1-15/2 500V、15A、配熔体2A 2 5 KM1、 KM2 接触器CJ10-10 10A、线圈电压380V 2 6 FR 热继电器JR16-20/3 三极、20A、整定电流8.8A 1 7 SB1-SB3 按钮LA10-3H 保护式、380V、5A、按钮数3位 1 8 XT 接线端子排JX2-1015 380V、10A、15节 1 安装工艺要求 1、元件安装工艺 安装牢固、排列整齐 2、布线工艺

电机正反转控制原理电路图、电路分析及相关 (1)

1 双重联锁(按钮、接触器)正反转控制电路原理图 电机双重联锁正反转控制 一、线路的运用场合 正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;圈板机的辊子的正反转;电梯、起重机的上升与下降控制等场所。 二、控制原理分析 (1)、控制功能分析: 怎样才能实现正反转控制? 为什么要实现联锁? 电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V 相不变,将U 相与W 相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。。 由于将两相相序对调,故须确保2个KM 线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。为安全起见,常采用按钮联锁(机械)和接触器联锁(电气)的双重联锁正反转控制线路(如原理图所示);使用了(机械)按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。另外,由于应用的(电气) QS U11 V11 W11 FU1 FR 3~ PE M U V W U12 U13 V12 V13 W13 W13 KM1 KM2 FU2 1 2 3 FR SB3 KM2 KM1 KM1 KM2 KM1 KM2 SB1 SB2 4 5 6 7 8 9 紧急停止

接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。 (2)、工作原理分析: A、正转控制: 按下SB1 SB1常闭触头先断开(对KM2实现联锁) SB1常开触头闭合KM1线圈得电 KM1自锁触头闭合(实现自锁)电机M启动连续正转工作 KM1主触头闭合 KM1联锁触头断开(对KM2实现联锁) B、反转控制: KM1自锁触头断开(解除自锁)M失电,停止正转SB2KM1线圈失电KM1主触头断开 按下SB2 KM1联锁触头闭合KM2线圈得电 SB2 KM2自锁触头闭合(实现自锁)电机M启动连续反转工作 KM2主触头闭合 KM2联锁触头断开(对KM1实现联锁) C、停止控制: 按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转; 三、双重联锁正反转控制线路的优点 2

电动机正反转控制原理图

三相异步电动机正反转控制原理图 魁网-资产评估师考试网 【资产评估师考讯】 三相异步电动机正反转控制原理图 考试重点、难点名词 三相异步电动机正反转控制原理图在选择断路器时,我们不仅要关注断路器的延迟曲线等主要指标,还应重视它的很多次要功能,这些常容易被忽略的性能不仅能为一个良好的设计锦上添花,而且还能帮助工程师们为其应用设计精密的保护电路。 目前市面上有许多配备了各种可选功能的断路器,这些功能对于电路保护设计很有帮助。下面列出的是一些较为常见的功能。 辅助接点(辅助开关):它们是与主接点电隔离的接点,适用于报警和程序开关。辅助接点可用于向操作人员或控制系统告警,发出警报,或在重要应用中接通备用电源。 传动:传动器类型的选择不仅是出于美观的考虑。具有开关速度是通/断开关两倍的传动摇杆开关的断路器能够节约成本和电路板空间。推挽式传动器在遇到突发事件时最为稳定。 分流端子:传统断路器被认为是“串联跳闸”的,这是因为接点、电流感应元件和负载都是串联的。分流端子从主电路分出支路,这样可将次级负载接入。如果初级负载发生了短路或过载,断路器将跳闸并切断两个负载的电源。 与辅助接点不同,分流端子是接到位于开关接点和电流感应元件之间的断路器载流通路的,这意味着第二个负载不受过载或短路保护。可以采用一个独立的断路器来保护次级电路,否则该电路只可用于具有内置保护电路的设备。 复式控制(遥控跳闸或继电器跳闸):复式控制断路器将两个彼此电隔离的感应元件组合起来以实现多项功能。例如,复式控制断路器可利用遥控传动器或感应器来进行传统的过流保护以及电路断接。遥控跳闸是复式控制的一个例子,通常被称为“继电器跳闸”。 低压跳闸:这是断路器中一个独立的电压敏感元件,如果电压降到预定值以下,它将使主接点开路。具有低电压跳闸的开关断路器被广泛用于有线连接电器的通/断控制。安全管理部门要求这些电器在发生掉电时必须切断电源,以避免电源恢复时电器突然重新启动的危险。 自动跳闸:一个自动跳闸的断路器在故障期间不会一直保持闭合—因为开关装置不会因强行保持传动器接通而失效。在一个完全自动跳闸的设计中,当传动器被保持在“接通”位置时,主接点在发生故障之后将始终保持开路。一些被称为“循环自动跳闸”的断路器在故障期间不能强行保持接通状态,但如果传动器一直处在“接通”的位置,则它们将周期性地接通和断开。如果断路器安装在容易够得着的地方(即未封闭),则应采用自动跳闸断路器。 自动复位:对于断路器不易够着的应用来说,在冷却期后自动复位的断路器是一个良好的选择。此时若指定使用可自动再起动的设备,则发生危险的可能性很大。

相关文档
相关文档 最新文档