文档库 最新最全的文档下载
当前位置:文档库 › 高分子物理第6章

高分子物理第6章

高分子物理第6章
高分子物理第6章

高分子物理考研复试题及答案

判断题 1 结晶性聚合物不一定总就是形成结晶聚合物(√) 交联前的线性聚合物就是结晶性聚合物,交联度不太大时,有结晶能力,但随交联度增大,结晶能力减小;当交联度太大时,丧失结晶能力 需要结晶条件 5、不能通过改变高分子的构象提高高分子的等规度。(√) 高分子的等规度就是由分子的化学结构决定的,要改变改变高分子的等规度必须改变高分子的构型。 06年判断题: 1、双酚A型聚碳酸酯就是结晶性聚合物,所以一定形成结晶聚合物(×) 原因:交联前的双酚A型聚碳酸酯聚合物就是结晶性聚合物,交联度不太大时,有结晶能力,但随交联度增大,结晶能力减小;当交联度太大时,丧失结晶能力 需要结晶条件 8、尼龙1010,尼龙66,尼龙610这三种尼龙熔点最高的就是尼龙66(√) 氢键密度 1影响高分子柔顺性的因素有哪些?聚乙烯单个分子的柔顺性很好,为什么高聚物不能作为橡胶使用而作塑料用? 答: (1) 影响高分子的柔顺性有那些因素: ○1高分子主链结构中键长越长,键角越大或含有孤立双键,单键内旋转

越容易,高分子的共轭双键,芳杂环,典型刚性键,高分子的柔顺性较差(体积) ○2侧基的极性越大,柔顺性越差,若含有氢键时,柔顺性更差,侧基的刚性越大,柔顺性越差,但沿主链刚性侧基密度增大,柔顺性更差(体积) ○3分子量越大分子链的柔顺性越好 ○4高分子发生交联,交联度不大时,对柔顺性影响不大,交联度太大时,分子链失去柔顺性 ○5高分子的聚集态结构决定高分子的柔顺性能否表现出来 ○6温度越高,外力越大,分子链的柔顺性越好;外力作用速度越大,分子链的柔顺性越难表现出来,加入溶剂,分子链的柔顺性较好,但还与外界条件有关 (2)对称,柔性越大,分子结构越规整,但同时结晶能力越强,高分子一旦结晶,链的柔顺性就表现不出来,聚合物呈现刚性,聚乙烯的分子链就是柔顺的,但由于结构规整,很容易结晶,失去弹性,所以聚乙烯聚合物能够作塑料用不能作橡胶用。 2、作出下列高聚物的温度—形变曲线,标出各特征温度,并简要说明。 (1)自由基聚合 的聚苯乙烯:试样B的分子量适中,试样A的分子量较小。 (2)聚乙烯:试样A的分子量适中,试样B的分子量很大。 PS为非晶高聚物,分子量小的高弹平台很短或没有高弹态。PE 为结晶高聚物,分子量小的没有Tf,分子量大的有 3、分子结构,分子量与外力作用时间如何影响高聚物的粘流温度?

高分子物理与化学习题答案

第一章 绪论 1. P16: 名词解释: 单体:能够形成聚合物中结构单元的小分子化合物 结构单元:构成高分子链并决定高分子性质的最小原子组合 重复单元:聚合物中组成和结构相同的最小单位,又称为链节。 高分子: 聚合物:由结构单元通过共价键重复连接而成的大分子 聚合度:即高分子链中重复结构单元的重复次数,是衡量聚合物分子大小的指标。 3. P16写出下列单体的聚合反应式,以及单体/聚合物的名称 1). 2) 3) 4) 5) 6. P17: 写出下列混合物的数均分子量、重均分子量和分子量分布指数 (1)组分1:质量分数=0.5,分子量=1 x 104 (2)组分2:质量分数=0.4,分子量=1 x 105 (3)组分3:质量分数=0.1,分子量=1 x 106 解: 4 6 41085.11011054.0105.01 /1?=++== ==∑∑∑∑∑∑Mi Wi Wi Mi Wi Wi Ni NiMi M n 5 6541045.1101.0104.0105.0?=?+?+?==∑WiMi Mw 1045.15 ?Mw nCH 2 2CHF n 氟乙烯 聚氟乙烯 nCH 2C(CH 3)CH 2C(CH 3)2n 聚异丁烯 异丁烯 nHO (CH 2)5COOH H O(CH 2)5CO OH n 6-羟基己酸聚己内酯 n n CH 2CH 2CH 2O CH 2CH 2CH 2O 1,3-环丙烷 聚氧化丙撑 n n n H 2N(CH 2)6NH 2HOOC(CH 2)4COOH +2)6NHCO(CH 2)4CO 己二胺己二酸尼龙66

第三章 自由基聚合习题解答 4. P74 写出下列常用引发剂的分子式和分解反应式 (1) 偶氮二异丁腈【见教材P43】 H 3C C CH 3H 3C C CH 3 N N C CH 3 CH 3 2N 2 +(2) 偶氮二异庚腈 CH 2 C CH 3N N C CH 2CH 3 N 2 +CH HC H 3C CH 3 CH 3 CH 2 C CH 3HC CH 3CH 3 (3) 过氧化二苯甲酰【见教材P43】 (4)异丙苯过氧化氢【见教材P43】 (5)过硫酸铵体系【见教材P43】 5. P74 以偶氮异丁腈为例,写出氯乙烯自由基聚合的各基元反应 1.)链引发 (2)链增长: CH 3 C N CN C ·CH 3 CH 3 CH 3 N CH 3 CN C CH 32+N CH 2CHCl ·CH 3 CH 3 C ·+CH 2CH 3 C CH 3 O NH 4H 4N H 4N 2C O O C O O 2+CO C CH 3CH 3O OH C CH 3CH 3O HO +

高分子物理各章节答案第1章分解

第一章 填空题 1、对于聚乙稀自由旋转链,均方末端距与链长的关系是()。 解: 2、等规聚丙烯经体中分子链处于()构象。 解:螺旋 3、C5链至少有()种构象。 解:9 4、高分子链的柔顺性越大,它在溶液中的构象数越(),其均方末端距越()。 解:多 小 5、聚异戊二烯可以生成()种有规异构体,它们是()。 解:六 顺式1,4加成聚异戊二烯,反式1,4加成聚异戊二烯,全同1,2加成聚异戊二烯,间同1,2加成聚异戊二烯,全同3,4加成聚异戊二烯,间同3,4加成聚异戊二烯 判断题 1、下列聚合物分子链柔顺性的顺序是() 硅橡胶>聚异丁烯>聚甲基丙烯酸甲酯>聚二甲基苯基醚氧 解析:表述正确。 2、-{-CH2CH2-St-}-和-{-CH=CH-St-}-两种聚合物的分子链都含有苯环,所以刚性较好,在 室温下都可以作为塑料使用() 解析:高分子链的柔性与实际材料的刚柔性不能混为一谈。判断材料的刚柔性,必须同时考虑分子内的相互作用以及分子间的相互作用和凝聚状态。 3、不同聚合物分子链的均方末端距越短,表示分子链柔顺性越好() 解析:这种说法是错误的。 4、高斯链的均方末端距远大于自由旋转链的均方末端距() 解析:这种说法是错误的。 5、理想的柔性链运动单元为单键() 解析:表述正确。对于真实的柔性链运动单元为链段。 6、因为天然橡胶相对分子质量很大,加工困难,故加工前必须塑炼() 解析:表述正确。 7、因为聚氯乙烯分子链柔顺性小于聚乙稀,所以聚氯乙烯塑料比聚乙稀塑料硬(对?)解析:表述正确。 8、无规聚丙烯分子链中的-C-C-单键是可以内旋转的,通过单键内旋转可以把无规立构

高分子物理第五章习题与解答说课讲解

高分子物理第五章习 题与解答

一.选择题 1.聚乙烯(PE)、聚氯乙烯(PVC)、聚偏二氯乙烯(PVDC)三种聚合物的结 晶能力的强弱顺序为() (a)PE>PVC>PVDC (b)PVDC>PE>PVC (c)PE>PVDC>PVC (d)PVDC>PVC>PE 2.退火处理使得聚合物的结晶度() (a)增加(b)减小(c)不变 3.聚丙烯的熔融过程和聚苯乙烯的玻璃化转变过程分别是:()。 A. 都是力学状态转变过程; B. 都是热力学相变过程; C. 前 者是热力学相变过程,后者是力学状态转变过程 4. 聚合物的玻璃化转变温度不能用以下哪个方法测定?() A.差示量热扫描仪; B. 膨胀计; C. 熔融指数仪 5.玻璃态高聚物和结晶高聚物的拉伸情况的区别在于:() A.前者只发生分子链的取向,不发生相变;而后者还包含有结晶的破坏、取 向和再结晶等过程; B.两者都只发生分子链的取向,不发生相变; C.两者都发生结晶的破坏、取向和再结晶等过程 6.结晶高聚物的熔点与其结晶温度的关系是() A. 在越低温度下结晶,熔点越低,而且熔限越窄; B. 在越低温度下结晶,熔点越高,而且熔限越宽; C. 在越高温度下结晶,熔点越高,而且熔限越窄; 7.共聚物的玻璃化转变温度通常是()

A.低; B.高; C.介于两者之间 8.下列聚合物结晶能力从大到小的顺序是:() A.高密度聚乙烯>聚异丁烯>自由基聚合得到的聚苯乙烯 B.自由基聚合得到的聚苯乙烯>聚异丁烯>高密度聚乙烯 C.聚异丁烯>高密度聚乙烯>自由基聚合得到的聚苯乙烯 9.下列聚合物的玻璃化转变温度从高到低的顺序是:() A.聚甲基丙烯酸甲酯>聚丙烯酸丁酯>聚丙烯酸甲酯 B.聚丙烯酸丁酯>聚丙烯酸甲酯>聚甲基丙烯酸甲酯 C.聚甲基丙烯酸甲酯>聚丙烯酸甲酯>聚丙烯酸丁酯 10.聚合物在结晶过程中,体积() A.变大 B.变小 C.不变 11.下列方法中不能测定玻璃化温度的是:() A.体膨胀计B. 差示扫描量热法C. 动态机械分析仪D. X 射线衍射仪 12.下列聚合物中,熔点最高的是() A.尼龙10 B.尼龙11 C.尼龙12 13.下列聚合物中,玻璃化温度最高的是() A.PDMS B.PE C.PS D.PP 14.测定熔点的方法有() A.偏光显微镜 B.DSC C.DMA D.密度法 15.非晶态聚合物的玻璃化转变即玻璃-橡胶转变,下列说法正确的是()。 A、T g是塑料的最低使用温度,又是橡胶的最高使用温度。

高分子物理小测题目

第一章高分子链的结构 1.试述《高分子物理》的主要内容; 2.高分子结构的组成部分; 3.根据高分子链构型的不同,有哪些异构体? 4.试比较线性、支化和交联高分子的溶熔性能; 5.根据序列结构的不同,共聚物有哪些类型?其中哪些类型共聚物的性能与相应均聚物的性能有一定联系? 6.高分子“链段”的概念。 第二章高分子的凝聚态结构 1.高分子凝聚态结构的重要性; 2.晶态聚合物有哪些结构模型? 3.结晶度的测定方法; 4.液晶聚合物的应用; 5.取向与结晶的区别; 6.根据共混物的性能与应用,聚合物共混物可分为哪几类? 第三章高分子溶液 1.聚合物溶解过程的特点; 2.溶剂对聚合物溶解能力的判定; 3.聚电解质溶液的黏度和渗透压的特点; 4.极性与非极性聚合物增塑的机理。 第四章聚合物的分子量和分子量分布 1.聚合物常用的几种统计平均分子量; 2.聚合物分子量的测定方法有哪些? 3.聚合物有哪些黏度表示法? 4.聚合物分子量分布的测定方法可分哪几类?各类有哪些方法? 第五章聚合物的分子运动和转变 1.聚合物分子运动的特点; 2.高分子热运动的类型; 3.自由体积理论认为物体的体积包括哪几部分?各部分体积在玻璃化温度上下是如何变化的? 4.分别概括影响Tg、Tm和结晶的因素。 第六章橡胶弹性 1.聚合物受到拉伸、剪切和压缩作用时,相应的应力、应变及弹性模量公式; 2.杨氏模量、切变模量和体积模量的关系; 3.聚合物高弹性的本质; 4.橡胶状态方程(三种)。 第七章聚合物的黏弹性 1.温度和外力作用频率对聚合物内耗的影响;

2.什么是时温等效原理?有什么意义? 3.作业题7-12 第八章聚合物的屈服和断裂 1.请画出聚合物的五种类型应力-应变曲线(注明类型); 2.剪切带进一步发展,材料会发生什么变化?银纹进一步发展又会怎样? 3.脆性断裂和韧性断裂的区别? 4.温度和应变速率如何影响断裂应力和屈服应力? 5.影响聚合物强度的因素; 6.怎样的裂缝容易导致材料开裂? 7.名词解释:增强、增韧。

高分子物理与化学习题答案(精品文档)

高分子物理与化学习题解答――参考答案 第一章 绪论 1. P16: 名词解释: 单体:能够形成聚合物中结构单元的小分子化合物 结构单元:构成高分子链并决定高分子性质的最小原子组合 重复单元:聚合物中组成和结构相同的最小单位,又称为链节。 聚合物:由结构单元通过共价键重复连接而成的大分子 聚合度:即高分子链中重复结构单元的重复次数,是衡量聚合物分子大小的指标。 3. P16写出下列单体的聚合反应式,以及单体/聚合物的名称 1). 2) 3) 4) 5) 6. P17: 写出下列混合物的数均分子量、重均分子量和分子量分布指数 (1)组分1:质量分数=0.5,分子量=1 x 104 (2)组分2:质量分数=0.4,分子量=1 x 105 (3)组分3:质量分数=0.1,分子量=1 x 106 解: 4 6 41085.11011054.0105.01 /1?=++== ==∑∑∑∑∑∑Mi Wi Wi Mi Wi Wi Ni NiMi M n 56541045.1101.0104.0105.0?=?+?+?==∑WiMi Mw 1045.15 ?Mw nCH 2CHF 2CHF n 氟乙烯聚氟乙烯 nCH 2C(CH 3)CH 2C(CH 3)2n 聚异丁烯 异丁烯nHO (CH 2)5H O(CH 2)5CO OH n 6-羟基己酸聚己内酯 n n CH 2CH 2CH 2O CH 2CH 2CH 2O 1,3-环丙烷 聚氧化丙撑 n n n H 2N(CH 2)6NH 2HOOC(CH 2)4COOH +2)6NHCO(CH 2)4CO 己二胺己二酸尼龙66

第三章自由基聚合习题解答 1.P73-74. 判断下列单体能否进行自由基聚合、阳离子聚合、阴离子聚合?并说明理由

高分子物理作业答案

第五章聚合物的转变与松弛 1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的5个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。 (1)玻璃态区类似玻璃,脆性,如:室温下的PS、PMMA。 温度不足以克服内旋转位垒,链段以上运动“冻结”,分子运动主要限于振动和短程的旋转运动 (2)玻璃—橡胶转变区远程、协同分子运动的开始。链段(约10—50个主链原子)获得了足够的热能开始以协同方式运动,不断改变构象 (3)橡胶-弹性平台区分子间存在物理缠结,聚合物呈现远程橡胶弹性(蜷曲链受力扩张,产生大形变外力除去后,自发地回复到蜷曲形态) (4) 粘弹转变区分子链发生解缠作用,导致由链段运动向整个分子滑移运动过渡。 (5) 粘流区聚合物容易流动,类似糖浆;热运动能量足以使分子链解缠蠕动,导致整链运 动。 2. 讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。 答:在轻度结晶的高聚物中,微晶体起着类似交联点的作用,这种试样仍然存在明显的玻璃化转变,随着结晶度的增加,相当于交联度的增加,非晶部分处在高弹态的结晶高聚物的硬度将逐渐增加,到结晶度大于40%后,微晶体彼此衔接,形成贯穿整个材料的连续晶相,宏观上不易察觉明显的玻璃化转变,其曲线在熔点以前不出现明显的转折。 交联聚合物,不存在(4)(5)区,因为交联阻止了滑移运动,在达到聚合物的分解温度之前,一直保持在③区状态。 结晶聚合物 1.处于晶态

a.轻度结晶 微晶体起着类似交联点的作用,存在明显的玻璃化转变, 形变小于非晶 b.结晶度大于40%时,无玻璃化转变,在熔点以前不出现明显的转折。 ?分子量不太大,T f T m熔融后→高弹态→粘流态 2.处于非晶态 类似于非晶态高聚物但有可能出现冷结晶现象。即T>Tg 后,链段排入晶格→结晶,使形变变小。 (图见讲义) 3. 写出四种测定聚合物玻璃化温度的方法,不同实验方法所得结果是否相同?为什么? 答:①膨胀计法②量热法(DSC法)③温度-形变法(热机械法)④核磁共振法(NMR) 4.聚合物的玻璃化转变是否是热力学相变?为什么? 答:玻璃化温度与测定过程的冷却速度有关,不是热力学的平衡过程,而是属于力学松弛过程。因为在玻璃化转变前后聚合物都是无规的,热力学上都属于液态。 5. 试用玻璃化转变的自由体积理论解释: 按自由体积理论(熔体降温为固体) 冷却速度过快,则链段来不及调整构象就被冻结,使自由体积高于平衡态时的Vf,这样,Tg以下体积-温度曲线向上平移,使依据两条曲线交点确定的Tg偏高。 按松弛理论(固体升温变为熔体) 因Tg是链段运动的松弛时间与观察时间匹配时的温度,升温速率越快,观察时间越短,相应的更短松弛时间的温度就越高,故测得的Tg就越高。 7. 聚合物晶体结构和结晶过程与小分子晶体结构和结晶过程有何差别?造成这些差别的原因是什么? 相似:都发生突变,有明显的转折,都属于热力学一级相转变过程 差异:小分子熔点0.2度高聚物是一5~10℃温度范围,熔限 原因:结晶高聚物中有完善程度不同的晶体(结晶时造成的),结晶比较完善的晶体在较高温度下才能熔融,而结晶不完善的晶体在较低温度就能熔融,如果熔化过程中升温速度比较缓慢,不完整晶体可以再结晶形成比较完善的晶体,熔限也相应变窄; 8. 测定聚合物结晶速度有哪些方法? 答:(1)膨胀计法、光学解偏振法和差示扫描量热法(Dsc) (2)偏光显微镜法和小角激光光散射法 9. 比较下列各组聚合物的Tg高低并说明理由; (1) 聚二甲基硅氧烷,顺式聚1,4—丁二烯; (2) 聚已二酸乙二醇酯,聚对苯二甲酸乙二醇酯 (3) 聚丙烯,聚4-甲基1-戊烯; (4) 聚氯乙烯,聚偏二氯乙烯。 解:(1)Tg:聚二甲基硅氧烷< 顺式聚1,4—丁二烯,聚二甲基硅氧烷主链为饱和单

高分子物理习题及答案

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动 B.链段运动 C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。 (1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是( ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠 B.剪切变稀 C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶 B.伸直链晶体 C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ1( A )聚合物能溶解在所给定的溶剂中 A. χ1<1/2 B. χ1>1/2 C. χ1=1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态; B.结晶高聚物中晶片的取向在热力学上是稳定的; C.取向使材料的力学、光学、热性能各向同性。 13.关于高聚物和小分子物质的区别,下列( D )说法正确 ⑴高聚物的力学性质是固体弹性和液体粘性的综合; ⑵高聚物在溶剂中能表现出溶胀特性,并形成居于固体和液体的一系列中间体系; ⑶高分子会出现高度的各向异性。 A. ⑴⑵对 B. ⑵⑶对 C. ⑴⑶对 D.全对

高分子物理习题讲解

第一章绪论 一、选择题 1.GPC对高聚物进行分级的依据是(B) A.高聚物分子量的大小B.高分子流体力学体积大小 C.高分子末端距大小D.高分子分子量分布宽度 2.下列哪些方法获得的是数均分子量(BCD) A.粘度法B.冰点下降C.沸点升高 D.渗透压E.超离心沉降F.光散射法 3.聚合物分子量越大,则熔体粘度(A) 对相同分子量聚合物而言,分子量分布越宽,则熔体粘度(B) A.增大B.降低C.相等D.不变 4.某一高聚物试样A的分子量约为3×104,试样B的分子量约为7×105,测定试样A的分子量应采用(A)(B)等方法。测出的分别是(C)(D)分子量。 测定试样B的分子量则宜采用(E)(F)等方法,测出的分别是(G)(各H)分子量。 A.膜渗透压B.粘度法降低C.数均D.粘均 E.光散射F.凝胶渗透色谱法G.重均H.各种平均5.分子量相同的线形聚乙烯和支化聚乙烯的混合试样,当采用的溶解度分级时不能将它们分开,这是由于(AB)而采用GPC法则能将它们分开,这是由于(CD)首先被淋洗出来的是(E) A.两者分子量相同B.溶解度相同C.它们的分子尺寸不一样D.流体力立体积不同E.线性聚乙烯 6.聚合物没有气态是因为(B)

A .聚合物不耐高温 B .聚合物分子间力很大 C .聚合物的结构具多分散性 D .聚合物的分子量具多分散性 7.下列哪些方法获得的是数均分子量(BCD ) A .粘度法 B .冰点下降 C .沸点升高 D .渗透压 E .超离心沉降 F .光散射法 8.不同用途和不同成型方法对聚合物分子量的大小有不同的要求。通常是(C ) A .合成纤维分子量最高,塑料最低 B .塑料分子量最高,合成纤维最低 C .合成橡胶分子量最高,合成纤维最低 9.下列那种方法可测定聚合物的数均分子量(B ) A .超速离心沉降; B .膜渗透压 C .黏度 D .光散射 二、问答与计算题 1. 某高聚物10,0000M η=,已知Mark-Houwink 方程中4110/d g -K =?I ,α=0.8 Huggins 方程中常数κ=0.33 (1)计算c =0.0030g/ml 时,溶液的相对粘度r η。 (2)如α=1,已知M η值,能否得到有关该高聚物分子量多分散性的信息,为什么? 2. 在25℃、θ溶液中测得浓度7.36×-3g/cm 3的PVC 溶液的渗透压力0.248g/cm 2, 求该试样的分子量和A 2。(R=8.48×104g·cm/K·mol ) 3. 假定某一高聚物含分子量分别为10000、20000、30000三个级份,若由渗透压法和光散射法测出该样品分子量分别为20000及30000,计算该样品中三种级分的重量分数。 4. 1)根据高分子链构象统计理论,如何计算高分子的链段长度?实验上如何

高分子物理第六章考试题库

高分子物理第六章溶液部分 3-1简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢?解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。 例3-2.用热力学原理解释溶解和溶胀。解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合:ΔG=ΔH.TΔS≤0上式表明溶解的可能性取决于两个因素:焓的因素(ΔH)和熵的因素(ΔS)。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过

程ΔS都是增加的,即ΔS>0。显然,要使ΔG<0,则要求ΔH 越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,ΔH总小于零,即ΔG<0,溶解过程自发进行。根据晶格理论得ΔH=χ1KTN1φ2(3-1)式中χ1称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。χ1KT的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为N1=1,φ1≈1,ΔH≈χ1KT)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即ΔV=0),其ΔH的计算可用Hildebrand的溶度公式:ΔH=Vφ1φ2(δ1.δ2)2(3-2)式中φ是体积分数,δ是溶度参数,下标1和2分别表示溶剂和溶质,V是溶液的总体积。从式中可知ΔH 总是正的,当δ1..→δ2时,ΔH..→0。一般要求δ1与δ2的差不超过1.7~2。综上所述,便知选择溶剂时要求χ1越小或δ1和δ2相差越小越好的道理。注意:①Hildebrand公式中δ仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用δ相近原则选择溶剂时有例外。δ相近原则只是必要条件,充分条件还应有溶剂与溶质的极性和形成的氢键程度要大致相等,即当考虑结构单元间除有色散力外,还有偶极力和氢键作用时,则有ΔH=Vφφ[()(pp)()22122122121hhddδδδδδδ.+.+.]式中d、p、h分别代表色散力、偶极力和氢键的贡献,这样计算的δ就有广义性。②对高度结晶的聚合物,应把熔化热ΔHm和熔化熵ΔSm包括到自由能中,即ΔG=(ΔH+ΔHm).T(ΔS+ΔSm)当

高分子物理学习题 第一章 答案

高分子物理学思考题及习题 第1章 思考题 1-1 重要概念:高分子化合物;高分子材料(聚合物);天然高分子材料;人工合成高分子材料;塑料;橡胶;纤维;功能高分子;结构单元;聚合度;线形分子链(线形高分子);支化分子链(支化高分子);交联网络(交联高分子)。 1-2 了解高分子材料的分类法和命名法。 1-3 与小分子化合物和小分子材料相比,高分子化合物与高分子材料的结构有哪些重要特点使之具有独特的性能?将这些特点牢记在心。 1-4 仔细阅读关于高分子材料的“多分散性和多尺度性”、“软物质性”及“标度性”的说明,理解其意义。 1-5 了解高分子物理学的核心内容和主要学习线索,体会“高分子物理学是研究高分子材料结构、分子运动与性能的关系的学说”。 1-6 阅读“高分子物理学发展简史及研究热点”一节,了解当前高分子物理学的热点问题和发展方向。 1-7 根据生活经验,列举一些适合用作塑料、橡胶或纤维的聚合物名称。 1-8 下列一些聚合物(我国的商品名称):丁苯橡胶,氯丁橡胶,硅橡胶,环氧树脂,脲醛树脂,聚氯乙烯,聚碳酸脂,涤纶,锦纶,腈纶。试分别写出各自结构单元的化学结构式及合成所需单体的化学结构式。 第一章习题可能与高分子化学学习内容重复,可不做。 第2章 思考题及习题 2-1重要概念:近程结构;远程结构;构型;构象;无规线团;内旋转;内旋转

势垒;分子链柔顺性(静态和动态);链段;均方末端距;均方旋转半径;自由连接链;自由旋转链;等效自由连接链;Kuhn等效链段;高斯链;θ条件/θ状态;Flory特征比(刚性因子)。 (1)近程结构:包括构造和构型。构造是指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等。构型是指由化学键所固定的链中原子或基团在空间的排列。 注意:近程结构相当于“链的细节”。构造着重于链上的原子的种类、数目比例、相互连接关系。构型涉及空间立体异构(顺反异构、旋光异构)。 (2)远程结构:包括分子的大小、构象和形态,链的柔顺性。 注意:因为高分子的长链形状,才产生了如此多的结构层次。 (3)无规线团:高斯链的空间形态。换言之,无规蜷曲的柔性链的空间形态。(4)内旋转:sigma键的电子云轴对称,因此形成sigma键的两个原子可以绕键对称轴旋转。 注意:无论高分子或小分子,只要是sigma键就可内旋转。小分子的三维尺寸差不多,内旋转意义不大;而高分子的长短与粗细相差悬殊,故内旋转能导致高分子链出现天文数字的空间形态。我们一般只关注“主链上单键的内旋转”,不太关心侧基上单键。 (5)内旋转势垒:顺式构象与反式构象的位能差。 注意:参考图2-5。相当于内旋转活化能,内旋转势能峰高度。是ΔE而不是Δε。 (6)柔顺性:大分子链通过主链上单键的内旋转可以改变构象和形态的性质。(7)链段:大分子链上由相邻几个单键组成的能够自由取向的最小单位。 注意:链段实际上不存在,是一个人为的划分。很多时候算出来的链段长度是个非整数(譬如聚乙烯,le=8.28倍单键投影长度)。但是链段有明确的物理意义,即链越柔顺,le越小。 (8)均方末端距:末端距平方的平均值。 注意:如何理解“平均值”?有两种“平均”方法,(1)可只对一个链进行时间平均;(2)也可对所有链(某一时刻)作平均。根据统计力学原理,二者的结果相同。

高分子物理习题集

第一章 高分子链的结构 1.解释名词、概念 等效自由连接链 均方末端距. 链段 均方旋转半径 构象 构型 2.已知两种聚合物都是PE ,如何鉴别哪一种是HDPE ,哪一种是LDPE ?举出三种方法并说 明其依据。 3.某聚α-烯烃的平均聚合度为500,均方末端距为625 nm2,求:(1)表征大分子链旋转受阻的刚性因子σ。(2)作为大分子独立运动的单元—链段长b 。(3)一个大分子含有的链段数Z 。(4)每个链段中结构单元的数目。 4.假定PP 的平均聚合度为2000,键长为 1.54?,键角为109.5o,θ溶剂中 2 5 20 101.1A ?=h ,求等效自由连接链的链段长b 。 5.写出聚异戊二烯德各种可能构型(不包含键接异构)。 6.什么叫做链的构型?全同立构聚丙烯能否通过化学键(C-C 单键)内旋转把〝全同〞变为〝间同〞,为什么? 7.天然橡胶和古塔玻胶在结构上有何不同? 画出示性结构式。 8. 欲使某自由连接链(单烯类)均方末端距增加10倍,试问其聚合度必须增加多少倍? 9.大分子链柔顺性最根本的原因是什么?表征高分子链柔顺性的物理参数有哪些?它们是如何定义的? ① 11. PE 、PS ②PP 、PAN 、PVC ③PP 、PIB (聚异丁烯) ④PE 与顺1,4聚丁二烯 ⑤聚己二酸乙二醇酯 聚丙烯(全同) 聚二甲基硅氧烷 10 假定PP 于30℃甲苯溶液中,测得无扰尺寸(h 02 /M )=8.35×10-4 nm, σ=(h 02 /h fr 2 )?=1.76,试求:(1)此聚丙烯的等效自由取向链的链段长。 (2)当聚合度为1000时的链段数。

高分子物理习题 1

高分子物理习题 第一章绪论 一概念 结晶:在空间进行有规则排列而成为结晶 非结晶区:在空间进行无规则排列而成为非结晶 高聚物:它是由成千上万个原子通过化学键连接而成的高分子化合物 多分散性:高聚物是相对分子质量不等的同系聚合物的混合物,该特性称为高聚物相对分子质量的多分散系。 单体:由能够形成结构单元的小分子所组成的化合物称为单体。杂链高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。 碳链高聚物:指高分子主链完全由碳原子组成的高聚物。 元素有机高聚物:指高分子主链没有碳原子,还含有氧.氮.硫. 磷等杂原子的高聚物。 加聚反应:通过单体的加成聚合形成高聚物的反应。 缩聚反应:具有两个或两个以上官能团的单体,相互反应生成高分子化合物,同时产生有简单分子(如H2O、HX、醇等)的化学反应(缩聚反应通常是官能团间的聚合反应)。 连锁聚合:单体经引发形成活性种,瞬间内与单体连锁聚合形成高聚物的反应。

逐步聚合:两单体分子之间很快反应,形成二聚体;二聚体与单体反应,形成三聚体;二聚体相互反应,形成四聚体。随后分子量缓慢增加,达到较高数值,形成高分子。 二高分子材料的结构与性能的关系 服从三角关系:分子链间吸引作用大的、链节空间对称性及结晶性高的适合做纤维和塑料;分子链间的吸引力小、柔顺性好的,一般适合做橡胶,它也可以得到结晶,但是要在拉伸条件下才能得到。结构不同具有的性质也不同。 三高聚物的基本特点:相对分子质量大,分子链长,同时相对分子质量具有多分散性。 四高聚物的分类及举例 1:碳链高分子:这类高聚物不易水解,易加工,易燃烧,易老化,耐热性较差。一般用作通用塑料:。 2:杂链高分子:主链带极性,易水解,醇解或酸解。优点:耐热性好,强度高。这类聚合物主要用作工程塑料 3:元素高分子:具有无机物的热稳定性,有机物的弹性和塑性。但强度较低 4:梯形聚合物:分子主链不是单链而是象“梯子”或“双股螺旋线”。可作为耐高温高聚物的增强填料: 5::无机高聚物:指高分子主链和侧基均无碳原子的高聚物。

高分子物理习题集--答案

高分子物理习题集-答案 第一章高聚物的结构 4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度? 答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。 构象:由于单键内旋转而产生的分子在空间的不同形态。构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。 不能。提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。 5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。 答:按照IUPAC有机命名法中的最小原则,CH 3 在2位上,而不是3位上,即异戊二烯应写成 CH2C 3CH CH2 1234 (一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。 CH2 n C 3 CH CH2 1,4-加成CH2 n C 3 CH CH2 1,2-加成 CH2 n C CH3 CH CH2 3,4-加成 (二)不同的键接异构体可能还存在下列6中有规立构体。 ①顺式1,4-加成

CH 2 CH 2 CH 2 CH 2 C CH 3 C H CH 3 C C H ②反式1,4-加成 2 CH 2CH 2 CH 2C CH 3 C H CH 3 C C H ③ 1,2-加成全同立构 CH 2 C C 3 C C H H H H CH CH 2CH CH 3 C C H CH 2CH CH 3 ④1,2-加成间同立构 C C 3 C C H H H H CH 3C C H CH 3 R R R R=CH CH 2 ⑤3, 4-加成全同立构 CH 2C CH 3C C C C H H H H C C H H CH 2C CH 3CH 2 C CH 3 H H ⑥3,4- 加成间同立构 C C C C H H H H C C H H R R R R= CH 2 H H C CH 3

高分子物理第一章习题

第一章 1. 1 高分子链的近程结构 1.1.1 结构单元的化学组成 例1-1以下化合物,哪些是天然高分子化合物,哪些是合成高分子化合物 (1)蛋白质,(2)PVC,(3)酚醛树脂,(4)淀粉,(5)纤维素,(6)石墨,(7)尼龙66, (8)PVAc,(9)丝,(10)PS,(11)维尼纶,(12)天然橡胶,(13)聚氯丁二烯,(14)纸浆,(15)环氧树脂解:天然(1)(4)(5)(6)(9)(12)(14),合成(2)(3)(7)(8)(10)(11)(13)(15) 1.1.2 构型 例1-2试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。 解:聚异戊二烯可能有6种有规立构体,它们是: 常见错误分析:本题常见的错误如下: (1)将1,2加成与3,4加成写反了。 按IUPAC有机命名法中的最小原则,聚异戊二烯应写成

而不是 即CH3在2位上,而不是在3位上。 (2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。”顺1,4或 反1,4结构中没有不对称碳原子,没有旋光异构体。甲基与双键成120°角,同在一个平面上。 例1-3 环氧丙烷经开环聚合后,可得到不同立构的聚合物(无规、全同、间同), 试写出它们的立构上的不同,并大致预计它们对聚合物性能各带来怎样的影响? 解:聚环氧丙烷的结构式如下: 存在一个不对称碳原子(有星号的),因而有以下全同、间同和无规立构体。 性能的影响是:全同或间同立构易结晶,熔点高,材料有一定强度;其中全同立构的结晶度、 熔点、强度会比间同立构略高一点。无规立构不结晶或结晶度低,强度差。 常见错误分析:“只存在间同立构,不存在全同立构。” 以上写法省略了H,根据上述结构式,似乎只存在间同不存在全同。这是一种误解, 实际上碳的四个价键为四面体结构,三个价键不会在一个平面上。而在平面上表示的只是一个示意,全同与间同的真正区别在于CH3是全在纸平面之上(或之下),或间隔地在纸平面之上和之下。 例1-4 试述下列烯类高聚物的构型特点及其名称。式中D表示链节结构是D构型,L是L构型。 1.-D-D-D-D-D-D-D- 2.-L-L-L-L-L-L-L-

高分子物理与化学习题答案

1word 版本可编辑.欢迎下载支持. 高分子物理与化学习题解答――参考答案 第一章 绪论 1. P16: 名词解释: 单体:能够形成聚合物中结构单元的小分子化合物 结构单元:构成高分子链并决定高分子性质的最小原子组合 重复单元:聚合物中组成和结构相同的最小单位,又称为链节。 聚合物:由结构单元通过共价键重复连接而成的大分子 聚合度:即高分子链中重复结构单元的重复次数,是衡量聚合物分子大小的指标。 3. P16写出下列单体的聚合反应式,以及单体/聚合物的名称 1). 2) 3) 4) 5) 6. P17: 写出下列混合物的数均分子量、重均分子量和分子量分布指数 (1)组分1:质量分数=0.5,分子量=1 x 104 (2)组分2:质量分数=0.4,分子量=1 x 105 (3)组分3:质量分数=0.1,分子量=1 x 106 解: 4 6 41085.11011054.0105.01 /1?=++== ==∑∑∑∑∑∑Mi Wi Wi Mi Wi Wi Ni NiMi M n 56541045.1101.0104.0105.0?=?+?+?==∑WiMi Mw 84.71085.11045.145 =??==Mn Mw D nCH 2CHF 2CHF n 氟乙烯聚氟乙烯 nCH 2C(CH 3)CH 2C(CH 3)2n 聚异丁烯 异丁烯nHO (CH 2)5H O(CH 2)5CO OH n 6-羟基己酸聚己内酯 n n CH 2CH 2CH 2O CH 2CH 2CH 2O 1,3-环丙烷 聚氧化丙撑 n n n H 2N(CH 2)6NH 2HOOC(CH 2)4COOH +2)6NHCO(CH 2)4CO 己二胺己二酸尼龙66

高分子物理习题参考答案

《高分子物理》标准化作业本 参考答案 沈阳化工学院材料科学与工程学院《高分子物理》课程组

第一章 高分子链的结构 一、 概念 1、构型:分子中由化学键所固定的原子在空间的几何排列。 2、由于单键的内旋转而产生的分子中原子在空间位置上的变化叫构象。 3、均方末端距:高分子链的两个末端的直线距离的平方的平均值。 4、链段:链段是由若干个键组成的一段链作为一个独立动动的单元,是高分子链中能够独立运动的最小单位。 5、全同立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。 6、无规立构:当取代基在主链平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接而成。 二、选择答案 1、高分子科学诺贝尔奖获得者中,( A )首先把“高分子”这个概念引进科学领域。 A 、H. Staudinger, B 、, , C 、P. J. Flory, D 、H. Shirakawa 2、下列聚合物中,( A )是聚异戊二烯(PI)。 A 、 C CH 2n CH CH 23 B 、 O C NH O C NH C 6H 4C 6H 4n C 、 CH Cl CH 2n D 、O C CH 2CH 2O O n O C 3、下列聚合物中,不属于碳链高分子的是( D )。 A 、聚甲基丙烯酸甲酯, B 、聚氯乙烯, C 、聚乙烯, D 、聚酰胺 4、下列四种聚合物中,不存在旋光异构和几何异构的为( B )。 A 、聚丙烯, B 、聚异丁烯, C 、聚丁二烯, D 、聚苯乙烯 5、下列说法,表述正确的是( A )。 A 、工程塑料ABS 树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。 B 、ABS 树脂中丁二烯组分耐化学腐蚀,可提高制品拉伸强度和硬度。 C 、ABS 树脂中苯乙烯组分呈橡胶弹性,可改善冲击强度。 D 、ABS 树脂中丙烯腈组分利于高温流动性,便于加工。 6、下列四种聚合物中,链柔顺性最好的是( C )。 A 、聚氯乙烯, B 、聚氯丁二烯, C 、顺式聚丁二烯, D 、反式聚丁二烯

高分子物理习题

高分子物理习题

第一章绪论 一、选择题 1.GPC对高聚物进行分级的依据是(B) A.高聚物分子量的大小B.高分子流体力学体积大小 C.高分子末端距大小D.高分子分子量分布宽度 2.下列哪些方法获得的是数均分子量(BCD) A.粘度法B.冰点下降C.沸点升高 D.渗透压E.超离心沉降F.光散射法 3.聚合物分子量越大,则熔体粘度(A) 对相同分子量聚合物而言,分子量分布越宽,则熔体粘度(B)A.增大B.降低C.相等D.不变 4.某一高聚物试样A的分子量约为3×104,试样B的分子量约为7×105,测定试样A的分子量应采用(A)(B)等方法。测出的分别是(C)(D)分子量。 测定试样B的分子量则宜采用(E)(F)等方法,测出的分别是(G)(各H)分子量。 A.膜渗透压B.粘度法降低C.数均D.粘均 E.光散射F.凝胶渗透色谱法G.重均H.各种平均5.分子量相同的线形聚乙烯和支化聚乙烯的混合试样,当采用的溶解度分级时不能将它们分开,这是由于(AB)而采用GPC法则能将它们分开,这是由于(CD)首先被淋洗出来的是(E) A.两者分子量相同B.溶解度相同C.它们的分子尺寸不一样D.流体力立体积不同E.线性聚乙烯 6.聚合物没有气态是因为(B)

A .聚合物不耐高温 B .聚合物分子间力很大 C .聚合物的结构具多分散性 D .聚合物的分子量具多分散性 7.下列哪些方法获得的是数均分子量(BCD ) A .粘度法 B .冰点下降 C .沸点升高 D .渗透压 E .超离心沉降 F .光散射法 8.不同用途和不同成型方法对聚合物分子量的大小有不同的要求。通常是(C ) A .合成纤维分子量最高,塑料最低 B .塑料分子量最高,合成纤维最低 C .合成橡胶分子量最高,合成纤维最低 9.下列那种方法可测定聚合物的数均分子量(B ) A .超速离心沉降; B .膜渗透压 C .黏度 D .光散射 二、问答与计算题 1. 某高聚物10,0000M η=,已知Mark-Houwink 方程中4110/d g -K =?I ,α=0.8 Huggins 方程中常数κ=0.33 (1)计算c =0.0030g/ml 时,溶液的相对粘度r η。 (2)如α=1,已知M η值,能否得到有关该高聚物分子量多分散性的信息,为什么? 2. 在25℃、θ溶液中测得浓度7.36× -3g/cm 3的PVC 溶液的渗透压力0.248g/cm 2,求该试样的分子量和A 2。(R=8.48×104g·cm/K·mol ) 3. 假定某一高聚物含分子量分别为10000、20000、30000三个级份,若由渗透压法和光散射法测出该样品分子量分别为20000及30000,计算该样品中三种级分的重量分数。 4. 1)根据高分子链构象统计理论,如何计算高分子的链段长度?实验上如何

相关文档
相关文档 最新文档