文档库 最新最全的文档下载
当前位置:文档库 › 城区双向HFC分配网中光纤传输衰减的测试

城区双向HFC分配网中光纤传输衰减的测试

城区双向HFC分配网中光纤传输衰减的测试
城区双向HFC分配网中光纤传输衰减的测试

收稿日期:2010-10-

25 作者简介:屈建(1967-)

,男,河南商丘人,淮北市广播电视传输中心助理工程师。第10卷 第1期淮北职业技术学院学报

Vol.10No.1

2011年2月JOURNAL OF HUAIBEI PROFESSIONAL AND TECHNICAL COLLEGE Feb.2011

城区双向HFC分配网中光纤传输衰减的测试

屈 建

(淮北市广播电视传输中心,安徽淮北 235000

)摘要:随着有线电视事业的飞速发展,淮北市现已建成光缆为干线传输介质、同轴电缆为分配网的光纤电缆混合网,即HFC。网络是比较经济可行、高质量的宽带接入网。关键词:光缆;光纤电缆混合网;光纤传输

中图分类号:TN915.62 文献标识码:A 文章编号:1671-8275(2011)01-0017-02 随着有线电视事业的飞速发展,

我市城区与1993年建设的300MHZ有线电视网络,经过2004年至2005年近1年的网络改造。现已建成以光缆为干线传输介质,同轴电缆为分配网的光纤电缆混合网(Hybird Fiber Coaxial)即HFC,同时双向环网功能。网络是比较经济可行、高质量的宽带接入网。为了确保HFC分配网的技术管理和维护质量,

首先要了解光纤线路传输衰减的产生原因和计算程序,

用常用的两种光纤测试设备对传输线路衰减进行测试。下面浅谈我市城区HFC分配网中光纤传输衰减的测试。

1 光纤线路传输衰减值的计算

在有线电视宽带接入网内HFC主干传输网中,或者在HFC分配传输网中,光信号在光纤传输线路上的传输损耗,是光纤的传输特性。以下对HFC分配网络设计值和实测值进行分析,确定光纤线路损耗计算程序。应根据光纤传输衰减特性,利用光纤传输损耗设计值的计算公式进行计算。如前端至每个光节点光路损耗的计算公式为:

L=aD-0.02n+0.5+0.5+1+(-2dBm)

(1

)式中:a为1310波长单模光纤损耗为0.35dBm/km;若采用1550nm波长式中a的单模光纤损耗取0.2dBm;D为光纤路径长度,单位Km;n为熔结头数,0.02为熔结点损耗0.02dBm;1为常规预留系统余量1dBm;-2dBm为光接收机输入功率为-2dBm(也可为0dBm或-1dBm)

。根据(1)式计算出来的每个HFC光节点的传输损耗功率,是光纤传输衰减测试的依据。HFC网络设计完成,然后按设计施工。当前端至每个光节点施工结束,必须对光纤传输损耗是否在设计允许范围内、光缆工程质量优劣、光发、光收设备优劣进行检测,验收测试前端至每个HFC光节点的各项技术指标,列表记录存档。在光缆各项传输技术指标中,光路损耗是全程验收测试中最重要的一项技术指标,为今后光纤线路维修提供了必要的数据。对光缆前端AM调制器而言,主要是依靠提高视频信噪比

SNR的记法来提高前端的C/N值。在光纤系统中,其CTB指标除了与频道数N密切相关外,还与其光发射机、光接收机有关。CSO值在光纤系统中显得尤为重要,因为CSO失真是属于二阶失真,是主要失真指标。所以光纤系统的CSO、CTB指标主要由光发射机决定,因而光发射机的选型显得特别重要。光接收机是决定系统内C/N比的关键,以光接收机输入功率-2dBm作典型值时,光接收机所接收到的光功率每减小1dBm,则链路C/N比基本上劣化1dBm,反之亦然。依上所述,CSO、CTB由光发射机决定,而C/N比由AM调制器决定,链路C/N由光发射机输入功率决定上。若测试每个HFC光节点光接收机的输入功率,便知道前端至每个HFC光节点光接收机输入端的全程光纤线路损耗功率。可采用全程光路损耗的计算公式求得。其计算公式为:

P损=P出-P收

(2

)式中:P损为前端至每个光节点光路传输损耗功率;P出

为至光接收机输入端的光发射机功率;P收为光接收机的输入功率,单位统一为mw。

对HFC分配网中光纤传输衰减,经工程计算设计再由仪器(功率计)检测,就可得出某一光节点传输衰减值。2 用光功率计测试HFC分配网

用来测量光设备和光纤传输网中光功率值的一种仪器,叫光功率计。

在HFC分配网中我们通常要测量的是光发射机输出光功率、

光分路器的出口光功率、光接收机的输入光功率

分)。被测光纤全程长度为6Km,每2Km有一个光节点,全程共有4个熔节点,代入公式(1)得:

L=aD+0.02n+0.5+0.5+1+(-2dBm)

=0.35*6+0.02*4+0.5+0.5+1+(-2)

=2.18(dBm)=1.65mw

式中1.65mw是市有线机房光发后经光6分路器后送给万兴达厂区招待所的光功率(P出)。接着在光接收机输入端用光功率计测量尾纤输出的光功率P收。其方法是把光接收机输入端连接器插头(FC/APC)接入光功率计传感器上,测得光功率为-1.15dBm,1.15dBm=0.767mw。代入公式:

P损=P出-P收=1.65mw-0.767mw=0.883mw。

式中P损为0.883mw是HFC光节点全程光路损耗值。再从光功率计在光接收机输出端测量的光功率看,测得实测值为-1.15dBm,这是因为设计时系统有1dBm预留,基本上还是符合设计指标,满足光接收机-2dBm接收功率。验收时应把HFC光节点的测量数据登记后存档。以上所述是HFC分配网的HFC光节点处测量全程光路损耗功率的办法,这种测量办法经常用于光缆的维护和检修之中。3 用光时域反射仪(OTDR)测试HFC分配网

在光缆工程施工结束时,或者HFC分配网验修时,如在HFC光节点光接收机输入端用光功率计测试输入光功率超出设计范围,接收光功率不够,光路损耗值增加,就用光学时域反射仪(OTDR)测试光线路损耗增加所在的部位。光时域反射仪(OTDR)的功能:能够正确地测出光缆长度、光纤损耗值、光纤熔接头损耗值、光纤故障点位置等。现在一般采用的光学时域反射仪,它的基本原理是一样的,即它的脉冲输出进入被测光纤传输时,光脉冲在光纤传输中所引起的散射光中有部分会沿着光脉冲传输光相反的方向返回始端;利用它的时基来直观反映反回光功率的曲线变化程度。若用TFS3031微型光学时域反射仪,其性能:分辨率高;损耗分辨率为0.001dB,距离分辨率为0.25米;有35dB的动态范围;机器精度高,有15米的损耗盲区,5米的时间盲区;显示测量范围距离是0.001km至240Km;损耗是0.01dB—22dB。若用PK/YOrK7500便携式光时域反射仪,其性能为分辨率高;有40dB的大动态范围;机器精度高,有20m的损耗盲区,5m的时间盲区,用OTDR检测的曲线,能真实细致反映光缆线路中情况。它采用触摸屏,自动测试单键设计以及窗口式软件和画中画功能,使用操作简单方便。它的测试连接如下图

信号光纤传输技术实验.

音频信号光纤传输技术实验 预习要求 通过预习应理解以下几个问题: 1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理; 2.LED 调制、驱动电路工作原理 3.LED 偏置电流和调制信号的幅度应如何选择、; 4.测量SPD 光电流的I-V 变换电路的工作原理。 实验目的 1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法; 2.了解音频信号光纤传输系统的结构及各主要部件的选配原则; 3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术; 4.学习音频信号光纤传输系统的调试技术。 实验原理 一.系统的组成 音频信号光纤传输系统的原理图如图8-1-1所示。它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带

宽度能够覆盖被传信号的频谱范围。对于音频信号,其频谱在20Hz ~20KHz 的范围内。光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。 二、光纤的结构及传光原理 衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。前者决定于光纤的损耗特性,后者决定于光纤的频率特性。目前光纤的损耗容易做到每公里零点几dB 水平。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。 光纤的频率特性主要决定于光纤的模式性质。光纤按其模式性质通常可以分成单模光纤和多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大。对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图 数,但纤芯折射率n 1略大于包层折射率n 2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层

实验十一-模拟信号光纤传输实验

光纤通信系统传输及性能测试实验 实验十一模拟信号光纤传输实验 一、实验目的 1、了解模拟信号光纤系统的通信原理 2、了解完整的模拟信号光纤通信系统的基本结构 二、实验内容 1、各种模拟信号LED模拟调制:三角波,正弦波,语音信号(外输入语音信号) 2、各种模拟信号LD模拟调制:三角波,正弦波,语音信号(外输入语音信号) 三、预备知识 1、列出你所知道的所有模拟信号的种类 四、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱1台 2、20MHz双踪模拟示波器1台 3、万用表1台 4、FC/PC-FC/PC单模光跳线1根 5、850nm光发端机和光收端机(可选)1套 6、ST/PC-ST/PC多模光跳线(可选)1根 7、音频线(可选)1根

8、外输入语音信号源(可选收音机,单放机,PC机等)1套 9、连接导线20根 五、实验原理 根据系统传输信号不同,光纤通信系统可分为模拟光纤通信系统和数字光纤通信系统。由于发光二极管和半导体激光器的输出光功率(对激光器来说,是指阈值电流以上线性部分)基本上与注入电流成正比,而且电流的变化转换为光频调制呈线性,所以可以直接调制。对于半导体激光器和发光二极管来说,具有简单、经济和容易实现等优点。进行发光二极管及半导体激光器调制时采用的就是直接调制。 连续的模拟信号电流叠加在直流偏置电流上,适当地选择直流偏置电流的大小,可以减小光信号的非线性失真。电路实现上,LED的模拟信号调制较为简单,利用其P-I的线性关系,可以直接利用电流放大电路进行调制,实验箱模拟信号调制电路如图11-3所示。 一般来说,半导体激光器很少用于模拟信号的直接调制,半导体激光器模拟调制要求光源线性度很高。而且要求提高光接收机的信噪比比较高。与发光二极管相比,半导体激光器的V-I线性区较小,直接进行模拟调制难度加大,采用图11-3调制电路,会产生非线性失真。 本实验通过完成各种不同模拟信号的LED光纤传输(如正弦波,三角波,外输入音乐信号),了解模拟信号的调制过程及调制系统组成。模拟信号光纤通信系统组成如图11-2所示。半导体激光器的模拟调制,直接利用图11-3所示电路进行调制,比较LED直接模拟调制与LD直接模拟调制的区别。 从调制信号的形式来看,光调制可分为模拟信号调制和数字信号调制。模拟信号调制直接用连续的模拟信号(如话音、模拟图像信号等)对光源进行调制。图11-1就是对发光二

光纤数字传输系统性能测试

1前言 本实验指导书为 《数字传输技术 (A)《光纤通信系统》 》 《光纤通信测量技术》 《光同步传输技术》课程的实验用书,其有关内容也可以配合《数字传输技术(A)《光纤通信系统》 》 《光纤通信测量技术》 《光同步传输技术》等课程教材使 用。 本实验指导书用于光纤数字传输系统性能测试和光纤传输网络的设备与网 络管理操作几方面的必做实验,主要是光纤数字线路系统传输性能测试、SDH 设备认识和 SDH 网络管理系统及操作。其中光纤数字线路系统传输性能测试是最基本的实验项目。 光纤数字线路系统包括光端机、光中继机和光纤线路等,其性能参数包括设 备和系统光接口参数和电接口传输性能,光接口参数主要是光设备光接口参数、光通道(光纤线路)传输特性,电接口传输性能主要包括误码性能、定时性能和可用性等,需要测试的项目较多,涉及多种测试仪表和测试方法。本指导书重点介绍光纤线路接续和接续损耗的监测、光纤衰减测试实验、光接口参数测试和光纤数字传输系统的传输性能测试实验。 选做实验的指导书另行编写。 目录 1实验一光纤接续和监测 2实验二光纤衰减测试 3实验三光接口参数测试 5实验四电接口传输性能测试 10实验五 SDH 设备认识 17实验六 SDH 网络管理系统及操作 19 3 实验一

光纤的接续和监测 一.试验目的 掌握光纤接续原理 掌握光纤接续损耗的测试原理 学习使用熔接机和了解光纤接续过程 二.试验原理 光纤接续的常用方法有热熔法和冷接法等,热熔法的主要步骤如下:连接光 纤端面的制备,端面的定位和对准,熔接。 光纤接续损耗 As 的定义为 As = ?10 lg 式中 pr pt (dB) pt 为发射光纤发出的光功率,W pr 为接收光纤接收的光功率,W 监测光纤接续损耗的方法有多种,如:光时域反射计(OTDR)监测和四功率法测 试等,目前都采用光时域反射计监测法,其测试系统原理土如图 1.1 所示。 OTDR 发射光纤 接收光纤 图 1.1 光纤接续损耗的监测 测试时 OTDR 发出测试光脉冲,并测得连接光纤的背向色散曲线如图 1.2 所示,根据所得曲线设置五个测试点(即采用五点法)即得到接续损耗值。 三.试验仪器和设备 A 1.TYPE35SE 光纤熔接机, 1 台 2.光时域反射计, 3.光纤, 四.测试步骤

视频传输通道指标测试方法

高速公路机电系统视频传输通道指标检测方法 1、所用仪器 川嘉CJ-MVA150型视频综合测试仪 图1 川嘉CJ-GV100型信号发生器 图2 2、仪器连接 图3 视频传输通道包含了外场光端机、光纤、局端光端机或光传输平台。一般

情况下视频图像的传输模式为“外场摄像机—管理所—分中心”,视频传输通道测试要选择最长的通路。 信号发生器连接在外场光端机的视频信号输入端,相当于摄像机提供输入信号;视频综合测试仪的输入端连接在局端光端机或光传输平台的视频信号输出端。 在分中心或者管理所连接视频综合测试仪时,要注意与选择的外场光端机对应通道的一致性,这需要施工安装人员的协助。断开摄像机与外场光端机的连接,在分中心必然失去一路监视图像;信号发生器与外场光端机连接,分中心可以看到信号发生器发送的模拟图像,将视频综合测试仪连接到这路图像的输出端子上,就保持了与外场光端机对应通道的一致性。 3、测试方法 视频传输通道测试项目包含了视频电平、同步脉冲幅度、回波、亮度非线性、色度/亮度增益差、色度/亮度时延差、微分增益、微分相位、幅频特性、视频信杂比十个测试指标。 川嘉CJ-MVA150型视频综合测试仪上视频电平对应的名称为条电平、同步脉冲幅度对应的名称为行同步电平、视频信杂比对应的名称为亮度加权信噪比、幅频特性对应的名称为频率响应;其余名称均一致。 3.1测试前准备 (1)通道的选定 起点的确定:根据施工图上视频传输通道图,确定测试的外场光端机数量与具体位置。一般道路监控系统和收费系统用点对点光端机,隧道内摄像机用节点光端机。节点光端机的选择要考虑传输链路,至少要包含传输链路最远端和最近端的光端机;即每条传输链路最远端的光端机对应的视频通道要测试,

实验十一模拟信号光纤传输实验

实验十一模拟信号光纤传输实验 一、实验目的 1、了解模拟信号光纤系统的通信原理 2、了解完整的模拟信号光纤通信系统的基本结构 二、实验内容 1、各种模拟信号LED模拟调制:三角波,正弦波,语音信号(外输入语音信号) 2、各种模拟信号LD模拟调制:三角波,正弦波,语音信号(外输入语音信号) 三、预备知识 1、列出你所知道的所有模拟信号的种类 四、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、20MHz双踪模拟示波器1台 3、万用表1台 4、FC/PC-FC/PC单模光跳线1根 5、850nm光发端机和光收端机(可选)1套 6、ST/PC-ST/PC多模光跳线(可选)1根 7、音频线(可选)1根 8、外输入语音信号源(可选收音机,单放机,PC机等)1套 9、连接导线 20根 五、实验原理 根据系统传输信号不同,光纤通信系统可分为模拟光纤通信系统和数字光纤通信系统。由于发光二极管和半导体激光器的输出光功率(对激光器来说,是指阈值电流以上线性部分)基本上与注入电流成正比,而且电流的变化转换为光频调制呈线性,所以可以直接调制。对于半导体激光器和发光二极管来说,具有简单、经济和容易实现等优点。进行发光二极管及半导体激光器调制时采用的就是直接调制。 连续的模拟信号电流叠加在直流偏置电流上,适当地选择直流偏置电流的大小,可以减小光信号的非线性失真。电路实现上,LED的模拟信号调制较为简单,利用其P-I的线性关系,可以直接利用电流放大电路进行调制,实验箱模拟信号调制电路如图11-3所示。 一般来说,半导体激光器很少用于模拟信号的直接调制,半导体激光器模拟调制要求光源线性度很高。而且要求提高光接收机的信噪比比较高。与发光二极管相比,半导体激光器的V-I线性区较小,直接进行模拟调制难度加大,采用图11-3调制电路,会产生非线性失真。 本实验通过完成各种不同模拟信号的LED光纤传输(如正弦波,三角波,外输入音乐信号),了解模拟信号的调制过程及调制系统组成。模拟信号光纤通信系统组成如图11-2所示。半导体激光器的模拟调制,直接利用图11-3所示电路进行调制,比较LED直接模拟调制与LD直接模拟调制的区别。 从调制信号的形式来看,光调制可分为模拟信号调制和数字信号调制。模拟信号调制直接用连续的模拟信号(如话音、模拟图像信号等)对光源进行调制。图11-1就是对发光二极在LD模拟信号调制实验中,采用预失真补偿电路对模拟信号波形进行失真补偿,观察补偿后的传输效果与补偿前的效果。

光纤通信系统测量中的眼图分析方法

实验四 光纤通信系统测量中的眼图分析方法测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验仪器 1、ZYE4301F 型光纤通信原理实验箱1台 2、20MHz 模拟双踪示波器1台 3、万用表1台 三、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测量,并且可以用示波器直观的显示出来。图1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种不同有 组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图2所示的眼图,是由3比特长8种组合码叠加而成,示波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图3所示的形状规则的眼图进行分析: 1、当眼开度 V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V V ?增加,无畸变眼图的眼皮厚度应该等于零。 图1眼图的测试系统

3、系统无畸变眼图交叉点发散角b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度- +-++-V V V V 应该等 于零。 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算: 定时抖动= %100??Tb T

实验一音频信号光纤传输技术实验

音频信号光纤传输技术实验 [目的要求] 1.熟悉半导体电光/光电器件的基本性能。 2.了解音频信号光纤传输的结构。 3.学习分析集成运放电路的基本方法。 4.了解音频信号在光纤通信的基本结构和原理 [仪器设备] 1.ZY120FCom13BG3型光纤通信原理实验箱。 2.20MHz双踪模拟示波器。 3.FC/PC-FC/PC 单模光跳线 4.数字万用表。 5.850nm光发端机和光收端机 6.连接导线 7.电话机 [实验原理] 一.半导体发光二极管结构、工作原理、特性及驱动、调制电路光纤通讯系统中,对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)、半导体激光二极管(LD),本实验采用LED作光源器件。 图 1 半导体发光二极管及工作原理 光纤传输系统中常用的半导体发光二极管是一个如图所示的N-P-P三层结构的半导体器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异结。在图(1)中,有源层与左侧的N层之间形成的是p-N 异质结,而与右侧P层之间形成的是p-P异质结,故这种结构又称N-p-P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

综合布线通道传输的性能指标

综合布线通道传输的性能指标 平衡电缆通道传输性能指标 按照国际布线标准ISO/IEC11801:1995(E),给出平衡电缆传输通道(Balanced cabling links)的参数。除非特别强调,这些参数适应于屏蔽和非屏蔽平衡电缆的传输通道。描述平衡电缆通道传输性能的电气特性参数有直流环路电阻、特性阻抗、衰减、近端串扰损耗、衰减与串扰之比、结构回波损耗、传输延迟等,与通道长度有关的参数,如衰减、直流环路电阻、传输延迟等;与电缆纽距有关的参数有特性阻抗、衰减、近端串扰损耗和结构回波等。不过,电缆一旦成形,这些参数只与电缆及相关连接硬件的安装工艺有关。 1)特性阻抗 特性阻抗是电缆及相关连接硬件组成的传输通道的主要特性。它根据信号传输的物理特性,形成对信号传输的阻碍作用,它用电阻与电抗一起来描述称特性阻抗。用欧姆(Ω)来度量。平衡电缆通道的特性阻抗变化由结构回波损耗来描述。为了确保应用系统通道的特性阻抗,就需要一个正确的设计、选择适当的电缆和相关连接硬件。 2)结构回波损耗(Structural Return Loss) 它是衡量通道一致性的。通道的特性阻抗随着信号频率的变化而变化。如果通道所用的线缆和相关连接硬件阻抗不匹配,就会造成信号反射。被反射到发送端的一部分能量会形成干扰。导致信号失真,这就降低综合布线的传输性能。在综合布线的任一接口测得平衡电缆回波损耗应符合或超过下表1的数据。 表1 电缆接口处最小回波损耗限值 3)衰减

信号在通道中传输时,会随着传输距离的增加而逐渐变小。衰减是信号沿传输通道的损失量度。由于导线存在阻抗,阻碍信号的传输。当信号的频率增高,由于趋肤效应使电阻增大,又由于感抗增加、容抗减小,而使信号的高频分量衰减加大。衰减与传输信号的频率有关,也与导线的传输长度有关。随着长度的增加,信号衰减也随之增加。综合布线平衡电缆通道传输的最大衰减不应超过下表2 的数据。 表2 链路传输的最大衰减限值 注: 1 要求将各点连接成曲线后,测试的曲线全部应在标准曲线的限值范围之内。 2 测量衰减时,如包括链路两端的设备电缆和工作区电缆在内,应扣除设备电缆和工作区电缆的衰减。 4)近端串扰(Near end cross talk,缩写NEXT) 当信号在一根平衡电缆中传输时,会在相邻线对中感应一部分信号,这种现象叫串扰。串扰分近端串扰和远端串扰(Far end cross talk,缩写FEXT)两种。近端串扰出现在发送端的串扰,远端串扰出现在接收端的串扰。远端串扰影响较小,目前主要测试近端串扰,近端串扰损耗与信号频率和通道长度有关,也与施工工艺有关。通道的近端串扰损耗应符合或超过下表3所给出的数据。 表3 线对间最小近端串音衰减限值 注: 1 所有其它音源的噪声应比全部应用频率的串音噪声低10dB。 2 在主干电缆中,最坏线对的近端串音衰减值,应以功率和来衡量。 3 桥接分岔或多组合电缆,以及连接到多重信息插座的电缆,任一对称电缆单元之间的近端串音衰减至少要比单一组合的4对电缆的近端串音衰减提高一个数

高频通道元件及收发信机的测试方法

高频通道元件 及收发信机的测试方法 湖南省电力公司试验研究院 继电保护所

高频通道元件及收发信机的测试方法 一、高频阻波器 1.试验接线 图中: R1为去谐电阻;阻值1.5~3K Ω R2为无感电阻;阻值100Ω P 为选频电平表 2.阻抗特性试验 按上图接线,振荡器输出阻抗选择“0”Ω,输出电平“0”dB。选频表输入阻抗选择“∞”。从84(或60、70)kHZ~500kHZ 测试若干个点,振荡器每改变一次频率,选频表就测试一次P1、P2值。然后按下式计算阻抗值。 阻抗计算公式: 2) 21(05.0)110 (R Z p p ×?=?要求:在84kHZ ~500kHZ 的范围内,阻抗值不小于570Ω(厂家出厂标准)。 补充知识: 1、如果是相相偶合的,那么一个通道需要两相线路用来载波,那么就要两相都装.如果是两通道合用三相(一般B 相公用),那么三相都要装。 2、如果是相地偶合,那么一个通道只需要一相线路用来载波,那么就只要一相安装. 3、有的地区为了频率分区,需要全阻塞,那么相关线路(甚至该线路没有高频保护)三相都要装,此时不需结合设备。 二、结合滤波器(常规试验做线路侧和电缆侧的) *工作衰耗的定义:

R ’ (a) (b) 工作衰耗为当负载阻抗R 与电源阻抗R S 相等并直接相连时,如图所示,负载 R 所获得的最大接收功率P max 与经过四端网络后负载R’上所获得功率P 2,取Pmax 与P 2之比常用对数的10倍称为工作衰耗,即: max 2 10lg W P b P = 对于四端口网络当看进去的输入阻抗与电源阻抗相等即匹配时,输入阻抗上获得的功率最大。 用电压表测量: 因为是测量工作衰耗,所以,结合滤波器的输入阻抗与电阻R1相等。因此结合滤波 器电缆侧输入端的功率为: 1 2112 14) 2( R U R U P M == 结合滤波器线路侧负载阻抗R2所得到的功率为: 22 2 U P R = 工作衰耗为:

实验1 模拟信号光调制和光接收

实验一模拟信号光调制和光接收 一实验目的 1、了解发送光端机的发光管特性和光检测器的原理 2、掌握如何在光纤信道中高性能传输模拟信号 3、掌握发送光端机中传输模拟信号驱动电路的设计 二实验仪器 1、ZH7002型光纤通信多功能综合实验系统一台 2、20MHz双踪示波器一台 3、低频信号源一台 4、光功率计一台 5、万用表一台 6、光纤跳线一根 三预备知识 1、光端机发光管特性; 2、信道的非线性; 3、光电转换特性; 4、弱信号检测; 四实验原理 1、模拟光纤传输系统的主要技术指标 模拟光纤传输系统有两个关键性的质量指标: (1)信噪比S/N (2)信道线性度(非线性失真度) 信噪比S/N与信道线性度分别表达噪声大小和线性好坏,这两个指标的数值依据传输的实际用途而定。一般地说高质量的电视传输(例如演播室图像传输)要求信噪比S/N达到56Db,差分增益△G=0.3dB(差分增益是用于表示在不同输入信号电平上所引起增益的差值,即通道的线性度)。对于数字载波传输系统(模拟信号传输),所需信噪比S/N和通道线性度一般比这要求低,可根据实际系统指标的分配决定。 2、模拟光纤传输系统的噪声来源 噪声问题是模拟光纤传输系统最重要的问题之一,系统的任何组成部分包括有源器件和无源器件都可产生噪声,并叠加在传输信号之上。在模拟传输系统中,主要有光发射机、传输光纤、光接收机和各类连接器所组成。在光接收机中光检测器又由光检二极管和前置放大器组成。 模拟光纤传输链路中的噪声主要来源于以下几个方面: (1)光发射机中激光器光强的涨落,即相对强度噪声。在模拟光纤系统中,激光器的直流偏置点是至于线性范围的中间,即在高于激光器阈值电流Ith的某一电流I 处。相对强度噪声随着激光器的偏置不同而变化,在阈值附近,其达到最大,随 着偏置增加,即激光器输出功率增加,其会下降。相对强度噪声和激光器的工作 频率亦有关系,一般在低频时较小,而在高频时相对强度噪声则明显增加。 (2)由光纤链路中光纤连接器(活接头)、固定连接点(死接头)、光纤耦合端面产生

光纤测试方案

光纤测试方案 一.布线系统测试概述 为确保综合布线系统性能,确认布线系统的元器件性能及安装质量,工程完工后需按综合布线系统测试说明进行有关的测试。 综合布线系统测试包括: ·>水平铜缆链路测试; ·>垂直干线铜缆链测试; >垂直干线光缆链测试; >·端对端信道联合测试 系统测试完毕后,即组织有关技术及管理人员对整个系统进行验收。 千兆比水平铜缆的测试说明: 千兆比水平铜缆系统采用专用测试仪器进行测试,测试指标包括: 1.极性、连续性、短路、断路测试及长度 2.信号全程衰减测试 3.信号近、远串音衰耗测试 4.结构回转衰耗SRL 5.特性阻抗 6.传输延时 本方案中,采用下列布线测试仪表进行测试: Microtest QmniScanner FLUKE 国际标准组织(ISO)及Lucent推荐下列布线测试仪表: 1、fluke (Fluke Corporation) 2、PenaScanner (Microtest Inc) 本方案中,我公司建意采用以下铜缆测试仪器:

Microtest Lucent KS23763L1 (连接性测试) 3、FLUKE (特性指标测试) STPl 六类100-150双绞线,250 MHz FTP;阻燃特性NFC32070 2.1标准 4、用网络测试仪,测试线路是否安装完好,将测线报告整理,归档。 二.系统测试所用工具 测试所用工具主要是: FLUCK DSP FLUCK 网络测试仪操作规程: 根据测量的种类是通道还是链路,选择相对的适配器; 测量前将仪器校准; 测量时,将主机和智能远端的旋钮打开; 输入测量时间、地点、测试姓名; 在AUTOTEST项开始测试,储存结果; 将测试结果转换成电子文档; 将主机和智能远端关机; 将仪器收好,检查是否有遗漏配件。 注意事项:插接时一定要将插头和插口对齐,将线路接通;注意轻拔轻 插,一定要将头弹起按下再拔出;注意仪器和线路远离电力线和强电场。 其他工具如下表: 仪器名称数量产地说明 接地摇表 1 进口 万用表 2 国产 水平尺 6 国产 FULKE 1 美国

高频通道元件的测试方法

高频通道元件及收发信机的测试方法 一、高频阻波器 1.试验接线 阻波器 图中: R1为去谐电阻;阻值1.5~3K Ω R2为无感电阻;阻值100Ω P 为选频电平表 2.阻抗特性试验 按上图接线,振荡器输出阻抗选择“0”Ω,输出电平“0”dB 。选频表输入阻抗选择“∞”。从84(或60、70)kHZ ~500kHZ 测试若干个点,振荡器每改变一次频率,选频表就测试一次P1、P2值。然后按下式计算阻抗值。 阻抗计算公式:2)21(05.0)110(R Z p p ?-=- 要求:在84kHZ ~500kHZ 的范围内,阻抗值不小于570Ω(厂家出厂标准)。 二、结合滤波器 1.电缆侧工作衰耗测试 试验接线: R1 C R2 振荡器

图中: R1 75Ω无感电阻,模拟高频电缆输出阻抗 R2 300Ω无感电阻,模拟线路输入阻抗。如果线路为单根导线,R2 取400Ω。双分裂导线取300Ω C 5000pf 电容,模拟结合电容器电容(以现场实际电容值为准) T 结合滤波器 在50kHZ ~500kHZ 之间,选取若干个点测试,振荡器每改变一次频率,选频表就测试一次P1、P2值。然后计算工作衰耗。测试时,振荡器输出阻抗选择“0” Ω,输出电平可以为“0”dB ,但是在测试中应始终维持不变。选频表输入阻抗选择无穷大。选频表所读数值为电压电平。 工作衰耗计算公式: 功率电平 1 2214l o g 10R R p p b g +-= (dBm ) * 关于上述公式的推导: 用电压表测量: 因为是测量工作衰耗,所以,结合滤波器的输入阻抗与电阻R1相等。因此结合滤波器电缆侧输入端的功率为: 1 2112 14) 2( R U R U P M == 结合滤波器线路侧负载阻抗R2所得到的功率为: 2 24 R U P = 工作衰耗为:

光纤通信实验报告

一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

保护光纤通道测试报告.

附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为G.703规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用G.703同向数字接口或2Mbps透明传输接口,SDH的2Mbps 通道再定时功能不用,此项工作由通信人员负责。 2、试验仪器

三、保护通道构成 备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 4.1专用光纤方式

(A)配有光纤接线盒的专用光纤通道连接图 (B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 4.1、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功 率。 测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立

高频通道元件的测试方法

高频 一、高频阻波器 1.试验接线 阻波器 图中: R1为去谐电阻;阻值1.5~3K Ω R2为无感电阻;阻值100Ω P 为选频电平表 2.阻抗特性试验 按上图接线,振荡器输出阻抗选择“0”Ω,输出电平“0”dB 。选频表输入阻抗选择无穷大。从84(或60、70)kHZ ~500kHZ 测试若干个点,振荡器每改变一次频率,选频表就测试一次P1、P2值。然后按下式计算阻抗值。 阻抗计算公式:2) 21(05.0)110 (R Z p p ?-=- 要求:在84kHZ ~500kHZ 的范围内,阻抗值不小于570Ω(厂家出厂标准)。 二、结合滤波器 1.电缆侧工作衰耗测试 试验接线: R1 C R2 振荡器

图中: R1 75Ω无感电阻,模拟高频电缆输出阻抗 R2 300Ω无感电阻,模拟线路输入阻抗。如果线路为单根导线,R2 取400Ω。双分裂导线取300Ω C 5000pf 电容,模拟结合电容器电容 T 结合滤波器 在50kHZ ~500kHZ 之间,选取若干个点测试,振荡器每改变一次频率,选频表就测试一次P1、P2值。然后计算工作衰耗。测试时,振荡器输出阻抗选择“0” Ω,输出电平可以为“0”dB ,选频表输入阻抗选择无穷大。选频表所读数值为电压电平。 工作衰耗计算公式: 功率电平 1 2 214l o g 10R R p p b g +-= (dBm ) 2.线路侧工作衰耗 试验接线: R2 T 振荡器 C 图中: R1 300Ω无感电阻 R2 75Ω无感电阻 C 5000pf 电容 T 结合滤波器 测试方法与电缆侧相同。 工作衰耗计算公式: 功率电平 1 2 214l o g 10R R p p b g +-= 3.工作频率下的特性阻抗试验 电缆侧特性阻抗试验接线

光纤通信实验报告

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A203 实验时间 :2016年 6月 21日 一、实验目的 1、 了解光端机的工作原理 2、 掌握数字光发送机的功率测量方法 3、 理解平均光功率的含义 二、实验原理 光端机的平均发送光功率是指在正常工作条件下光端机输出的平均光功率,即光源尾纤输出的平均光功率。平均发送光功率指标与实际的光纤线路有关,在长距离光纤数字通信系统中,要求有较大的平均发送功率;在短距离的光纤数字通信系统中,要求较小的平均发送光功率。设计人员应根据整个光纤通信系统的经济性、稳定性和可维护性全面考虑该指标,提出合适的数值要求,而不是越大越好。 平均发送光功率测试框图如图一所示。 图一 光发送端光功率测试框图

说明: 1)平均光功率与PCM信号的码型有关,NRZ码与50%占空比的RZ码相比,其平均光功率要大3dB。 2)光源的平均输出光功率与注入它的电流大小有关,测试应在正常工作的注入电流条件下进行。 实验平台中,可以选择系统自身产生的2M伪随机序列来测试平均光功率,系统中PN序列的长度只有24-1,即15位。 三、实验设备、仪器及材料 光功率计、HD-GX-Ⅲ型光纤通信实验箱、光纤跳线 四、实验步骤(按照实际操作过程) 1、用短接帽将跳线XP401的1、2两脚连接,这样选择传输的是系统内部产生的2M伪随机序列。如果将 2、3两脚连接,则传输的将是外部输入的2M数据。 2、选择光发模块甲。用短接帽将跳线XP500的1、2脚相连,开关KS501选择传输数字信号。 3、从发送模块甲的光源组件连接器S中取出保护塑料套,用光纤跳线分别插入发送端连接器S与光功率计的输入连接器插头,连接光发送端的光输出与光功率计。 4、测试系统建立后,给实验平台加电,按复位键后,从键盘输入PN,以控制系统产生2M信号。从光功率计上读出平均光功率值。 5、从键盘输入方波或CMI码,测试不同的数字信号驱动光源时,所产生的平均光功率。思考一下他们为什么有差别?

光纤通信系统的眼图测试实验

太原理工大学现代科技学院 光纤通信课程实验报告 专业班级 学号 姓名 指导教师

实验名称 光纤通信系统的眼图测试实验 同组人 专业班级 学号 姓名 成绩 实验三 光纤通信系统的眼图测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验内容 1、测量数字光纤通信系统传输各种数字信号的眼图 2、观察系统眼图,并通过眼图来分析系统的性能 三、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、20MHz 双踪模拟示波器 1台 3、万用表 1台 4、FC/PC-FC/PC 单模光跳线 1根 5、850nm 光发端机和光收端机(可选) 1套 6、ST/PC-ST/PC 多模光跳线(可选) 1根 四、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测 量,并且可以用示波器直观的显示出来。图20-1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用 数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 图1、眼图测试系统框图 ……………………………………装………………………………………订…………………………………………线………………………………………

伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种 不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图20-2所示的眼图,是由3比特长8种组合码叠加而成,示 波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图20-3所示的形状规则的眼图进行分析: 1、当眼开度V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、 信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V 增加,无畸变眼图的眼皮厚度应该等于零。 3、系统无畸变眼图交叉点发散角 b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲 失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算:定时抖动= …………………………………装……………………………………订………………………………………线……………………………………………

光纤通信实验报告

光纤通信实验报告课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。

二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平均光功率的测试。 1、半导体光源的P-I特性 I(mA) LD半导体激光器P-I曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P-I 的线性关系。 P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th尽可能小,没有扭折点,P-I曲线的斜率适当的半导体激光器:I th小,对应P值就小,这样的激光器工作

电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。 P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P ) 的关系,即P-I 特性可以清楚地看出消光比的物理概念,如下图所示。 由图可知,当输入信号为“0”时,光源的输出光功率为P 00,它将由直流偏置电流I b 来确定。无信号时光源输出的光功率对接收机来说是一种噪声,将降低光接收机的灵敏度。所以从接收机角度考虑,希望消光比越小越好。但是,应该指出,当I b 减小时,光源的输出功率将降低,光源的谱线宽度增加,同时,还会对光源的其它特性产生不良影响,因此,必须全面考虑I b 的影响,一般取I b = (0.7~0.9)I th (I th 为激光器的阈值电流)。在此范围内,能比较好地处理消光比与其它指标之间的矛盾。考虑各种因素的影响,一般要求发送机的消光比不超过-1dB 。在光源为LED 的条件下,一般不考虑消光比,因为它不加直流偏置电流 I b ,电信号直接加到LED 上,无输入信号时的输出功率为零。因此,只有以LD 作光源的 光发射机才要求测试消光比。 四、实验步骤 1、关闭系统电源,按如下说明进行连线: (1)用连接线将2号模块TH7(DoutD )连至25号光收发模块的TH2(数字输入),并把2号模块的拨码开关S4设置为“ON ”,使输入信号为全1电平。 (2)用光纤跳线连接25号光收发模块的光发输出端和光收接入端,并将光收发模块 Δ P EXT PIN 消光比对灵敏度的影响

数字信号光纤传输实验

数字信号光纤传输实验 一、实验目的 1、了解数字信号光纤传输系统的通信原理 2、掌握完整数字光纤通信系统的基本结构 二.实验原理 数字信号的光源驱动电路与模拟驱动电路原理有一定区别。半导体激光器是利用其在有源区中受激发射的器件,只有在工作电流超过阈值电流的情况下,才会输出激光(相干光), 为LD的阈值电流。因而是有阈值的器件。图3-1为LD的P-I特性曲线及调制波形,图中的I th 由图可见调制LD光源器件发光必须是直本实验利用光纤对各种数字信号进行传输,以了解和熟悉光纤传输数字信号系统的组成。用双踪示波器观察光发模块与光接收模块各点的波 和信号电流(即形,并进行比较。数字信号有脉冲信号、NRZ码,CMI码。流偏置电流I b )的共同作用。 调制电流I m 三、实验步骤 ⒈用FC-FC光纤跳线将1310nm光发端机(1310nmT)与1310nm光收端机(1310nmR)连接起来,组成1310nm光纤传输系统。 ⒉连接导线:数字信号源T504与光发模块T101连接,将数字信号源模块K511拨到上面。 ⒊将双刀三掷开关BM1、BM2和BM3分别拨到数字、1310nm和1310nm。 ⒋接上交流电源线,开交流开关,再开直流开关K01,K02,五个发光二极管全亮。 ⒌接通数字信号源模块(K50)、光发模块(K10)的直流电源。 ⒍用万用表监控R110两端电压(红表笔插T103,黑表笔插T104),调节半导体激光器驱动电流(W101),使之小于25mA。 ⒎调节电位器W121,使得TP121处波形幅度大于3.5V,用示波器观察TP101,TP102和TP121波形,观察数字信号光纤传输调制过程。 ⒏将数字信号源模块K511接2,3脚(接1,2脚为64K伪随机码,2,3脚为256K伪随机码),观察各点波形变化。 ⒐改变数字信号源模块拨码开关状态,观察各测试点波形变化。 ⒑依次关闭各直流电源、交流电源,拆除导线,拆除各光学器件,将实验箱还原。 四.实验结果截图:

相关文档
相关文档 最新文档