文档库 最新最全的文档下载
当前位置:文档库 › 闭环传递函数和开环传递函数之间的转换

闭环传递函数和开环传递函数之间的转换

闭环传递函数和开环传递函数之间的转换
闭环传递函数和开环传递函数之间的转换

闭环传递函数和开环传递函数

之间的转换

对于单位负反馈的传递函数中,H(s)的值为1,所以在求闭环传递函数的时候必须严格按照式子)

()()(s H s G 1s G +(式1)来进行转换。由于属于单位负反馈,所以式子可以变为)()

(s G 1s G +(式2)来进行计算。

下面来看如何转换:

① 开环传递函数转为闭环传递函数:

开环传递函数的是G(s)H(s)的式子,其中在单位负反馈中的H(s)=1,因此它的传递函数就是G(s),即前向通道中的传递函数。

因此可以利用上面的(式1)进行转换,由于H(s)=1,故由(式2)可以求出闭环的传递函数。

② 闭环传递函数转为开环传递函数:

对于闭环函数来说,(式1)是关键的式子,在单位负反馈中,我们可以利用(式1)把闭环的转为开环的。

由(式1)可以看出,分母是1+G(s),那么在闭环化为开环的过程中,必然要化为同样的形式,那么只要在分母的式子中除以含有S 的式子化为1+G(s)H(s)的形式,这样的话就可以化为开环传递函数了。 下面看一个例子:已知φ(s )=s^2 + s + 1 =1 +GH 令φ(s )=0,即有 s^2 + s + 1=0 等式两边同除以s^2 + s 得到1+1/

(s^2 + s )=0 我们对比1+GH知道GH=1/(s^2 + s ),一般情况下H=1,或者其他,反正已知得到G=1/(s^2 + s )

以上是在单位负反馈的条件下求的,也或者求出的不是单位负反馈的也是这样,因为我们从式子是不知道H(s)的值是多少的,因此两种情况都可以存在,即:G(s)H(s)= 1/(s^2 + s )或者G(s)=1/(s^2 + s )。

开环与闭环系统

Hefei University 自动控制课程综述 开环与闭环系统 BACH ELOR DISSERTATION 论文题目:______________ 开环与闭环系统_____________________ 学科专业:____________ 自动化1班_______________________ 学生姓名:__________________ 姚辉___________________________ 导师姓名:__________________ 李秀娟__________________________

摘要: 所谓开环与闭环系统主要是对开环和闭环传递函数的研究。 所谓传递函数,只是反馈信号的数学公式/模型。传递函数零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z变换)与激励(即输入)量的拉普拉斯变换之比。记作G(s)=Y(s)/U(s),其中Y(s)、U(s)分别为输出量和输入量的拉普拉斯变换。传递函数是描述线性系统动态特性的基本数学工具之一,经典控制理论的主要研究方法——频率响应法和根轨迹法——都是建立在传递函数的基础之上。而在经典控制理论中传递函数有两个重要且易混淆的内容即: Gk(s)=G(s)?H(s) 开环传递函数 Gb(s)=G(s)/1+G(s)?H(s) 闭环传递函数开环传函其实是闭环传函的一部分。开环和闭环的本质区别是:闭环控制系统的被控量要反馈回到给定信号端,与给定信号进行比较(一般为负反馈),而开环没有这一环节。 另外,还有半闭环控制系统,之所以叫半闭环是因为反馈回到给定输入信号的反馈量不是直接取自被控量,而是间接取到的。 关键字:自动控制原理、开环系统、闭环系统、传递函数、区别、联系 发展与前景: 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以开环与闭环理论为基础的自动调节原理,主要用于工业控制,二战期间为了设计和制造飞机及船用自动驾驶仪,火炮定位系统,雷达跟踪系统以及其他基于反馈原理的军用设备,进一步促进并完善了自动控制理论的发展。到战后,以形成完整的自动控制理论体系,这就是以传递函数为基础的经典控制理论,它主要研究单输入-单输出,线形定常数系统的分析和设计问题。 20世纪60年代初期,随着现代应用数学新成果的推出和电子计算机的应用,为适应宇航技术的发展,自动控制理论跨入了一个新阶段——现代控制理论。他主要研究具有高性能,高精度的多变量变参数的最优控制问题,主要采用的方法是以状态为基础的状态空间法。目前,自动控制理论还在继续发展,正向以控制论,信息论,仿生学为基础的智能控制理论深入。 为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于闭环控制的闭环反馈控制系统。 开环与闭环系统的应用(以数控机床为例): 开环控制指调节系统不接受反馈的控制,只控制输出,不计后果的控制。又称为无反馈控制系统。

几个开环与闭环自动控制系统地例子

2-1 试求出图P2-1中各电路的传递函数。 图P2-1 2-2 试求出图P2-2中各有源网络的传递函数。 图P2-2 2-3 求图P2-3所示各机械运动系统的传递函数。 (1)求图(a )的 ()()?=s X s X r c (2)求图(b )的() () ?=s X s X r c (3)求图(c )的 ()()?12=s X s X (4)求图(d )的 () () ?1=s F s X 图P2-3 2-4 图P2-4所示为一齿轮传动机构。设此机构无间隙、无变形,求折算到传动轴上的等效转动惯量、等效粘性摩擦系数和()() () s M s s W 2θ= 。

图P2-4 图P2-5 2-5 图P2-5所示为一磁场控制的直流电动机。设工作时电枢电流不变,控制电压加在励磁绕组上,输出为电机角位移,求传递函数()() () s u s s W r θ=。 2-6 图P2-6所示为一用作放大器的直流发电机,原电机以恒定转速运行。试确定传递函数() () ()s W s U s U r c =,设不计发电机的电枢电感和电阻。 图P2-6 2-7 已知一系统由如下方程组组成,试绘制系统方框图,并求出闭环传递函数。 ()()()()()()[]()s X s W s W s W s W s X s X c r 87111--= ()()()()()[]s X s W s X s W s X 36122-= ()()()()[]()s W s W s X s X s X c 3523-= ()()()s X s W s X c 34= 2-8 试分别化简图P2-7和图P2-8所示的结构图,并求出相应的传递函数。 图P2-7 图P2-8

开环控制系统与闭环控制系统方框图几例

开环控制系统与闭环控制系统方框图几例(仅供参考) 1.普通机械式电饭煲简单的工作过程如下:接通电源,拨动杠杆按钮,给出做饭指令,磁钢吸合,拉住与之相连的杠杆,杠杆拨动微动开关,微动开关在杠杆的按压下接通加热回路,磁钢铝壳帽与锅底接触,开始加热。当饭熟时(不再有水的沸腾),锅底温度升高,磁钢温度达到150℃时失去磁性,在弹簧力作用下,杠杆下移,微动开关恢复常态,结束加热状态。此时电源仍是接通状态,由于双金属片温控器的作用,电饭煲进入保温状态(70度以下),这就是电饭煲接通电源后即使不按键也能得到温水的原因。但不按下杠杆按键则煮不熟饭。 由上面的工作过程可知,普通电饭煲虽然简单,但其控制过程还是比较复杂的。其工作流程为:给出“做饭”指令——进入加热状态——判断是否达到150度,没有达到,继续加热,如果达到,则进入保温状态。从这个流程知道,电饭煲的控制,从总体上说,仍是一个开环控制。因为,输入一个“做饭”指令,输出的就是“做饭”状态。如果输入的是“温水”指令,则输出的状态就是“温水”状态。即输入量和输出量是一一对应的。但是,其局部环节还有反馈。其参考方块图如下: 3.宾馆、酒店的“自动叫醒服务系统”是一个开环控制系统。 参考框图如下: 4.家用缝纫机的缝纫速度控制系统

缝纫机“转速控制系统”的控制对象应该是“缝纫机”不应该是“机针”。对缝纫机来说,还有其它控制系统,如“针距控制系统”、“倒车控制系统”等,这些系统的控制对象都是缝纫机。参考框图如下: 注:有些学生会认为这个控制系统是一个闭环控制系统,理由是人可以不断调整缝纫的转速。其实这种理解是错误的。它不是闭环的原因是:第一,它输入的转速不是恒定的,没法与输出转速进行比较。第二,“人”作为操作者,对控制系统施加控制指令的行为,不能视为“人作为某个环节参与了控制系统”。 5.走道路灯的声光控制系统 声光自动控制白炽灯开关的基本工作原理如下:白天或夜晚光线较亮时,光控部分将开关自动关断,声控部分不起作用。当光线较暗时,光控部分将开关自动打开,负载电路的通断受控于声控部分。电路是否接通,取决于声音信号强度。当声强达到一定程度时,电路自动接通,点亮白炽灯,并开始延时,延时时间到,开关自动关断,等待下一次声音信号触发。这样,通过对环境声光信号的检测与处理,完成电路通断的自动开关控制。其声控部分的参考框图如下: 6.交通路口红绿灯自动控制(根据车流量大小改变红绿灯时间)系统 目前所用的交通路口的红绿灯控制系统一般都是按给定的时序来控制的,因此应该是开环控制系统,而不是闭环。对车流量因素的考虑,是在调查统计的基础上在设计给定时序时体现的。其参考框图如下: 当然有一点在注意,红绿灯的时间并不能完全靠车流量的多少来控制。对单个交叉口而言,当交通需求较小时,信号周期则应短一些,但一般不能少15秒,以免某一方向的绿灯时间小于15秒使车辆来不及通过路口影响交通安全;当交通需求较大时,信号周期则应长一些,但一般不能超过120秒,否则某一方向的红灯时间将超过60秒,驾驶员心理上不能忍受。当交通需求很小时,一般按最

自动控制原理课后习题答案(王建辉、顾树生编)清华大学出版社

2-1 什么是系统的数学模型?在自动控制系统中常见的数学模型形式有哪些? 用来描述系统因果关系的数学表达式,称为系统的数学模型。 常见的数学模型形式有:微分方程、传递函数、状态方程、传递矩阵、结构框图和信号流图。 2-2 简要说明用解析法编写自动控制系统动态微分方程的步骤。 2-3 什么是小偏差线性化?这种方法能够解决哪类问题? 在非线性曲线(方程)中的某一个工作点附近,取工作点的一阶导数,作为直线的斜率,来线性化非线性曲线的方法。 2-4 什么是传递函数?定义传递函数的前提条件是什么?为什么要附加这个条件?传递函数有哪些特点? 传递函数:在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比。 定义传递函数的前提条件:当初始条件为零。 为什么要附加这个条件:在零初始条件下,传递函数与微分方程一致。 传递函数有哪些特点: 1.传递函数是复变量S 的有理真分式,具有复变函数的所有性质;n m ≤且所有系数均为实数。 2.传递函数是一种有系统参数表示输出量与输入量之间关系的表达式,它只取决于系统或元件的结构和参数,而与输入量的形式无关,也不反映系统内部的任何信息。 3.传递函数与微分方程有相通性。 4.传递函数)(s W 的拉氏反变换是系统的单位脉冲响应。 2-5 列写出传递函数三种常用的表达形式。并说明什么是系统的阶数、零点、极点和放大倍数。 n n n n m m m m a s a s a s a b s b s b s b s W ++++++++=----11 101110)( () () ∏∏==++= n j j m i i s T s T K s W 1 111)( 其中n m a b K = () () ∏∏==++= n j j m i i g p s z s K s W 1 1 )( 其中0 a b K g = 传递函数分母S 的最高阶次即为系统的阶数,i z -为系统的零点,j p -为系统的极点。K 为传递函数的放大倍数,g K 为传递函数的根轨迹放大倍数。 2-6 自动控制系统有哪几种典型环节?它们的传递函数是什么样的? 1.比例环节

利用matlab由开环传递函数求闭环传递函数并求其单位冲击和阶跃响应.docx

利用matlab 由开环传递函数求闭环传递函数并求其单位冲击和阶跃响应 并绘制输出阶跃响应曲线和脉冲响应曲线 解: 编程(见:\work\CT_tch\resp_2_20110522) clear all; close all; %%%%%%%%%%%%%% a0 = [00000.8]; bl = [10]; b2 = [0.3 1 ]; b3 = [0.5 0.7 1]; bO = conv(bl,conv(b2,b3)); % bO:开环传递函数分母多项式系数 %%%%闭环传递函数 aa = a0; % aa :闭环传递函数分了多项式系数 bb = bO + aO; % bb :闭环传递函数分了多项式系数 disp ('System Closed Loop Transfer Function is :*) aa bb %%%%计算:阶跃响应 t = 0:0.1 :20 y = step (aa, bb, t); % 阶跃响应 %%%%绘制:阶跃响应 figure(l) plot(t ,y); title 。阶跃响 应); xlabelC 时间 /s'); ylabel(1S 值); grid ; %%%%计算: figure(2) yy = impulse (aa, bb, t); % 标题:脉冲响应 plot(t, yy); titlcC 脉冲响应); xlabelC 时间/s); ylabel(1S 值); grid; %网格 %%%%绘制:脉冲响应 wt = logspace (-1,1); % 对数空间「0.1, 10) 例:设有一个系统的开环传递函数如下函数, 01 %aO:开环传递函数分子多项式系数 % s % % (0.5 s2 + 0.7s+ 1) %标题:阶跃响应 %横坐标 %纵坐标 % io,!! 脉冲响应

开环控制系统与闭环控制系统的区别及相关

开环控制系统与闭环控制系统的区别及相关的实例 开环控制系统:不将控制的结果反馈回来影响当前控制的系统 举例:打开灯的开关——按下开关后的一瞬间,控制活动已经结束,灯是否亮起以对按开关的这个活动没有影响; 闭环控制系统:可以将控制的结果反馈回来与希望值比较,并根据它们的误差调整控制作用的系统 举例:调节水龙头——首先在头脑中对水流有一个期望的流量,水龙头打开后由眼睛观察现有的流量大小与期望值进行比较,并不断的用手进行调节形成一个反馈闭环控制;骑自行车——同理不断的修正行进的方向与速度形成闭环控制 开环闭环的区别:1、有无反馈;2、是否对当前控制起作用。开环控制一般是在瞬间就完成的控制活动,闭环控制一定会持续一定的时间,可以借此判断。 手动控制系统:必须在人的直接干预下才能完成控制任务的系统 自动控制系统:不需要有人干预就可按照期望规律或预定程序运行的控制系统 判断:骑自行车——人工闭环系统,导弹——自动闭环系统,人打开灯——人工开环系统,自动门、自动路灯——自动开环系统 开环控制系统方框图19例 开环控制系统的方框图: 1、水泵抽水控制系统 2、家用窗帘自动控制系统 3、宾馆自动门控制系统 控制量 控制量 控制量

4、楼道自动声控灯装置 5、游泳池定时注水控制系统 6、十字路口的红绿灯定时控制系统 8、自动升旗控制系统 9、宾馆火灾自动报警系统 控制量 控制量 控制量 控制量 控制量 控制量

10、宾馆自动叫醒服务系统 11、活动猴控制系统 13、家用缝纫机缝纫速度控制系统 14、普通电风扇控制系统 15、普通全自动洗衣机控制系统 16、手电筒控制装置 控制量 控制量 控制量 控制量 控制量 控制量

反馈系统的传递函数

一个反馈控制系统在工作过程中,一般会受到两类信号的作用,统称外作用。 一类是有用信号或称输入信号、给定值、指令等,用)(t r 表示。通常)(t r 是加在控制系统的输入端,也就是系统的输入端;另一类则是扰动,或称干扰)(t n ,而干扰 )(t n ,可以出现在系统的任何位置,但通常,最主要的干扰信号是作用在被控对象 上的扰动,例如电动机的负载扰动等。 一、系统的开环传递函数 系统反馈量与误差信号的比值,称为闭环系统的开环传递函数, 二、系统的闭环传递函数 1、输入信号)(s R 作用下的闭环传递函数 令0)(=s D ,这时图1可简化成图2(a)。输出)(s C 对输入)(s R 之间的传递函数,称输入作用下的闭环传递函数,简称闭环传递函数,用)(s Φ表示。 而输出的拉氏变换式为 2、干扰)(s D 作用下的闭环传递函数 同样,令0)(=s R ,结构图1可简化为图3(a)。 以)(s D 作为输入,)(s C 为在扰动作用下的输出,它们之间的传递函数,用)(s n Φ表示,称为扰动作用下的闭环传递函数,简称干扰传递函数。 系统在扰动作用下所引起的输出为 三、系统的误差传递函数 系统的误差信号为)(s E ,误差传递函数也分为给定信号作用下的误差传递函数和扰动信号作用下的传递函数。前者表征系统输出跟随输入信号的能力,后者反映系统抗扰动的能力。 1、输入信号)(s R 作用下的误差传递函数 为了分析系统信号的变化规律,寻求偏差信号与输入之间的关系,将结构图简化为如图2)(b 。列写出输入)(s R 与输出)(s ε之间的传递函数,称为控制作用下偏差传递函数。用表示。 )()()()()() ()()(2 1s H s G s H s G s G s E s B s G K ===)()()(21s G s G s G =)()(1) ()()()(1)()()()()(2121s H s G s G s H s G s G s G s G s R s C s += +== Φ)() ()()(1)()()(2121s R s H s G s G s G s G s C +=) ()(1)()()()(1)()() ()(2212s H s G s G s H s G s G s G s N s C s n += +== Φ) () ()()(1) ()(212s N s H s G s G s G s C += ) ()()(s R s s εΦε=

比较开环控制系统和闭环控制系统的优缺点

开环控制系统和闭环控制系统的优缺点 如果系统的输出端与输入端之间不存在反馈,也就是控制系统的输出量不对系统的控制产生任何影响,这样的系统称开环控制系统。 闭环控制系统是基于反馈原理建立的自动控制系统。所谓反馈原理,就是根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。因此,反馈控制系统又称为闭环控制系统。 开环控制系统的优点是结构简单,比较经济。缺点是无法消除干扰所带来的误差。 同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。但反馈回路的引入增加了系统的复杂性,而且增益选择不当时会引起系统的不稳定。为提高控制精度,在扰动变量可以测量时,也常同时采用按扰动的控制(即前馈控制)作为反馈控制的补充而构成复合控制系统。

主要从三方面比较: 1、工作原理:开环控制系统不能检测误差,也不能校正误差。控制精度和抑制干扰的性能都比较差,而且对系统参数的变动很敏感。合闭环控制系统不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。控制精度和抑制干扰的性能都比较差,而且对系统参数的变动很敏感。因此,一般仅用于可以不考虑外界影响,或惯性小,或精度要求不高的一些场合。 2、结构组成:开环系统没有检测设备,组成简单,但选用的元器件要严格保证质量要求。闭环系统具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。 3、稳定性:开环控制系统的稳定性比较容易解决。闭环系统中反馈回路的引入增加了系统的复杂性。

几个开环与闭环自动控制系统的例子

2- 1 试求出图P2-1中各电路的传递函数。 图P2-1 2- 2 试求出图P2-2中各有源网络的传递函数。 图P2-2 图P2-3 转动惯量、等效粘性摩擦系数和心M!。 D (b| 00 值) 忆} 2-3 求图P2-3所示各机械运动系统的传递函数。 (1)求图(a)的X C_s X r s (2)求图(b)的Xc-s X r s (3)求图(c)的仝空 X! S (4)求图(d)的4 F s *.td 2-4 图P2-4所示为一齿轮传动机构。设此机构无间 隙、 无变形,求折算到传动轴上的等效

2-5 图P2-5所示为一磁场控制的直流电动机。 绕组上,输出为电机角位移,求传递函数W s 设工作时电枢电流不变,控制电压加在励磁 s --- 。U r S 2-6 图P2-6所示为一用作放大器的直流发电机, 原电机以恒定转速运行。试确定传递函数 图P2-6 2- 7 已知一系统由如下方程组组成,试绘制系统方框图,并求出闭环传递函数。 X1 s X r s W1s W1 s W7s W8s X c s X 2 s s X i s s X 3 s X 3 s X 2 s X c s ^V5 s ^V3 s X c s W4 s X3 s 2- 8 试分别化简图P2-7和图P2-8所示的结构图,并求出相应的传递函数。 图P2-4 图P2-5 U c s U r s W s,设不计发电机的电枢电感和电阻。 &■ I- r D — 丄---- CZD 图P2- 8

2-14 画出图P2-14所示系统的信号流图,并分别求出两个系统的传递函数 2- 9 求如图P2-9所示系统的传递函数 W s 乞? , W 2 s X c s X r s X N s 图 P2-9 2- 10 求如图P2-10所示系统的传递函数。 图 P2-10 2- 11 求图P2-11所示系统的闭环传递函数。 图 P2-12 2-13 画出图P2-13所示结构图的信号流图,用梅逊公式求传递函数: W 1 s X c S X r s W 2 s X c s N s X c1 S X c2 S X r1 s X r2 s 图 P2-11 图 P2-13

自动控制原理第三章课后习题 答案(最新)

3-1 设系统的微分方程式如下: (1) )(2)(2.0t r t c =& (2) )()()(24.0)(04.0t r t c t c t c =++&&& 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。已知全部初 始条件为零。 解: (1) 因为)(2)(2.0s R s sC = 闭环传递函数s s R s C s 10 )()()(== Φ 单位脉冲响应:s s C /10)(= 010 )(≥=t t g 单位阶跃响应c(t) 2 /10)(s s C = 010)(≥=t t t c (2))()()124.004.0(2 s R s C s s =++ 1 24.004.0) ()(2 ++= s s s R s C 闭环传递函数1 24.004.01 )()()(2 ++== s s s R s C s φ 单位脉冲响应:124.004.01 )(2 ++= s s s C t e t g t 4sin 3 25)(3-= 单位阶跃响应h(t) 16 )3(6 1]16)3[(25)(22+++-=++= s s s s s s C t e t e t c t t 4sin 4 3 4cos 1)(33----= 3-2 温度计的传递函数为1 1 +Ts ,用其测量容器内的水温,1min 才能显示出该温度的 98%的数值。若加热容器使水温按10oC/min 的速度匀速上升,问温度计的稳态指示误差有多大? 解法一 依题意,温度计闭环传递函数 1 1 )(+= ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。 视温度计为单位反馈系统,则开环传递函数为 Ts s s s G 1 )(1)()(=Φ-Φ= ? ? ?==11v T K

几个开环与闭环自动控制系统的例子

2-1试求出图P2-1中各电路得传递函数、 图P2-1 2—2试求出图P2—2中各有源网络得传递函数。 图P2-2 2—3 求图P2-3所示各机械运动系统得传递函数。 (1)求图(a)得 (2)求图(b)得 (3)求图(c)得(4)求图(d)得 图P2—3 2—4 图P2-4所示为一齿轮传动机构。设此机构无间隙、无变形,求折算到传动轴上得等效转动惯量、等效粘性摩擦系数与。 图P2-4 图P2-5 2-5图P2-5所示为一磁场控制得直流电动机。设工作时电枢电流不变,控制电压加在励

磁绕组上,输出为电机角位移,求传递函数、 2-6 图P2-6所示为一用作放大器得直流发电机,原电机以恒定转速运行。试确定传递函数,设不计发电机得电枢电感与电阻。 图P2-6 2-7 已知一系统由如下方程组组成,试绘制系统方框图,并求出闭环传递函数。 2-8试分别化简图P2—7与图P2-8所示得结构图,并求出相应得传递函数、 图P2—7 图P2-8 2—9求如图P2-9所示系统得传递函数,。 图P2—9 2—10 求如图P2—10所示系统得传递函数。

图P2—10 2-11求图P2—11所示系统得闭环传递函数。 图P2—11 图P2—12 2-13 画出图P2-13所示结构图得信号流图,用梅逊公式求传递函数:,。 图P2-13 2—14画出图P2-14所示系统得信号流图,并分别求出两个系统得传递函数,、 图P2—14 3-1 一单位反馈控制系统得开环传递函数为。 求:(1)系统得单位阶跃响应及动态特性指标δ%、t r、tS、μ; (2)输入量x r(t)=t时,系统得输出响应; (2)输入量xr(t)为单位脉冲函数时,系统得输出响应。

控制工程第3章习题解答

3.5 使用温度计对水温进行测量,若水温为恒定值,该温度计能在1分钟时指示出实际温度值的98%。假定温度计为一个一阶系统,求该系统的时间常数T 。 解: 恒定的水温可以视为一个阶跃输入信号,温度计的测量输出可以视为对该阶跃输入信号的响应。 一阶系统的单位阶跃响应的时间函数为:)0(1)(/>-=-t e t x T t o (P82,3.3.2) 根据题意可知:98.01)(/11 =-=-=T t o e t x →02.0/1=-T e →256.050 ln 1 == T (min) 若测量开始后,实际水温从零度起,以10°C/min 的速度线性升温,求温度计在1分钟时的示值与实际水温的误差是多大? (帮助公式:11111 2 22++-=+?Ts T s T s Ts s ) 根据题意,实际的温度输入信号为: t t x i ?=10)( 其拉氏变换为:2 10 )(s s X i = 测量误差的时间函数为: ] 11 10[)()]()([)()]([)() ()()(2111+??-=?-=-=-=---s T s L t x s G s X L t x s X L t x t x t x t e i i i o i o i 其中: )(10]1 1[10]111[10]1110 [/2212121 T t e T T t Ts T s T s L Ts s L s T s L ----?+-=++-=+?=+?? 所以: )1(56.2)1(10)(1010)(256.0///t T t T t e e T e T T t t t e ----=-=?+--= 当t=1时,测量误差为: 5.2)1(5 6.2)(256.0/11=-=-=e t e t 3.7已知控制系统的微分方程为)(20)()(5.2t x t y t y =+',试用拉氏变换法求该系统的单位脉冲响应)(t w 和单位阶跃响应)(t x ou ,并讨论二者之间的关系 解:由传递函数的定义和系统的微分方程(P34,2.2.2~2.2.3),可得系统的传递函数为

开环传递函数

五、(共15分)已知某单位反馈系统的开环传递函数为 (1)()()(3) r K s GS HS s s += -,试: 1、绘制该系统以根轨迹增益K r 为变量的根轨迹(求出:分离点、与虚轴的交点等);(8分) 2、求系统稳定且为欠阻尼状态时开环增益K 的取值范围。(7分) 五、(共15分) (1)系统有有2个开环极点(起点):0、3,1个开环零点(终点)为:-1; (2分) (2)实轴上的轨迹:(-∞,-1)及(0,3); (2分) (3)求分离点坐标 111 13 d d d =+ +-,得 121, 3d d ==- ; (2分) 分别对应的根轨迹增益为 1, 9r r K K == (4)求与虚轴的交点 系统的闭环特征方程为(3)(1)0r s s K s ++=-,即2 (3)0r r s K s K +-+= 令 2(3)0r r s j s K s K ω =+-+=,得 3, 3r K ω=±= (2分) 根轨迹如图1所示。 图1 2、求系统稳定且为欠阻尼状态时开环增益K 的取值范围 系统稳定时根轨迹增益K r 的取值范围: 3r K ≥, (2分) 系统稳定且为欠阻尼状态时根轨迹增益K r 的取值范围: 3~9r K =, (3分) 开环增益K 与根轨迹增益K r 的关系: 3 r K K = (1

分) 系统稳定且为欠阻尼状态时开环增益K 的取值范围: 1~3K = (1分) 六、(共22分)已知反馈系统的开环传递函数为()()(1) K G s H s s s =+ ,试: 1、用奈奎斯特判据判断系统的稳定性;(10分) 2、若给定输入r(t) = 2t +2时,要求系统的稳态误差为0.25,问开环增益K 应取何值。 (7分) 3、求系统满足上面要求的相角裕度γ。(5分) 六、(共22分) 解:1、系统的开环频率特性为 ()()(1) K G j H j j j ωωωω= + (2分) 幅频特性:2 ()1K A ωωω = +, 相频特性:()90arctan ?ωω=--(2分) 起点: 00, (0),(0)90A ω?+++ ==∞=-;(1分) 终点: ,()0,()A ω?→∞∞=∞=-;(1分) 0~:()90~180 ω?ω=∞=--, 曲线位于第3象限与实轴无交点。(1分) 开环频率幅相特性图如图2所示。 判断稳定性: 开环传函无右半平面的极点,则0P =, 极坐标图不包围(-1,j0)点,则0N = 根据奈氏判据,Z =P -2N =0 系统稳定。(3分) 2、若给定输入r(t) = 2t +2时,要求系统的稳态误差为0.25,求开环增益K : 系统为1型,位置误差系数K P =∞,速度误差系数K V =K , (2分) 图2

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 3.1 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 3.2 思考与习题祥解 题3.1 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响? (5)系统误差与哪些因素有关?试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关? 答:(1)二阶系统特征根在复平面上分布情况如图3.1所示。 图3.1 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=0.2~0.4;对于随动控制系统ξ=0.6~0.8。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题3.2系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题3.3 系统结构如题3.3图所示。控制器)1 1()(s T K s G i p c + =,为使该系统

解决传递函数中零点的几个疑问

解决传递函数中零点的几个疑问 传递函数有开环传递函数和闭环传递函数,同样,零点有开环零点和闭环零点。 他们有什么不同,又各自起到什么作用呢? 完全书本上的理论:闭环零点是系统闭环传递函数中分子多项式方程的根。闭环零点由前向通道的零点和反馈通道的极点构成。对于单位反馈系统,闭环零点就是开环零点。 这个从系统结构上是可以推导出来的结论。 一想到零点,我们会想到比例微分环节,那么这个比例微分环节,放在前向通道和反馈通道,作用上会有什么不同吗? 谈到零点,我们最先想到的是微分环节,事实上,单纯的

微分环节是不存在的。对一个信号取微分,也就是相当取这个信号的变化率。一个脉冲信号,上升沿变化率近似于无穷大,而运放的输出能量是有限的。 能产生零点的基本环节有比例微分环节PD,比例积分环节PI。 先来看,在一个传递函数的分子中,加入一个零点,而分母不变,会有什么影响呢? 以欠阻尼二阶系统 G=4/(s^2+2*s+4)(阻尼比=0.5)为例,与另一个系统G=4(s+1)/(s^2+2*s+4)的单位阶跃响应比较。 绿色是加入零点的,蓝色是没有零点的。 从这个例子,我们可以得到一个很简单的结论:传递函数分母不变,分子中串入零点,瞬态响应变快,超调量增加。

举个例子,还是以传递函数G=4/(s^2+2*s+4)(阻尼比 =0.5)作为控制对象,采用比例微分环节(1+0.5*s)去控制它。 而根据比例微分环节加入整个系统的位置不同,可以分为两种:一种是放在前向通道,一种是放在反馈通道。 下面以采用这两种校正方式后的单位阶跃响应,来看看它们有什么不同~ (1)、将校正环节串入系统的前向传递通道(绿色):sys=tf([4],[1,2,0]);sys2=tf([0.5,1],[1]); sys3=series(sys2,sys),sys4=feedback(sys3,1); step(sys4);hold on; (2)、将校正环节作为系统的反馈通道(蓝色): sys=tf([4],[1,2,0]);sys2=tf([0.5,1],[1]); sys3=feedback(sys,sys2);step(sys3);(3)、原系统的单位反馈(红色):sys0=tf([4],[1,2,4]);step(sys0);

由开环频率特性估计闭环频率特性

由开环频率特性估计闭环频率特性 对于如图4-42所示的系统,所谓开环频率特性,是指将闭环回路的环打开,其开环频率特性为G (j ω)H (j ω)。 图4-42 典型闭环系统 而该系统闭环频率特性为 ) ()(1)()()(ωωωωωj H j G j G j X j X i o += (4.20) 据此,可以画出系统闭环频率特性图。尤其是计算机的应用日益普及,其冗繁的计算工作量可以很容易地由计算机完成。同时,已知开环幅频特性,也可定性地估计闭环频率特性。 设系统为单位反馈,则 ) (1)()()(ωωωωj G j G j X j X i o += (4.21) 一般实用系统的开环频率特性具有低通滤波的性质,低频时,1)(>>ωj G ,则 1) (1)()()(≈+=ωωωωj G j G j X j X i o 高频时,1)(<<ωj G ,则 )() (1)()()(ωωωωωj G j G j G j X j X i o ≈+= 系统开环及闭环幅频特性对照如图4-43所示。因此,对于一般单位反馈的最小相位系统,低频输入时输出信号的幅值和相位均与输入基本相等,这正是闭环反馈控制系统所需要的工作频段及结果;而高频输入时输出信号的幅值和相位均与开环特性基本相同。

图4-43 系统开环及闭环幅频特性对照 另外,我们可以利用等M 圆和等N 圆由开环频率特性求出闭环频率特性。对于单位反馈系统,设前向通道传递函数为G(s), 则其闭环传递函数为 ()()()() s G s G s X s X i o +=1 (4.22) 在图4-44所示的乃奎斯特图上,向量OA 表示()A j G ω,其中A ω为A 点频率。向量OA 的幅值为()A j G ω,向量OA 的相角为()A j G ω∠。由点P (-1,j0)到A 点的向量PA 可表示为[1十()A j G ω]。向量OA 与PA 之比正好表示了闭环频率特性,即 ()()()() A o A i A A j X j X j G j G PA OA ωωωω=+=1 (4.23) 在A ωω=处,闭环频率特性的幅值就是向量OA 与PA 的幅值之比,相位角就是两向量的相角之差,即夹角θ?-,如图4-44所示。当系统的开环频率特性确定后,根据图4-44就可求出闭环频率特性。 图4-44 由开环频率特性求闭环频率特性

反馈系统的传递函数

一、系统的开环传递函数 系统反馈量与误差信号的比值,称为闭环系统的开环传递函数, 二、系统的闭环传递函数 1、输入信号)(s R 作用下的闭环传递函数 令0)(=s D ,这时图1可简化成图2(a)。输出)(s C 对输入)(s R 之间的传递函数,称输入作用下的闭环传递函数,简称闭环传递函数,用)(s Φ表示。 而输出的拉氏变换式为 2、干扰)(s D 作用下的闭环传递函数 同样,令0)(=s R ,结构图1可简化 为图3(a)。 以)(s D 作为输入,)(s C 为在扰动作用下的输出,它们之间的传递函数,用)(s n Φ表示,称为扰动作用下的闭环传递函数,简称干扰传递函数。 系统在扰动作用下所引起的输出为 三、系统的误差传递函数 系 统的误差信号为 )(s E ,误 差传递函数也分 为给定信号作用下的误差传递函数和扰动信号作用下的传递函数。前者表征系统输出跟随输入信号的能力,后者反映系统抗扰动 的能力。 1、输入信号)(s R 作用下的误差传递函数 为了分析系统信号的变化规律,寻求偏差信号与输入之间的关系,将结构图简化为如图2)(b 。列写出输入)(s R 与输出)(s ε之间的传递函数,称为控制作用下偏差传递函数。用表示。 2、干扰)(s D 作用下的误差传递函数 同理,干扰作用下的偏差传递函数,称干扰偏差传递函数。用)(s n εΦ表示。以)(s N 作为输入,)(s ε作为输出的结构图,如图3)(b 。 )()()()()() ()()(21s H s G s H s G s G s E s B s G K ===) ()()(21s G s G s G =)()(1)()()()(1)()()()()(2121s H s G s G s H s G s G s G s G s R s C s += +== Φ)() ()()(1)()()(2121s R s H s G s G s G s G s C +=)()(1)()()()(1)()()()(2212s H s G s G s H s G s G s G s N s C s n += +== Φ) () ()()(1)()(212s N s H s G s G s G s C += ) ()()(s R s s εΦε=

闭环传递函数

一.取TD=0,T1=∞,KP=1~5,则PID 控制器的传递函数为: Gc (S )=1~5(TD=0,T1=∞,KP=1~5) 求系统的闭环传递函数的MATLAB 程序如下: 【1】Gc (S )=1 >> n1=[1];d1=[0.017 1];s1=tf(n1,d1); >> n2=[1];d2=[0.076 0];s2=tf(n2,d2); >> sys1=feedback(s1*s2,1) Transfer function: 1 -------------------------- 0.001292 s^2 + 0.076 s + 1 >> n3=[0 44];d3=[0.00167 1];s3=tf(n3,d3); >> n4=[1];d4=0.0612;s4=tf(n4,d4); >> sys=feedback(sys1*s3,s4) Transfer function: 2.693 --------------------------------------------------- 1.32e-007 s^3 + 8.684e-005 s^2 + 0.004753 s + 44.06 = 2.693/0.0012s^3+0.0585s^2+0.004753s+44.06 >>num1=[0 0 2.693]; >>den1=[0.0012 0.0585 0.004753 44.06]; >>step(num1,den1,0.60) 00.10.20.30.40.50.6 -200 -150-100-50050100 150200 250Step Response Time (sec) A m p l i t u d e

开环电路和闭环电路

问:解释一下“开环电路”“闭环电路”,如何区分某种电器是开环还是闭环? 答:所谓开环是指无反馈电路非环状电路,而闭环即为有反馈的环状电路。 比如笔计本的电源适配器,它对输出电压(以DC19V居多)进行侦测反馈至前端并以此作为调节电压,使其输出衡定电压。而家用的射灯变压器(开关电源类)为开环电路,即它没有反馈电路,不对输出电压进行侦测反馈,它的输出电压随输入电压改变而发生改变。 问:什么叫开环控制电路? 答:与控制对象只存在单向作用而没有反馈联系的控制电路。例如晶闸管供电的直流电动机开环控制系统(图1)。Ug作为系统的输入量,经过触发电路控制着晶闸管整流电路的输出电压,从而控制了电动机的转速,转速n称为输出量。这样,一定输入量Ug对应着一定的转速n。由图可见,该系统只有输入量对输出量的控制作用,而没有输出量再返回来影响系统控制作用的能力,这种系统叫开环控制系统。 在忽略了一些次要因数后,可写出方程式: 联立求解上述方程可得转速n的表达式,即为开环系统的机械特性方程式 式中Kc为晶闸管整流电路的放大系数,R∑为电枢回路总电阻,Ce为电动机的电动势系数,n0为开环系统电动机的理想空载转速,Δn为开环系统电动机的静态转速降。根据系统各环节的静态关系可以画出开环系统静态结构图(图2)。

从结构图可以看出,在控制通道中,只有输入量Ug对输出量n产生控制作用。电枢压降IdR∑是负载扰动,当负载扰动IdR∑变化时,如果没有人工干预,则输出量n必将改变。这说明开环系统抗扰动能力是很差的,它对控制过程中可能出现的偏差没有任何修正能力。因此它的控制精度较低,常用在要求不高的场合。 问:什么叫闭环控制电路 答:闭环控制电路是指与控制对象存在反馈联系的控制电路。开环控制电路结构简单,成本低,但控制精度较低。为在系统中保持转速的恒定,可以加入一些测量比较元件组成闭环系统(图1)。 闭环控制测速发电机SF(图中TG)就是测量元件。将测速发电机的电压取出一部分Uf与给定电压Ug反向串联,并将差值ΔU作为放大器的输入信号,即ΔU=Ug-Uf。自动调速过程如下:设电动机(M)原来稳定工作于额定转速,若负载突然增大,主回路电压降增大,电动机转速下降,反馈电压Uf也随之下降。由于给定电压Ug没有变,所以加到放大器输入端的电压ΔU 便自动升高,它使晶闸管整流电路输出电压Ud增加,补偿了所增大的电压降,于是电动机转速又回升到接近原来的数值。反馈作用有两种情况,若反馈信号和原输入信号极性相同叫正反馈;反之,叫负反馈。正反馈使系统放大倍数增大,负反馈使系统放大倍数减小。在自动控制系统中主要应用的是负反馈。在单闭环调速系统中,忽略一些次要因数后,各环节的静态(稳态)规律如下:电压比较环节ΔU=Ug-Uf;放大器Uk=KpΔU;触发器及晶闸管整流装置Ud=KsUk;晶闸管-电动机系统开环机械特性n=(Ud-IdR∑)/Ce;测速发电机Uf=αn。以上各式中,Kp是放大器的电压放大倍数;Ks是晶闸管装置的电压放大倍数;α是测速发电机的反馈系数。上述关系式中消去中间变量,可得转速负反馈单闭环调速系统的静特性方程式 式中K=KpKsα/Ce,叫做闭环系统的开环放大倍数,它好象是在测速发电机输出端把反馈回路断开,从放大器输入一直到测速发电机输出的总的电压放大倍数,是各个环节单独放大倍数的乘积。这里是以1/Ce=n/ED作为电动机环节的“放大倍数”的。 闭环调速系统的静特性根据调速系统各环节的静态关系式可以画出系统的静态结构图(图2)。图中各方块中的符号是该环节的放大倍数,或称传递函数。比较一下闭环系统静特性和开环系统机械特性,就能清楚地看出闭环控制的优越性。如果断开反馈回路,则上述系统的开环机械特性是

相关文档
相关文档 最新文档