文档库 最新最全的文档下载
当前位置:文档库 › TA1成分

TA1成分

TA1成分
TA1成分

钛合金用途

钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。还有抗磨性差,生产工艺复杂。钛的工业化生产是1948年开始的。

航空工业发展的需要,使钛工业以平均每年约 8%的增长速度发展。目前世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种。使用最广泛的钛合金是

Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工业纯钛(TA1、TA2和TA3)。

钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。60年代中期,钛及其合金已在一般工业中应用,用于制作电解工业的电极,发电站的冷凝器,石油精炼和海水淡化的加热器以及环境污染控制装置等。钛及其合金已成为一种耐蚀结构材料。此外还用于生产贮氢材料和形状记忆合金等。钛有许多明显优越的特性:密度小(4.5kg/m3)、熔点高(1660℃)、耐腐蚀性强、比强度高、塑性好,

还可以过合金化及热处理的办法制造出力学性能高的各种合金,是较为理想的航天

工程结构材料

材质:TA1

规格:(30~200)mm×≤3000mm 锻造棒

(8~60)mm×≤4000mm 扎制棒

也可按客户要求生产

执行标准:ASTM , ASME, AMS, MIL,JIS,

GB/T2965-96

表面质量:黑皮棒磨光棒车光棒

TA1 化学成分

化学成分组主要成分杂质

Ti Fe Si C N H O 工业纯钛其余0.15 0.1 0.05 0.03 0.015 0.15

名义成分热处

理状

抗拉强度延伸率冷弯角度MPa %

工业纯钛退火340-490 30 130 TA1 状态和用途

合金

牌号规格供货

状态

执行标准用途

TA1 厚度:δ2-δ12、

板幅:800mm-

1000mm、长度:2m

(也可根据客户要

求生产)

轧、

轧、

退

火、

面、

镜面

GB/T3621-1994、

GB/T13810-1997、

ASTM F136、ASTM

B265

钛设备换热器、高尔

夫球、医疗器械等方

TA1 TA2介绍

TA1、TA2都称为工业纯钛,区别在于后者铁和氧的含量要高一些,

因此TA2的强度比TA1要高。

GB/T 3625-2007(换热器及冷凝器用钛及钛合金管)规定:

TA1抗拉大于等于240,屈服140-310;

TA2抗拉大于等于400,屈服275-450;延伸率TA1大于等于24%,TA2大于等于20%。

工艺性能要求TA1扩口不小于22%,TA2不小于20%。

目前基本上都是用TA2,因为TA2强度比较高,设计的时候壁厚可以薄一些,

一方面增强了换热效果,另一方面可以节约一些成本。

钛制管板换热器常采用材料为工业纯钛TA1、TA2其化学成分和力学性能分别见下表

TA1化学成分(%)

合金牌

号化学成

分组

主要成分杂质

Ti Al V Fe Si C N H O

TA1 工业纯

其余0.15 0.1 0.05 0.03 0.015 0.15 TA2及其合金化学成分(%)

合金牌号化学

成分

主要成分杂质

Ti Al V Fe Si C N H O

TA2 工业

纯钛

其余0.3 0.15 0.1 0.05 0.015 0.2

TA1力学性能

牌号

室温力学性能不小于热处理状

冷弯角度

抗拉强度

σb Mpa

屈服强度

σ0.2 Mpa

伸长率

δ5 %

收缩率

ψ %

冲击值

αk J/cm2

TA1 343 275 25 50 -- 退火130 TA2及其合金力学性能

牌号

室温力学性能不小于

热处理状

冷弯角

抗拉强

度σb

Mpa

屈服强

度σ0.2

Mpa

伸长率

δ5 %

收缩率

ψ %

冲击值

αk

J/cm2

TA2 441 373 20 40 --

退火90

植物地理学(整理)

第一章 1.物种P6 物种是生物分类学的基本单位,没有完整、统一的概念,但认为物种是形态上相似、遗传上稳定的生物类群。 2.种群P6 种内的个体常分成若干群,每个群成片地分布在某个地段内,即各群在空间上互有间断,称为种群。(P6) 3.植物的命名原则P8 生物命名采用林奈创立的双名法,并统一使用拉丁文。即给植物种的命名用两个拉丁词或拉丁化形式的词构成的方法——每种植物只有一种合法名称:学名 学名= 属名+ 种名+ 命名人 其中属名字首要大写,统一用斜体; 种名字首小写,统一用斜体; 命名人字首大写,可缩写,用正体; 第二章 1.植物区系P26 植物区系是某一地区,或者是某一时期、某一分类群、某类植被等所有植物种类的总称。 2.世界种P30 少数种类植物的分布遍及世界各地,称为世界种。 3.成对种P35

异地分化的亲缘很近的两个种所呈现的地理隔离称为成对种。 4.替代种P35 一个属内关系亲近的若干个种,特征相似而具有各自独立的分布区(或稍微交叉),在空间上依次排开,称为(地理)替代种。 5.生物入侵P71 生物入侵是指生物由原生地经过自然或人为途径侵入到另一个新的环境,对生态系统和人类健康造成损害或生态灾难的过程。 6.植物分布区的形状可分为哪两种类型?P29 (1)连续分布区:指分布区内该种植物重复出现在适宜它生存的生境,各部分之间没有障碍隔断; (2)间断分布区:也称不连续分布区,指分布区中间被障碍隔开,分裂为相距遥远的两部分或更多部分。 7.植物分布区发生变化的环境因素有哪些?P37-42 (1)气候演变 (2)地形变化 (3)板块运动 8.植物区系主要有哪些成分?P45-46 地理成分(根据生物的现代地理分布来划分的。) 发生成分 迁移成分 历史成分(根据该组成成分参加当地植物区系的地质时期划分的。)生态成分

中国科学院力学研究所岗位管理实施办法

中国科学院力学研究所岗位管理实施办法 (力发人教字〔2007〕134号) 第一章总则 第一条根据中国科学院《关于印发〈中国科学院岗位管理实施办法〉的通知》(科发人教字〔2007〕207号)的有关规定,为实现我所人力资源管理的科学化、规范化、制度化,结合我所科技发展的规划,制定本办法。 第二条围绕我所科技发展规划的要求,遵循按需设岗、职数控制、结构合理、动态优化、管理规范的原则,按照院核定的岗位总量和结构比例科学设置各类岗位。 第三条本办法适用于我所在岗人员。所级领导干部按照干部人事管理权限的有关规定执行。 第二章岗位类别与岗位等级 第四条我所设置创新岗位和项目聘用两种岗位,分别包括科技、支撑和管理三类岗位。 第五条科技岗位是指各实验室(研究部)从事基础研究和战略高技术研究工作,具有相应专业技术水平和能力要求的工作岗位。我所科技岗位包括自然科学研究系列、工程技术系列专业技术岗位。 科技岗位执行自然科学研究系列或工程技术系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 第六条支撑岗位是指为我所科技工作提供技术支撑和辅助性工作的岗位,主要设置在实验平台技术支撑、实验室(研究部)学术与行政助理、网络与图书信息保障、学会期刊出版等岗位。 支撑岗位主要执行专业技术系列中的工程技术系列、实验技术系列、图书资料和出版系列等专业技术岗位,也包括工勤技能系列岗位。 对兼有管理职责要求的支撑岗位,确因工作需要,也可执行职员系列。 支撑岗位的等级设置按照《中国科学院岗位管理实施办法》规定(见附

表1)。 第七条管理岗位是指职能部门承担领导职责或管理职责的工作岗位。管理岗位主要执行职员系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 对兼有专业技术职责要求的科技管理岗位,根据工作需要,可设置为相应的专业技术岗位。会计、审计等国家有职业资格要求的岗位,设置相应的专业技术岗位。 第八条项目聘用岗位系列的设置与等级同上述创新岗位,但原则上,不设置正高级专业技术岗位和五级及以上职员岗位。 第三章岗位结构比例 第九条创新岗位中科技、支撑与管理三类岗位的宏观结构比例为70%、20%、10%。 第十条创新科技岗位(含执行专业技术系列的管理岗位)中,高级科技岗位(专业技术一至七级岗位)的比例占科技岗位总数的70%,正高级岗位(专业技术一至四级岗位)不超过高级科技岗位总数的40%。其中:正高级科技岗位中,专业技术一级岗位为国家专设的特级岗位,由国家实行总量控制和管理,专业技术二级、三级、四级岗位之间的宏观结构比例为2:4:4; 副高级科技岗位中,专业技术五级、六级、七级岗位之间的结构比例为3:4:3; 中级科技岗位中,专业技术八级、九级、十级岗位之间的结构比例为4:4:2; 初级科技岗位中,专业技术十一级、十二级岗位之间的结构比例为8:2。 第十一条创新支撑岗位中,高级支撑岗位(专业技术三至七级岗位)不超过支撑岗位总数的50%,正高级支撑岗位(专业技术三至四级岗位)不超

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

CWHO对家用卫生杀虫剂产品中有效成分和含量限量范围的新规定

W H O对家用卫生杀虫剂产品中有效成分和含量限量范围的 新规定 卫生杀虫剂主要应用于生活环境,防治有害生物,它也直接关系到人们健康和生命安全。近几年,卫生杀虫剂行业有了很大的发展,产品增多,品种增加,但存在新问题。有些产品的含量在不断地增加,这并不完全是抗性问题,其实片面地追求产品“立竿见影”的效果,也会加速抗性的发展,并且对人和环境都不利。另外,多数家用卫生杀虫剂产品是不需要再稀释而直接使用的,加上它与人接触更密切,接触时间也更长,这就更应重视它的科学性和安全性,若药效结果基本相近,含量的选择建议最好是就低不就高,提高对人和环境的安全感,减少药剂的浪费,减少蓄积性的不良反应。同时也反映出目前药效试验方法和评价标准可能存在着一定缺陷,观念要更新和理念要沟通,要与国际接轨,能否考虑对各剂型的最高限量?这问题已摆在人们的面前。 我国法规规定原药为高毒、剧毒的不能用于卫生杀虫剂,即原药必须在中等毒以下,而制剂则多控制在低毒以下。现将世界卫生组织WHO最新推荐的几种常用剂型有效成分和含量限量范围的 规定(表1,2),推荐给读者,希望今后在开发产品中做参考,以便生产出对人更安全、对环境更友好的产品,造福世界。 表1 WHO对杀虫气雾剂中推荐使用有效成分及含量范围* 产品类型有效成分含量范围 (%) WHO有效成 分 危害级别

气雾剂右旋丙烯菊酯 (d-allethrin) 0.1~0.5 右旋反式丙烯菊酯(d-trans allethrin) 0.1 ~ 0.5 S-生物丙烯菊酯 (S-bioallethrin) 0.04 ~ 0.7 恶虫威 (bendiocarb) 0.1~0.5 II 生物苄呋菊酯 (bioresmethrin) 0.04 ~ 0.2 U 毒死蜱 (chlorpyrifos) 0.1~1.0 II 氟氯氰菊酯 (cyfluthrin) 0.01~0.1 II 氯氰菊酯(cypermethrin) 0.1~0.35 II 右旋苯醚氰菊酯 (d-cyphenothrin) 0.1~0.5 II 精右旋苯醚氰菊酯 (d,d-trans-cyphenothrin) 0.05~0.25 溴氰菊酯 (deltamethrin) 0.005~0.025 II 四氟甲醚菊酯 (dimefluthrin) 0.002~0.05 NA 醚菊酯 (etofenprox) 0.5~1.0 U 氰戊菊酯 (fenvalerate) 0.05~0.3 II 炔醚菊酯 (imiprothrin) 0.04~0.3 NA 甲氧卞氟菊酯 (metofluthrin) 0.002~0.05 NA 氯菊酯 (permethrin) 0.05~1 II 右旋苯醚菊酯 (d-phenothrin) 0.05~1.0 U 甲基嘧啶磷(pirimiphos methyl)0.5~2 III 炔丙菊酯 (prallethrin) 0.05~0.4 II 残杀威 (popoxur) 0.5~2 II 除虫菊素 (pyrethrins) 0.1~1.0 II 胺菊酯(tetramethrin) 0.03~0.6 U 右旋胺菊酯0.05~0.3

力学中常见的“突变”问题

力学中常见的“突变”问题 一、由静到动引起的“突变” 例1如图1所示,把一个质量为m的物体放在一块粗糙的木板上,将木板一端缓缓抬起,板和水平面的夹角α由零逐渐增大,试分析物体所受摩擦力f和倾角α之间的函数关系,并用f-α图表示出来。 图1 分析:①当木板处于水平时,α=0°,物体受摩擦力f=0。②当α由零逐渐增大,物体有下滑的趋势但仍可静止(相对),此时,受到沿斜面向上的静摩擦力,其大小为f=mgsinα,且f随α增大而增大。③当mgsinα >(最大静摩擦力)时,物体将会滑动,静摩擦力“突变”为滑动摩擦力μmgcosα。设此时α=。④当α>时,物体将沿木板加速下滑,f=μmgcosα,且随α增大而减小。⑤当α=90°时,木板竖直,N=O,摩擦力f=0。 具体情况见图2(注意由“突变”形成的“落差”)。 图2 二、由动到静引起的“突变” 例2如图3所示,把一个质量为m的物体用水平力F压在竖直墙面上,F由零逐渐变大,图4中能表示出物体所受摩擦力f和压力F之间的函数关系是: 图3 分析:①当F=0时,N=0,所以f=0。物体开始加速下滑。 ②随着F逐渐变大,根据f=μN=μF可知:f随F的变大而成正比地变大。但物体仍为加速运动,只不过加速度越来越小。

图4 ③当f>mg时,物体开始做减速运动,且加速度越来越大。 ④当物体的速度减为零时,滑动摩擦力“突变”为静摩擦力。根据平衡条件,静摩擦力大小恒等于mg。且以后并不随F的变化而变化。 故应选择:D。(在该图中,由于“突变”留下的“尖峰”清晰可见。) 图5 三、由半径变化引起的“突变” 例3如图5所示,轻绳一端系小球,另一端固定于O点,在O点正下方的P点有一颗钉子,将悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时,则 A.小球的瞬时速度突然变大。 B.小球的加速度突然变大。 C.小球的角速度突然变大。 D.悬线所受的拉力突然变大。 分析:当悬线碰到钉子时,运动的小球正过最低点的瞬间,小球的速度大小不变。这是本题的关键所在, 有了这个结论,根据v=ωR,因为R突然变小,角速度发生了“突变”;变大;同样,根据,加速度也发生了“突变”:变大;同样,根据,加速度也发生了“突变”:变大;根据T-mg=ma,T 也“突然”变大了,这也是为什么此时容易断绳的缘故。 综上所述,应选B、C、D。 四、由力的变化引起的“突变” 例4起重机的钢索将重物由地面吊到空中某一高度,其速度——时间图像如图6所示,则钢索拉力的功率随时间变化的图像在图7中可能的是: 分析:由图6可知,物体做的运动是: ①:物体做匀加速直线运动。根据-mg=ma,所以,>mg。

植物地理总结

(1)生物圈:地球上所有生物赖以生存的生活领域与范围的总会。(海平面以上10千米,海平面以下12千米。大量生物局限在海平面上下100米。)第一章: (1)种:是生物分类的基本单位,包含起源于共同祖先、形态和生物学特征极相似的不同个体的集合。 (2)种群:分布在一定时空范围内的相同物种的所有个体即为一个种群,种内个体常分成若干群。 (3)变种:种内某些个体积累了一定的形态变异,且比较稳定,又分布在一定的空间地域,据此可定名为变种。 (4)变型:虽有形态变异,但零星分布。 (5)植物分类的单位:门、纲、目、科、属、种。 (6)地衣门:多年生,是自养型蓝藻或绿藻与异养型真菌共生体。 (7)完整花的组成:花轴、花托、花柄、花萼、花瓣、雄蕊群、雌蕊群。 第二章 1、植物区系:指某一地区,或者是某一时期、某一分类群、某类植被等所有植 物种类的总称。 2、生态型(差型):属于同一个种,但生境相差大的地方形态,行为等有差异 的种群,有气候生态型与土壤生态型。 3、分布区形状分为连续分布与间断分布两大类。对于没有主分布区而呈星散状 的,叫星散分布。 4、世界种:少数种类植物分布遍及世界各地称为世界种,多为盐生植物淡水水

5、特有种:除去少量的世界种外,各种植物的分布限于某一地区范围内,称为 该地区的特有种。该地区可大可小如某洲或某个山地或海岛。 6、第三纪植物避难所:温湿的第三纪曾让大量被子植物空前繁盛,更新世冰期 寒冷的气候使北半球中高纬原有植物大部分灭绝或被迫南退。只有部分受影响较轻保存住丰富的第三纪植物,这些地方称为第三纪植物避难所。 7、地理残遗分布:第三纪广泛分布但在冰期内范围急剧减小,至今仍保存狭小 的分布区该现象称为地理残遗分布。 8、地理残遗种:以历史化石分布为证,若化石表现为广泛分布但现实狭窄分布 则证为地理残遗种。 9、分类学残遗种:分类学上现存的孤立的单种科属,现存分布可能具有地理残 遗种的特点。 10、区系成分:分布区在空间上或多或少重合的各植物种或其他分类单位就 属于一定的区系成分。 11、区系成分分类:地理成分,发生成分,迁移成分,历史成分,生态成分。 12、世界植物分区:泛北极植物区,古热带植物区,新热带植物区,开普植 物区,澳大利亚植物区,泛南极植物区。其中我国的是泛北极植物区与古热带植物区。 13、中国植物区系特征:(1)丰富的植物种类;(2)起源古老,具有演化系 统中的各种类群:(3)分布类型多样,地理成分复杂;(4)特有性程度高;(5)地理分布区域分异明显又相互渗透。 1、栽培植物的起源中心:

中科院力学所科技成果——高速列车系列技术

中科院力学所科技成果——高速列车系列技术2008年科技部与原铁道部签订了两部联合行动计划即《中国高速列车自主创新行动计划》,启动了国家支撑计划重大项目“高速列车关键技术研究及装备研制”,目标是研制最高运行时速380公里的新一代高速列车。在此背景下,初步形成了目前的高速列车空气动力学科研团队。 团队核心成员主要围绕高速列车气动性能和气动噪声评估、气动优化设计、动模型气动实验技术、列车结构静/动强度评估和设计、气动对车辆运行安全性和舒适性影响等开展研究。涉及空气动力学、结构动力学、车辆动力学、噪声工程、实验技术等多学科系统耦合问题。该团队参与了我国已研制和在研的所有高速列车气动性能评估和气动定型设计,具有较强的团队精神、科研攻关能力,对我国高速列车设计技术提升和高铁产业的发展起到了不可替代的作用。 技术介绍及特点 在国家科技支撑计划重大项目“中国高速列车关键技术研究及装备研制”的资助下,中国科学院力学研究所高速列车团队形成了较完备的高速列车空气动力学设计技术。建立了优化设计方法和动模型实验平台,形成了我国高速列车空气动力学研究体系。其主要特点有: 1、基于压缩空气加速、磁涡流非接触制动、实验快速恢复等发明技术,研制了世界上规模最大、实验速度最高的双向运行高速列车动模型实验平台。同时,研制了具有弹性隔振支撑、加减速段限位和实验段自动切换的车载六分量测力天平,填补了动模型气动力测量的

技术空白。利用该平台,已为我国多种高速列车研制提供了气动实验支撑数据。 2、发展了多目标优化设计方法,构建了高速列车气动优化设计平台。以气动阻力、尾车升力和远场气动噪声为设计目标,通过优化,得到了性能更优的标准动车组气动方案。大西线线路考核试验表明,中国标准动车组具有更加优良的气动性能。 3、本项目发展的高速列车气动优化设计技术,已用于我国CRH380系列、中国标准动车组、更高速度等级高速列车、城际列车等研制,为中国高速铁路发展做出了突出贡献。参与“京沪高速铁路工程”项目获2015年国家科学技术进步特等奖。主持“高速列车空气动力学优化设计及评估技术”项目分别获2016年中国力学科技进步一等奖和2014年第五届中国侨界创新成果贡献奖。参与“设计时速380公里高速动车组技术研发及应用”项目获2012年铁道科技进步特等奖。 应用领域 1、高速列车的气动特性评估 2、高速列车动模型试验 3、高速列车外形优化设计 技术成熟度及应用案例 1、CRH380系列高速列车气动定型设计 针对新一代CRH380A高速列车研制,完成了多种头型方案无横风和不同强度横风运行场景下的气动性能和气动噪声评估;完成了单

生物化学教程知识点合集

生物化学教程知识点合集 第一篇生物分子的结构和化学 一、生物分子导论 1 生物属性:①化学成分的同一性②严整有序的结构③新陈代谢④自我复制的能力 2 1nm(纳米)=10A(埃)(原子半径、共价键长度)=10^-3um(微米)(细胞器) 3 立体异构与构型①几何或顺反异构(分子中双键或者环的存在)②光学或旋光异构(手性中心的存在) 4 DL命名系统(根据甘油醛的绝对构型)和RS系统(手性碳的4个取代基的优先性顺序)DL与RS并不一定相互对应,DL与+-没有必然联系。 5三维结构的分子模型表示方法:透视式、骨架模型、球棍模型、空间填充模型(最接近现实) 6生物结构中的非共价力①静电相互作用(离子键、盐键、盐桥)是发生在带电荷基团之间的一种相互作用,异种相吸,同种相斥。(盐浓度的改变对生物分子的结构会发生重大影响)②氢键(H、N、O、S)是电正性的氢核与电负性大的原子之间的静电吸引,具有方向性与饱和性,即一个氢原子只能与一个杂原子形成氢键,只有当A-H…B在同一直线上时氢键最强。③范德华力与范德华斥力与距离有关④疏水相互作用(熵效应)是指在介质水中的疏水基团倾向于聚集在一起,以避开与水的接触。疏水相互作用在维持生物大分子的三维结构方面占有突出地位。 7原始生物分子:20种氨基酸、5种碱基、2种单糖即葡萄糖与核糖、1种醇即甘油、1种脂肪酸即棕榈酸、1种胺即胆碱。 二、蛋白质的构件——氨基酸 1蛋白质的平均含氮量为16%,可用凯氏定氮法计算:蛋白质含量=蛋白氮*6.25,蛋白质中的组分百分比约为C 50%、H 7%、O 23%、N 16%、S 0%-3%。 2蛋白质完全水解为氨基酸,不完全水解为肽段和氨基酸。组成蛋白质的氨基酸有20种,均为α-氨基酸,且除甘氨酸外均为L-α氨基酸。 3常见蛋白质的名称与缩写 丙氨酸(Ala)、精氨酸(Arg)、天冬酰胺(Asn)、天冬氨酸(Asp)、半胱氨酸(Cys)、谷氨酰胺(Gln)、谷氨酸(Glu)、甘氨酸(Gly)、组氨酸(His)、异亮氨酸(He)、亮氨酸(Leu)、赖氨酸(Lys)、甲硫氨酸(Met)、苯丙氨酸(Phe)、脯氨酸(Pro)(亚氨基酸)、丝氨酸(Ser)、苏氨酸(Thr)、色氨酸(Trp)、酪氨酸(Tyr)、缬氨酸(Val) 4按R基的极性大小(指在细胞PH即PH7左右的解离状态)①非极性R基氨基酸(非极性疏水氨基酸8)Ala、Val、Leu、Ile、Pro、Phe、Trp、Met②不带电荷极性R基氨基酸(极性中性氨基酸7)Gly、Ser、Thr、Cys、Tyr、Asn、Gln③带正电荷R基氨基酸(碱性氨基酸3)Lys、Arg、His④带负电荷R基氨基酸(酸性氨基酸2)Asp、Glu 5氨基酸的等电点,pH>pI,则氨基酸带负电荷;pH

常用材料标准及化学成分表 (1)

常用材料所用标准及化学成分表 标准牌号 元素质量分数%(除给出范围外为最大值) 序 号 标准 牌号 C Mn P S Si Cu Ni Cr Mo V Nb 备注 1 ASTM A216 WCB 0.30 1.00 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件① 2 WCC 0.25 1.20 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.0 3 … 铸件① 3 ASTM A352 LCB 0.30 1.00 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件 4 LCC 0.2 5 1.20 0.04 0.045 0.60 0.30 0.50 0.50 0.20 0.03 … 铸件 5 LC3 0.15 0.50~ 0.80 0.04 0.045 0.60 … 3.00~ 4.00 … … … … 铸件 6 LC9 0.13 0.90 0.04 0.045 0.45 0.30 8.50~ 10.0 0.50 0.20 0.03 … 铸件 7 ASTM A105 A105 0.35 0.60~ 1.05 0.035 0.04 0.10~ 0.35 0.40 0.40 0.30 0.12 0.08 …锻件②

标准牌号 元素质量分数%(除给出范围外为最大值) 序 号 标准 牌号 C Mn P S Si Ti Ni Cr Mo V W 备注 8 ASTM A182 304 0.08 2.00 0.045 0.03 1.00 … 8.00~ 11.0 18.0~ 20.0 … … … 锻件 9 316 0.08 2.00 0.045 0.03 1.00 … 10.00~ 14.0 16.0~ 18.0 2.0~ 3.0 … … 锻件 10 316L 0.03 2.00 0.045 0.03 1.00 … 10.00~ 15.0 16.0~ 18.0 2.0~ 3.0 … … 锻件 11 321 0.08 2.00 0.045 0.03 1.00 0.70 9.00~ 12.0 17.0~ 19.0 …… …锻件③

【科普】经典力学中的变分法(物理吧版)

【科普】经典力学中的变分法(物理吧版) 经典力学中的变分法,这个标题对于初学者来说可能足够吓人,但是其内涵是很清楚的,而且并不难理解。 我们都知道,一个粒子从A点运动到B点,原则上可以选取无穷多种路径,但事实上宏观粒子只会选择一个路径来走,这一点与量子力学的费曼路径积分不同(路径积分是说,粒子实际走过所有路径,但是在走向宏观的路上,依靠相位差来消去相位差较大的路径,从而得到宏观的那一条路径)。 如果你将宏观的真实路径稍微变一下,譬如说,真实路径的坐标是x,你将它变一下,增加一个量: x+δx 就叫做对坐标x的变分。其实就是将路径的曲线稍微“拨弄”了一下。 变分算符δ和微分算符d的运算法则完全一样,现在我们来讨论一下,在计算中,δ与求导符号d/dt到底是否可以互换: δ(dx/dt)=(δ(dx)dt-dxδ(dt))/〖dt〗^2 =δ(dx)/dt-dxδ(dt)/〖dt〗^2 =d(δx)/dt-dxd(δt)/〖dt〗^2 如果δ与d/dt可以互换,就必须有: δ(dx/dt)=d(δx)/dt 但是我们看到,δ(dx/dt)等于d(δx)/dt还要再减去一项dxd(δt)/〖dt〗^2,这就是说,一般情况下,δ与d/dt不满足互换的条件!那么怎样才能满足它呢?我们只需要多余的一项等于0: dxd(δt)/〖dt〗^2=0 那么也就只能有: δt=0 因为我们不可能要求dx或dt总是等于0,所以只要选择δt=0。这就是说,一旦确定了运动起点的时间,运动终点的时间也就确定了,所以在这里,时间t根本没有变分的余地!每走过一条路径(不论是真是假)所花费的时间都是相同的!这叫做“等时变分”。 通过一般的物理系理论力学教程我们知道,引入拉格朗日函数L=T-V,并利用等时变分: δ∫Ldt=0……哈密顿原理 我们可以得到拉格朗日方程: d/dt(?L/(?q`))-?L/?q=0 这是与牛顿方程等价的方程。

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术 我国生活垃圾处理方式主要是填埋和焚烧。填埋不仅侵占大量土地,还污染地下水,是不得已而为之的选择。尽管如此,对于土地资源紧张的地区已没有多少场地可供填埋使用。焚烧法虽然减容比高,并能回收能量,但却因二噁英等污染问题遭到公众强烈反对,急需发展新一代的绿色环保、节能降耗的替代焚烧技术。 等离子体是物质第四态,具有许多异于固态、液态和气态的独特的物理化学性质,如温度和能量密度都很高、可导电和发光、化学性质活泼并能加强化学反应等,环保性能优良。通过电弧放电产生高达7000 C的等离子体,将垃圾加热至很高的温度,从而迅速有效地摧毁废物。可燃的有机成分充分裂解气化,转化成可燃性气体,可以用于能源回收,一般称为“合成气”(主要成分是CO+H )。不可 2 燃的无机成分经等离子体高温处理后成为无害的渣体。 采用等离子体处理垃圾是目前减容效果最显著、无害化最彻底、资源化程度最高的绿色环保技术。与焚烧法相比,等离子体技术最突出的优点有: (1)处理温度高:有害物质摧毁更彻底,二噁英前驱体被彻底破坏分解; (2)可采用还原性气氛或部分氧化性气氛,采用电能作为外加热源,二次污染物排放比焚烧低2-3个数量级,裂解底渣是无害的; (3)合成气流量约为焚烧烟气量的5-10%,易于净化,后处理设备尺寸大大减小,节约了投资成本; (4)能源回收效率高,将筛上物制成合成气,后续利用气体发动机发电,发电效率可高达39%,而焚烧法采用蒸汽轮机,发电效率很难超过22%; (5)等离子体系统可快速启动与停机,等离子体核心工艺灵活,可根据不同的处理目的搭配不同的配套系统; (6)整套设备紧凑,占地小,经济效益好。

832生物化学(B)

832生物化学(B) 1.考试内容: 糖的分类、结构特点与多糖的生物功能,天然脂肪酸的结构特点,磷脂分类与结构,类固醇的结构,血浆脂蛋白的功能,蛋白质的化学组成与分类,氨基酸的分类、酸碱性质以及参与的化学反应,肽和肽键的结构,肽的理化性质,蛋白质的一级结构与生物功能,蛋白质二级结构的类型与特点,蛋白质的高级结构与功能,蛋白质之间的相互作用,蛋白质的性质与分子量的测定,蛋白质分离的方法,酶的基本组成、命名和分类,酶的专一性,酶的活力测定,核酶,抗体酶,底物浓度等对酶反应的影响,酶的抑制作用,可逆抑制作用动力学,酶的活性部位,酶催化反应的机制,酶活性的调节控制,维生素的概念、分类、功能以及与辅酶关系,核酸的组成与结构、物理化学性质、研究方法以及生物功能,抗生素的概念、分子结构的特点和改造模式、抗菌机制以及细菌产生抗药性的原因,激素及作用机制,新陈代谢的调节及研究方法,热力学的一些基本概念,高能磷酸化合物,生物膜与物质运输的种类与机制,电子传递与氧化磷酸化,糖代谢的重要途径及代谢调节,光合作用,脂肪酸的氧化及代谢的调节,磷脂与胆固醇合成,蛋白质和氨基酸的分解代谢,氨基酸及其重要衍生物的生物合成,生物固氮作用,核酸的降解和核苷酸代谢,DNA的复制、修复与重组。RNA的生物合成与加工,蛋白质合成及转运,细胞代谢与基因表达调控。 2.考试要求: 熟练掌握基本概念、基本理论、经典实验;掌握前后章节的连贯性;掌握 基本的实验技能、如何用基本概念和基本理论分析实验现象;了解近期生物 学领域的重大进展。 3.题型及分值(总分:150分) (1)判断题(总分30) (2)选择题(总分30) (3)问答题(4-7个小题,总分90) 参考书目: 王镜岩,朱圣庚,徐长法。生物化学(第三版),北京:高等教育出版社,2002

力学中的数学方法-变分法

变分法

取极值必须满足z 1696年瑞士数学家约翰、贝努里提出的“最速降线问题”,发表于《教师学报》,引起广泛关注。z 1697年该杂志刊登了牛顿、莱布尼兹、洛比达和贝努里兄弟的解法,殊途同归! z 虽蕴含着天才思想,但还是不能建立起变分法!z 历史安排了大数学家尤拉,1734年解决了更广泛的最速降线问题,但他还不满意。最终他找到了,1736年的论文: §4.1 变分法基本概念与基本理论历史往事——导致变分法建立的著名问题: [()](,,)b a J y x F x y y dx ′=∫ d ()0d F F y x y ???=′??z 拉格朗日改进了尤拉证明,非常简洁,1755年告诉了尤

一. 基本概念 变分法就是求泛函极值的方法.变分问题即是求泛函的极值问题. 1. 泛函 变分法研究的对象是泛函,泛函是函数概念的推广.先看一个例题:

考虑著名的最速降线落径问题。如图1 所示,已知A和B为不在同一铅垂线和不同高度的两点,要求找出A、B间的这样一条曲线,当一质点在重力作用下沿这条曲线无摩擦地从A滑到B时,所需的时间T最小. y x A B(x,y)

此时质点的速度是 d 2d s gy t =从A 滑到B 所需的时间为 d B A t t T t =∫21+[()]d 2B A y T y x x gy ′=∫d 2B A s gy =∫21+d 2B A y x gy ′= ∫

y ′x T ()y x ()y x [()]T y x 式中代表对求一阶导数.我们称上述的为的泛函,而称为可取的函数类,为泛函的定义域。简单地说,泛函就是函数的函数(不是复合函数的那种含义). 泛函定义:一般来说,设C 是函数的集合,B 是实数或复数的集合如果对于C 的任一元素 ()y x 在B 中都有一个元素J 与之对应,所谓泛函不过是更广泛意义下的函数关系罢了! J ()y x [()] J J y x =则称为的泛函,记为

生物化学-生物体的化学组成

生物体的化学组成 除了水和无机盐之外,活细胞的有机物主要由碳原子与氢、氧、氮、磷、硫等结合组成,分为大分子和小分子两大类。前者包括蛋白质、核酸、多糖和以结合状态存在的脂质;后者有维生素、激素、各种代谢中间物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,还有各种次生代谢物,如萜类、生物碱、毒素、抗生素等。 虽然对生物体组成的鉴定是生物化学发展初期的特点,但直到今天,新物质仍不断在发现。如陆续发现的干扰素、环核苷一磷酸、钙调蛋白、粘连蛋白、外源凝集素等,已成为重要的研究课题。有的简单的分子,如作为代谢调节物的果糖-2,6-二磷酸是1980年才发现的。另一方面,早已熟知的化合物也会发现新的功能,20世纪初发现的肉碱,50年代才知道是一种生长因子,而到60年代又了解到是生物氧化的一种载体。多年来被认为是分解产物的腐胺和尸胺,与精胺、亚精胺等多胺被发现有多种生理功能,如参与核酸和蛋白质合成的调节,对DNA超螺旋起稳定作用以及调节细胞分化等。 新陈代谢与代谢调节控制 新陈代谢由合成代谢和分解代谢组成。前者是生物体从环境中取得物质,转化为体内新的物质的过程,也叫同化作用;后者是生物体内的原有物质转化为环境中的物质,也叫异化作用。同化和异化的过程都由一系列中间步骤组成。中间代谢就是研究其中的化学途径的。如糖元、脂肪和蛋白质的异化是各自通过不同的途径分解成葡萄糖、

脂肪酸和氨基酸,然后再氧化生成乙酰辅酶A,进入三羧酸循环,最后生成二氧化碳。 在物质代谢的过程中还伴随有能量的变化。生物体内机械能、化学能、热能以及光、电等能量的相互转化和变化称为能量代谢,此过程中ATP起着中心的作用。 新陈代谢是在生物体的调节控制之下有条不紊地进行的。这种调控有3种途径:①通过代谢物的诱导或阻遏作用控制酶的合成。这是在转录水平的调控,如乳糖诱导乳糖操纵子合成有关的酶;②通过激素与靶细胞的作用,引发一系列生化过程,如环腺苷酸激活的蛋白激酶通过磷酰化反应对糖代谢的调控;③效应物通过别构效应直接影响酶的活性,如终点产物对代谢途径第一个酶的反馈抑制。生物体内绝大多数调节过程是通过别构效应实现的。 生物大分子的结构与功能 生物大分子的多种多样功能与它们特定的结构有密切关系。蛋白质的主要功能有催化、运输和贮存、机械支持、运动、免疫防护、接受和传递信息、调节代谢和基因表达等。由于结构分析技术的进展,使人们能在分子水平上深入研究它们的各种功能。酶的催化原理的研究是这方面突出的例子。蛋白质分子的结构分4个层次,其中二级和三级结构间还可有超二级结构,三、四级结构之间可有结构域。结构

生态系统的范围及成分说课稿(精简免改版)

生态系统的范围及组成成分说课稿 一、说教材:《生态系统的范围及成分》位于人教版高中生物必修3第5章第1节。本章是以生态系统为框架,主要讲述了生态系统的范围、类型、结构、能量流动、物质循环、稳定性等知识,主要体现宏观的生态学内容。本节课内容是这一章的一个重点,是衔接生态系统类型与能量流动的重要环节,并为生态系统的能量流动和物质循环打好基础。 二、说学情:本节内容在初中就有所涉及,学生群落的概念已经有了清晰的认识,而生态系统的概念在必修1教材上也有简单的涉及。在此基础上进一步探究生态系统的范围、类型、组成成分。学生已经认识生物群落的空间结构,这些并不足以让学生理解生态系统是一个统一整体,且他们对生态系统中的生物与生物之间、生物与非生物之间的有机联系也不清楚,但学生对捕食关系已经有了相当的认识。有助于学生对食物链的分析。 三、说教学目标: 1.能区分生态系统的类型。 2.能够分析生态系统的组成成分。 3. 通过对生态系统各种资料的分析理解,培养学生的观察能力、识图能力、辨别能力和归纳能力。 四、说教学重难点: 教学重难点:生态系统的组成成分。 五、说教法学法: 教法:本节有关生态系统的基本知识很多,如生态系统的成分、食物链、食物网、营养结构等,但本课时只讲解生态系统的范围、类型、组成成分,教学方法采用结合生活启发式教学法,情境教学法,使学生从上课开始就兴趣盎然,激发学生强烈的求知欲。并采用观察、讨论与讲述相结合的教学方法,遵循从感性认识到理性认识的认知规律。以大量的图片和文字资料,让学生通过观察、

思考、分析、综合等一系列思维活动,逐渐认识到生态系统的组成成分及各成分之间的关系。 学法:本节课以发现与探讨式为主要学习方式,学生通过观察、分析图片,联系实际能更好地理解和掌握知识点。 六、说教学过程: 1、复习回顾,导入新课(约5min) 教师引导学生回忆种群和群落定义与区分等知识,引入生态系统的概念。 2、新课讲授(约27min) (1)介绍生态系统以及生态系统的范围、类型。 (2)组织学生阅读课文,观察图P895—1,并结合学校学海生态系统,讨论并回答下面问题:1、池塘中有哪些生物?属于什么组成成分?2、除了生物之外还有哪些成分?哪些成分对于生态系统来说是必不可少的?3、自养型生物有哪些?异养型生物有哪些?4、动植物的尸体、粪便、残枝败叶最终到哪里去了?设计意图:通过安排学生在问题的引导下先阅读课文中相关的知识,可增强学生对知识的熟悉程度,从心理上产生较强的可接受性,便于对知识的理解,培养学生的自学能力,搜集处理信息的能力。并结合熟悉的环境列出生态系统中存在生物,分析各种生物属于哪种成分,以及找出各生物之间的关系,由小组讨论之后选出一名代表与大家一起分享或到展台将讨论成果展示出来(约10min)。(3)教师系统介绍生态系统中的各组成成分的代表生物、作用,最后分析生产者、消费者、分解者三者之间是相互依存,紧密联系的。 3、当堂小结(约5min) 4、课堂演练(8min)(1)连一连;(2)辨一辨;(3)选一选;(4)课外作 业

应用力学原理分析沙漏重量随时间变化关系

龙源期刊网 https://www.wendangku.net/doc/0413916050.html, 应用力学原理分析沙漏重量随时间变化关系作者:王徽石杰洋 来源:《科学与财富》2019年第23期 摘要:沙漏中沙子下落时,沙漏的重量并不是保持不变的,通过观察实验现象可将该过 程分为六个阶段。本研究主要利用微元法、牛顿定律、动量守恒定律对实验现象进行理论分析,最终分析出每个阶段沙漏重量的变化原因。 关键词:沙漏;重量;超重与失重;微元法 沙漏也叫做沙钟,是一种测量时间的装置,它由两个玻璃球和一个狭窄的连接管道组成的。通过充满了沙子的玻璃球从上面穿过狭窄的管道流入底部玻璃球所需要的时间来对时间进行测量。但沙漏在运行时的重量却不是保持不变的,沙子正在下落的部分使其变轻,而沙子对底部的撞击却会使其变重,本文将对此问题展开研究,详细解释沙漏工作过程中其重量变化的问题。 1 理论分析 当沙漏工作时沙子会从上部的锥形瓶通过狭窄的通道进入下部的锥形瓶,可按照其工作顺序逐步将其分解为六个阶段,除此以外,为了对沙漏工作时的重量和时间的关系进行分析,建立以下三点假设:(1)沙子的体积相较于锥形瓶的体积足够小。(2)沙子落入下部锥形瓶后将均匀分散于底部,即忽略其形成的锥形沙堆的影响。(3)沙子下落的初速度为零,且沙子下落时均匀连续。 用M表示整个沙漏的质量,D和H分别表示沙漏中间部位的直径和到底部的高度,ρ表示沙子的密度T表示沙子下落的时间,Fi表示第i阶段沙漏重量。 1.1 第一阶段与第二阶段 第二阶段是沙漏开始工作,沙子刚好开始下落,但没有落到底部的过程。此时可将下落的沙子看作是下落的圆柱。设沙子经过时间T=t1落到底部,沙子末端下落的速度为u,下落过 程中沙子的质量为m。则根据牛顿第二定律可以求出 所以当下落时间为t时,有质量为m的沙子处于完全失重的状态,此时沙漏整体的重量为 可以看出第二阶段沙漏的重量小于静止时候的重量,且随着时间的增加会不断减小。 1.2 第三阶段与第四阶段

地理成分分析及园林绿化

校园园林植物地理成分分析及园林绿化意义 ——以信阳师范学院园林植物绿化为例 摘要:信阳师范学院校园主要园林植物共有200种(含亚种和变种),隶属于70科126属。文章从区系地理学角度研究校园园林植物的地理成分及分布,结果表明:校园园林植物是热带植物与温带植物并存,热带性的科占总科数的68.57%,热带性的属占总属数的35.71%;温带性的科占总科数的31.43%,温带性的属占总属数的64.29%,这与信阳处于亚热带向北温带过渡地区相一致。从校园园林植物的分布情况来看,自然分布的植物有50种,占总种数的25%,非自然分布的植物有150种,占总种数的75%,非自然分布的植物种数远大于自然分布的植物种数;它们的应用在校园绿化造景中占有重要位置,但非自然分布的植物适应性稍差而带来了一些问题,建议以后校园园林建设时多选取非自然分布的植物种类,增加非自然分布的植物的适应性。 关键词:校园植物;地理成分;分布来源;园林绿化 Abstract:There are 200 species (including subspecies and varieties) of plants in the campus of Xinyang Normal university, belonging to 70 families and 126 genera. Our study of the floristic geographical elements on campus shows that the tropical plants and the temperate zone plant are coexisting, with 68.5% of the plants on campus belonging to tropical genera. And 31.43% of the plants on campus belonging to the temperature zone genera. Those are cooperated to Xinyang locating from the subtropical zone to the northern temperate zone. The floristic plants, distribution show that 25% of the plants belonging to local plants, and 75% of the plants belonging to alien species. And the alien species are far more than the local plants. Their application makes an important position in the campus afforestation. But the compatibility of the alien species is slightly bad, which brings some questions. I suggest that we should chose more alien species in the campus afforestation ,adding the adaptability of the alien species. Key words :Plants on campus;Geographical element;Distribution;Afforestation 植物地理成分是植物种或其他分类单位的现代地理分布格局,同时参考其种系发生、发展过程而划分的植物区系成分[1]。植物与当地自然环境和人文环境高度融合,成为地区特色的一部分。园林植物地理成分分析可以判断出非自然分布的植物能否适应该地区气候环境。从植物地理成分的角度去探讨园林植物的运用,是目前用来分析园林植物是否反映该地区特色的重要方法,如王贤荣等分析

相关文档
相关文档 最新文档