文档库 最新最全的文档下载
当前位置:文档库 › 2012年全国大学生数学建模一等奖B题太阳能小屋的设计

2012年全国大学生数学建模一等奖B题太阳能小屋的设计

2012年全国大学生数学建模一等奖B题太阳能小屋的设计
2012年全国大学生数学建模一等奖B题太阳能小屋的设计

承诺书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B

我们的参赛报名号为(如果赛区设置报名号的话):

所属学校(请填写完整的全名):

参赛队员(打印并签名) :1.

2.

3.

指导教师或指导教师组负责人(打印并签名):

日期: 2012 年 9 月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

太阳能小屋的设计

摘要

本文通过分析题中数据及相关条件,建立数学模型解决了太阳能小屋的各种设计问题。

针对问题一,首先利用excel表格,将题中所给山西气候及辐射强度进行排序,再建立非线性规划模型,利用visual C++编程计算可得在每个面上使用某种型号光伏电池时的获益最大,然后再建立太阳能光伏阵列数学模型,根据伏安曲线得出房屋各面的光伏阵列,再结合太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件等相关数据建立非线性方程模型,得到对各面的影响强度,最后给出了小屋光伏电池的铺设方案以及得到了小屋35年的发电总量为1999760kwh,经济效益为273.83%,投资的回收年限为12年零10个月。

针对问题二,首先利用太阳对地面的连续性、均匀性、极大性等相关性能,建立在独立光伏系统下的最佳倾角模型,得到屋顶光伏电池与水平面的最佳倾角是o1.

35,再结合问题一的结果,得到小屋光伏电池的铺设方案及小屋35年的发电总量为:2225216 kwh,经济效益为304.70%,投资的回收年限为11年零6个月。

针对问题三,本文首先分析题中相关要求,建立非线性规划模型,由visual C++编程得到小屋设计的长、宽、高等相关数据。再结合问题一中的相关模型,得到小屋的光伏阵列结构。最后利用问题二中光照强度等相关条件可计算出小屋35年的发电总量为1374539kwh,经济效益为343.14%,投资的回收年限为10年零3个月。

关键词:非线性规划模型光伏阵列模型最佳倾角模型

一、问题重述

在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。

附件1-7提供了相关信息。请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资的回收年限。

在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表。

在同一表面采用两种或两种以上类型的光伏电池组件时,同一型号的电池板可串联,而不同型号的电池板不可串联。在不同表面上,即使是相同型号的电池也不能进行串、并联连接。应注意分组连接方式及逆变器的选配。

问题1:请根据山西省大同市的气象数据,仅考虑贴附安装方式,选定光伏电池组件,对小屋(见附件2)的部分外表面进行铺设,并根据电池组件分组数量和容量,选配相应的逆变器的容量和数量。

问题2:电池板的朝向与倾角均会影响到光伏电池的工作效率,请选择架空方式安装光伏电池,重新考虑问题1。

问题3:根据附件7给出的小屋建筑要求,请为大同市重新设计一个小屋,要求画出小屋的外形图,并对所设计小屋的外表面优化铺设光伏电池,给出铺设及分组连接方式,选配逆变器,计算相应结果。

二、模型假设

1.假设每种相同型号的光伏电板完全一样

2.假设所选用的逆变器均在适宜温度下工作

3.假设房屋内部具有某个区域专门存放光伏发电系统相关组件

4.假设光强不能启动逆变器时,系统所用蓄能电池组发电量也记入光伏阵列的产电量

5.光伏电池组件启动发电时其表面所应接受到的最低辐射量限值,单晶硅和多晶硅电池启动发电的表面总辐射量≥80W/m2、薄膜电池表面总辐射量≥30W/m2

6.假设35年间每年的太阳辐射强度大致相同

7.假设同一逆变器不能连接于不同表面

8.假设35年内太阳能光伏阵列不会出现重大问题

9.假设未来35年太阳能光伏阵列的成本仅有最初的安装费,没有维修费。

三、符号说明

R表示小屋35年总利润

Q表示35年总发电量

1的电费

y表示kwh

M 表示小屋建造太阳能光伏阵列的总花费

S表示电池面积

G表示辐射强度

η表示组件的转换率

z

η表示逆变器的转换率

n

M表示逆变器的费用

n

M表示组件的费用

z

φ表示当地的纬度

β表示太阳电池的倾角

δ表示太阳的赤纬角

ω表示水平面上日落时角

s

ω表示倾斜面上日落时角

st

H表示水平面上直接辐射量

b

H表示水平面上散射辐射量

d

R表示倾斜面与水平面上直接辐射量之比

b

H表示大气层外水平面上太阳辐射量

四、模型建立与求解

4.1问题一

4.1.1问题分析

从整体上看,本问题要求使用规定的光伏电池及规定的逆变器进行组合,使得小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小的最优结果。对于这里的最优结果,可以分为两个目标来实现,第一个目标得到在每个面上使用某种光伏电池时获益最大,第二个目标得到各面的光伏阵列。最后在考虑发电量的各种影响因素,结合计算法则可得到小屋光伏电池的铺设方案以及35年的发电总量,经济效益,投资的回收年限。

从具体上分析,为得到每面的最佳光伏电池,首先可以将题中所给山西气候及辐射强度进行排序,将1—24号光伏电池,分别与1—18号逆变器1-1搭配,建立利润率最大的非线性规划模型,再利用visualC++编程即可得各面最好的光伏电池。在得到每面最好的光伏电池后,为得到每面的光伏阵列,首先分别在每一面利用面积使用最大化可得到每面最多可以安装最佳光伏电池数,再建立太阳能光伏阵列数学模型,利用matlab 做出图像,找出电压U,电流I的乘积最大的点(即拐点),然后由拐点电压确定光伏电池的串联数目,由拐点电流确定光伏电池的并联数目,再确定选用的逆变器,组成光伏阵列。最后再结合太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件等相关数据建立非线性规划模型,得到各因素的影响强度大小,这样即可计算出小屋光伏电池的铺设方案及小屋35年的发电总量,经济效益,投资回收年限。具体解答流程图示如下:

图1解答流程图

由题中所述:为了保证光伏组件正常工作,只允许相同型号的光伏组件进行串联。多个光伏组件串联后可以再进行并联,并联的光伏组件端电压相差不应超过10%。因此,当同一个面出现两种不同型号的光伏电池时,很难进行串并联,故在这面上就需要两个及以上的逆变器,由于逆变器价格很高,所以很不划算,因此,每一面尽量使用同种光伏电池,为了使每面尽量少的使用逆变器,因此在每面的同种光伏电池尽量使用偶数个,这样通过串并联即可实现只是用一个逆变器就控制小屋的一面光伏阵列的工作。

4.1.2数据处理

首先将题中所给山西大同气象数据,利用excel 表格,进行降序排列,得出每面总光照辐射强度大于302/m w ,302/m w 至802/m w ,大于802/m w ,80至2002/m w ,及2002/m w 以上的分组数据。如下表所示:

东面光强范围2/m w

≥30 30-80 80-200 ≥200 总计 578672.9 56273.43 118959.87 403439.61

南面光强范围2/m w ≥30 30-80 80-200 ≥200 总计

1043402 35700.90 137479.87 870221.64

西面光强范围2/m w ≥30 30-80 80-200 ≥200 总计

872801.6 77666.12 100791.46 694344.01

北面光强范围2/m w ≥30 30-80 80-200 ≥200 总计

243181.1 111180.34

86111.77 45888.94

4.1.3模型建立与求解 1.1非线性规划模型建立

经上面的数据分析及数据处理以后可知,北面光线强度几乎都在802

/m w 以下,因此只能选择C 型光伏电池,而C 型光伏电池的能量转换率偏低,并且面积相对较小,铺设北面时需要数量增多,这样也就会相应的增多逆变器数量,而逆变器价格都不低,最终会造成在北面上安装光伏电池不但没有利润可得,反而会增多其他的费用(例如安装费、运送费、维修费等),因此,经综合考虑北面不予安装光伏电池。

要研究如何安装使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,可将其转化成考虑如何安装使得到利润最大,即:

M y Q R -?=

其中R 表示总利润,Q 表示总发电量,y 表示kwh 1的电费,M 表示总花费。 对于第一年的利润:

z n n z

M M G S R --????=5.01000

1ηη

S 表示电池面积,G 表示辐射强度,z η表示组件的转换率,n η表示逆变器的转换率,n M 表示逆变器的费用,z M 表示组件的费用

先分析上述等式中的相关变量:

对于S ,对24种不同类型的电池进行编号,其对应24个不同的面积)24,,2,1( =i S i

对于辐射强度,经数据处理后得到在房屋不同面时各阶段的总辐射强度,而A 类电池只有在辐射量≥80W/m 2时才会启动,且当太阳光辐照强度低于200W/㎡时,A 类电池的转换效率<正常时转换效率的5%,可假设为5%,故对于不同的光照强度,转换率也不相同,故A 类电池的一年总辐射强度:

∑+?=)%5(32A A A G G G

其中2G 表示辐射强度在80W/m 2至200W/m 2之间的总辐射强度,3G 表示辐射强度≥200W/m 2的总辐射强度;B 类电池,同A ,在辐射量≥80W/m 2时才会启动,故此时的一年总光照强度:

∑=2B B G G ;

C 类电池,在辐射量≥30W/m 2时才会启动,故此时的一年总光照强度:

∑=3C C G G

其中1G 表示辐射强度≥30W/m 2的总辐射强度。

对于z η,24种电池有24个转换率)24,,2,1( =i i z η

对于n M ,18种逆变器有18种的价格)18,,2,1( =j M j n

对于组件的费用n n z j p M ?=,其中n p 表示组件的wp ,n j 表示组件的价格,而wp=峰瓦]1[即在标准测试条件下太阳能电池组件或方阵的额定最大输出功率,则此题为组件功率。

接下来考虑在房屋东面,将24种不同型号的电池分别与18种逆变器结合,假设一个电池只与一个逆变器连接,所得利润最大者即最适合在东面安装的电池类型,建立非线性规划模型:

i j j i

z n n z i i d M M G S R --????=5.01000

max ηη

S.T. ????

???=====+?=∑∑∑)

24,,15,14()13,,8,7()6,,2,1()%5(1232 i G G i G G i G G G C i B i A A i

对于小屋南面、西面、房顶,同理可得。

1.2非线性规划模型求解

根据上述第一个目标规划模型,经visualC++编程后可得到各面最佳光伏电池如下表:(具体代码见附录1)

2.1太阳能光伏阵列数学模型建立

查阅资料可知太阳能光伏发电系统结构图如下]2[:

图2太阳能光伏系统图

1、太阳能电池方阵

太阳能电池方阵一般由多块太阳能电池组件串、并联而成,每个支路通过防反充二极管、充电控制器并联向蓄电池充电。太阳能电池方阵分为若干个子阵列,每个阵列由一个电子开关控制。当蓄电池的充电电压达到设定的最电高压时,自动依次切断一个或数个子阵列,以限制蓄电池的充电电压继续增长确保蓄电池的寿命,并最大限度地利用和储存太阳能电池发出的电能。 2、蓄电池组

蓄电池组是太阳能电池方阵的储能装置,其作用是将方阵在有日照时发出的多余电

能储存起来,在晚间或阴雨天时供负载使用。蓄电池组由若干蓄电池串并联而成。一般容量要能在无太阳辐射的日子里,满足用户要求的供电时间和供电量。 3、控制器

控制器一般由各种电子元器件、仪表、继电器、丌关等组成。有些起着过充放、稳压等功能,一些复杂的系统,如并网发电的光伏电站,则要求有自动检测、控制、转换等多种功能。 4.逆变器

逆变器将太阳能电池方阵输出和蓄电池放出的直流电转换成负载所需的交流电。逆变器主电路由大功率晶体管构成,采用正弦脉宽调制工作制,抗干扰能力强,还有很强的过载及限流保护功能。

光伏阵列是一种基于光生福特效应而将太阳能直接转化成电能的器件,其结构可以看做是由一个半导体光电二极管为核心部件。在太阳能电视设计手册中]

3[H.S.Rauschenbach 认为可以通过在一系列的测试条件下观察实验光伏阵列的最终特性,总结出太阳能光伏阵列的伏安曲线,在英文中被普遍叫做I-Vcure 。模型建立如下]

6][5][4[:

]}1)[exp(1{21--=OC

SC V C V

C I I

这里C1 和C2 分别由如下公式确定:

]1))[exp(1(021---=C mp

sc mp V C V I I C

1

2)]1)[ln(1(---=SC

mp OC mp I I V V C

其中I 表示短路电流,SC I 表示电流,V 表示开路电压,OC V 表示电压,mp I 表示最佳工作电流,mp V 表示最佳工作电压。

2.2太阳能光伏阵列数学模型求解

根据上述太阳能光伏阵列数学模型,利用matlab 做出每面的图像,即可判断出拐点(即最佳工作时的电流和电压,也就是最大功率点)。具体图像如下:(具体代码见附录2)

图3东面太阳能电池I-V 特性图 图4南面太阳能电池I-V 特性图

图5西面太阳能电池I-V 特性图 图6顶面太阳能电池I-V 特性图

由上面4个图像可知,对于东面最佳工作电压、电流为:(190,14),对于南面最佳工作电压、电流为:(185,9),对于西面最佳工作电压、电流为:(138,21),对于顶面最佳工作电压、电流为:(330,25)。

由于上一个模型的结果为:

结合本模型,针对东面,选择B1型号的光伏电池(开路电压为37.01V,正常工作电流为6.99A ),因为上模型得到的东面最佳电压、电流为(190V ,14A )因此东面最多可以串联190/37.01=5个,并联14/6.99=2个,即东面的光伏电池安装情况是5串联后在2并联。此时电池总面积为:1.63515*10=16.35152m 刚好可以完全安放在东面。 其实3三面情况雷同,四面具体安放情况见最终解答下的图像。

3.1非线性方程模型建立]7[

分析题中所给出的山西省大同市的气象数据和各方向辐射强度,我们可知每小时在东南西北四个面的总辐射强度,而倾斜面的辐射强度未知,故可根据前三列的数据,计算求解出倾斜面上太阳辐射量。下述模型为如何根据前三列的数据求解出倾斜面上太阳辐射量。

从气象站得到的资料一般只有水平面上的太阳辐射总量H 、直射辐射量h H 及散射辐射量d H ,其关系为:

d b H H H +=

而倾斜面上的太阳辐射总量HT 由倾斜面上的直接辐射量bT H 、天空散射辐射量dT H 及地面反射辐射量rT H 三部分组成,即:

RT aT bT T H H H H ++=

3.1.1倾斜面上的太阳直接辐射量bT H

b b bT R H H ?=

式中: H R 表示一倾斜面上的直接辐射分量与水平面上直接分量的比值。

对于朝向赤道的倾斜角β,有:

δ

φωωδφδβφωωδβφsin sin 180

sin cos cos sin )sin(180

sin cos )cos(s s st st R b ∏+-∏+

-=

φ为当地的纬度,β为太阳电池的倾角,δ为太阳的赤纬角,s ω为水平面上日落时角,st ω为倾斜面上日落时角。

而式中)365/)248(*360sin(45.23n +=δ,其中n 为一年中从1月1日算起的天数。 水平日落时角)tan tan arccos(δφω-=s 倾斜面上的日落时分角]}tan )tan(arccos[,min{δβφωω--=s st

根据余弦函数性质,可以判断]}tan )tan(arccos[,min{δβφωω--=s st 在下面各情况的值:

(1) 当0<δ且φβ≤<0时, )tan tan arccos(

δφω-

(2) 当0<δ且90≤<βφ时, )tan tan arccos(

δφω->s ,因此s st ωω=; (3) 当0>δ且φβ≤<0时, )tan tan arccos(

δφω->s ,因此,]tan )tan(arccos[δβφω--=st ;

(4) 当δ<0且90≤<βφ时, )tan tan arccos(

δφω-

3.1.2 倾斜面上的太阳散射辐射量dT H

如果考虑天空散射的各向不同性,则倾斜面上的天空散射辐射分量dT H 可表达为:

)]

1)(cos 1(21

)([0

0H H H R H H H H H d b d d dT --++-=β

上式中:d H 表示水平面上散射辐射量,H 表示水平面上总辐射量,0H 大气层外水

平面上辐射量,并且)sin cos cos sin sin ()(24

200s s r

r I H SC ωδφδφω+∏=

其中20)(r r 为当天日地距离修订系数,sc I 为太阳常数,值为13532/m W

虽然太阳常数随季节、日地距离有所变化,但变化不超过约3.4% ,对太阳能利用

系统的设计不会构成较大的影响,所以忽略日地距离的变化,即1)(20≈r

r

3.1.3倾斜面上的地面反射辐射量T H

通常可以将地面的反射辐射看成是各向同性的,反射辐射量的表达式为:

)

cos 1(21

βρ-=H H rT

式中:ρ为地面反射率,一般情况下可取2.0=ρ

倾斜面上的太阳总辐射量T H 为:

)

cos 1(2)]1)(cos 1(21[00βρ

β-++-+++=d b b b b b b T H H H H R H H H R H H

利用上式,可以分别计算出每时倾斜面上太阳辐射总量)365,,2,1( =i H Ti 则可求得一年中每个小时的倾斜面上太阳辐射量。

3.2非线性方程模型求解

由上模型计算可得顶面光强范围如下表:(具体数值见附录3)

4.1.4 最终的解答

综合上述问题分析,数据处理以及三种数学模型求解结果可得小屋每面的光伏阵列铺设情况,电池组件分组阵列容量及选配逆变器规格列表,组件连接方式情况如下: (1)东面光伏阵列铺设情况:

图(7)东面B1电池安装示意图

由上表可的东面光伏阵列图形为:

图 8东面光伏阵列图

(2)南面光伏阵列铺设情况:

图(9)南面A3电池安装示意图

由上表可得南面光伏阵列图形为:

10南面光伏阵列图

(3)西面光伏阵列铺设情况:

图(11)西面B2电池安装示意图

图12西面光伏阵列图

(4)顶面光伏阵列铺设情况:

图(13)顶面B3电池安装示意图

名称光伏电池型号逆变器型号逆变器个数连接方式

数据B1(37.91,265) SN14(100,300) 1 9串联后4并联

图14顶面光伏阵列图

由上表可知,本文提供的光伏电池的安装方案可以在35年的时间内发电1999760kwh ,获得的经济效益为273.83%,投资回收年限为12年零10个月。

4.2问题二 4.2.1问题分析

经查阅资料]8[可知有些学者提出方阵倾角等于当地纬度,或当地纬度加上 15~5。实际上,即使纬度相同的两个地方,其太阳辐照量的大小及组成往往相差很大,如拉萨和重庆的纬度基本相同(仅差 18.0),而水平面上的太阳辐照量却要相差一倍以上,因此加上相同的度数作为方阵倾角是不妥当的。能流密度的大小总体上是从赤道向两级递减的,赤道附近的最大,北极圈和南极圈的能流密度最小。而随着地球的转动还伴随着四季的变换。因此,得到一种角度使得光伏电池尽可能的正对赤道,那样所受光照强度最大。考虑到冬天和夏天辐射量的差异尽可能小,而全年总辐射量尽可能大,二者的兼顾问题。因此,对于本文所要设计的一个非跟踪的固定方阵而言,在选择方阵倾角时考虑以下因素:

(1)连续性

一年中太阳辐射总量大体上是连续变化的,多数是单调升降,个别也有少量起伏,但一般不会大起大落。有人提出将水平面总辐射较大的连续六个月称为“夏半年”,较小的连续六个月称为“冬半年”。在北半球,夏半年多为4至9月,冬半年多为10月到次年3月。 (2)均匀性

选择倾角,最好使方阵表面上全年接收到的日平均辐射量比较均匀,以免夏天接收的辐射量过大,造成浪费。而冬天接收到的辐射量太小,造成蓄电池过放以致损坏,降低系统寿命,影响系统供电稳定性。 (3)极大性

选择倾角时,不但要使方阵表面上的辐射量最弱的月份获得最大的辐射量,同时还要兼顾全年平均R 辐射量不能太小。

可以建立计算光伏方阵发电系统中最佳倾角模型。

4.2.2独立光伏系统下的最佳倾角模型建立]9[

朝向赤道倾斜面上的太阳辐射量,通常采用Klein[5]的计算方法,倾斜面上所接受到的太阳辐射总量T H 由直接辐射量bt H 、天空散射辐射量dt H 曲及地面反射辐射量rt H 。组成,即:

rt dt bt T H H H H ++=(1)

rt H 与水平面上的直接辐射量)('S H H b b =之间有如下关系:

b b bt R H H ?=(2) 对于朝向赤道的倾斜面,b R 可以由下式确定:

15sin cos cos sin sin 12

15sin cos )cos(sin )sin(12

δψδψπ

δβψδβψπ

+-+-=b R (3)

式中,ψ是当地纬度,β是倾角,δ是太阳赤纬。水平面上的日落时角:

)tan tan (cos 1δψω?-=-s (4)

倾斜面上的日落时角:

]}tan )tan([cos ,min{1δβψωω?--=-s st (5)

Hay 模型认为倾斜面上天空散射辐射量是由太阳光的辐射量和其余天空穹顶均匀分布的散射辐射量两部分组成,可表达为:

)]1)(cos 1(21

[0

0H H H R H H H H H d b d d dt --++-=β(6)

式中b H 和d H 分别为水平面上直接和散射辐射量;b R 为倾斜面与水平面上直接辐射量之比,0H 为大气层外水平面上太阳辐射量;β为倾角。 大气层外的水平辐射量可由下式求出:

)sin sin 180

sin cos (cos )36536033..01(2400δφωπωδφπ?+???+=s s n S H (7)

其中,0S 为太阳常数。 地面发射辐射量的表达式为:

)cos 1(2

1

βρ-=

H H rt (8) 式中,ρ为地面反射率,一般情况下]6[2.0=ρ。倾斜面上太阳辐射总量的表达式为:

)cos 1(2

1

)]1)(cos 1(21[00βρβ-+--++-+?=H H H H R H H H H H H H d b d d d b T (9)

由上式直接求出对应的最大太阳辐射倾角的数学表达式有些困难,在冬半年,太阳赤纬为负值。如当地纬度为ψ,通常总有ψβψω<-)(,因此倾斜面上日落角s ω和水平

面日落时角st ω相等,这是可直接推导出最佳倾角的数学表达式。 将(8)式改写为:

)cos 1)(cos 1(2

1

)(2)(000ββρ-+?-++

=b d b b d b T H H H H R H H H H H (10) 式中T H 为水平面上的总辐射量。 本题中对于确定的地点(山西大同),其太阳辐射量及地面反射率等均为常数,将T

H 对β求导,并令0=β

d dH T

,得:

)180(tan tan 180tan tan )1()1()1(22arctan[200s s s s b b b b b b H

H H H H H H H H H H H ωπ

ωψωπωψρβ-+?-+-+-+= (11)

4.2.3模型求解

将相关数据及条件代入上模型中,利用matlab 软件计算可得:(具体代码见附录4) 当太阳辐最大射量为1709724.69930521时最佳倾角(与水平面的角度)为o 1.35。

4.2.4最终解答

根据模型解答,由于侧面电池板的铺设与问题一相同,故侧面电池板图像略,作出实物图形如下:

图(15)电池板调整图像

根据模型的求解可得,调整后的小屋电池板顶部采光均在2002/m w 以上(具体数据见附录5)

根据上第一问的光伏阵列构成情况,结合影响光伏电板发电的因素条件,可得下表:

由上表可知,本文提供的光伏电池的安装方案可以在35年的时间内发电2225216kwh ,获得的经济效益为304.70%,投资回收年限为11年零6个月。

4.3问题三

4.3.1问题分析

由第一问可知,屋顶的辐射强度在五个方向中最大,故设计小屋时可考虑使屋顶面积尽可能大,并且结合第二问的最佳倾角 1.35=β,即可对小屋有初步的屋顶设计。然后通过大同市四个面的辐射强度,北面的强度最弱,进一步可以假设在满足题中所给要求的同时尽量把窗户安置在北面,其次是东西面,南面,最后如果总开窗面积与房间地板面积的比值,仍小于0.2,可在屋顶也安置窗户。通过建立非线性规划模型,限定条件,求解得出小屋的相关数据。最后通过第一问所建立的求最大利润率的非线性规划模型,求解出各个面的安装方案。

4.3.2数据处理

通过分析题目附录中给出的限制条件,由于北面的辐射强度最弱,故可在满足北墙开窗面积与所在朝向墙面积的比值≤0.30的基础上,尽量使北墙的窗户较大,不妨假设为0.3。若此时满足总开窗面积与房间地板面积的比值≥0.2的条件,则为最终方案。若北墙的窗户不能满足此条件,则在东、西面墙上添加窗户。

4.3.3模型建立

根据上述数据分析及数据处理,可建立模型如下:

1)1.35(cos max -??= y x S.T. ???

?????

??

??

?????≥+++?≤?≤?≤?≤≤+?≤≤≤≤y

x S S S S S S S S S

S S S h y h x y x nc xc dc bc nz nc xz xc dz

dc

bz bc 2.05.035.035.03.04.5)1.35tan(

8.2315

其中,x 表示房屋的长,y 表示房屋的宽,h 表示房屋的室内使用空间最低净空高度,bc S 表示在北墙的窗户面积,bz S 表示北墙总面积,xc S 在西墙的窗户面积,xz S 表示西墙总面积,dc S 在东墙的窗户面积,dz S 表示东墙总面积,nc S 在南墙的窗户面积,nz S 表示南墙总面积。

4.3.4模型求解

利用visual c++编程求解上述非线性规划模型,得出小屋的长m x 95.14=宽m y 65.3=室内使用空间最低净空高度m h 8.2=北面墙窗户面积01.20=bc S 东西南面墙窗户面积均为0,即只有北面墙有窗户。(具体代码见附录6)具体图像如下:

图(16)小屋整体构造

图(17)小屋东面图 图(18)小屋西面图

图(19)小屋南面图

图(20)小屋北面图

将各面墙的宽、高代入问题一的模型中,利用visual c++求解得出在各面墙对应安装型号的电池,选用的逆变器,串并联情况,具体如下:

(1)东面光伏阵列构成情况:

名称光伏电池型号逆变器型号逆变器个数连接方式

数据C3(99,100) SN11(180,300) 1 3串联后2并联

表17东面光伏阵列构成情况表

由上表可的东面光伏阵列图形为:

图21东面光伏阵列图

名称光伏电池型号逆变器型号逆变器个数连接方式

数据C3(99,100) SN11(180,300) 1 3串联后2并联由上表可的西面光伏阵列图形为:

图22西面光伏阵列图

名称光伏电池型号逆变器型号逆变器个数连接方式

数据C3(99,100) SN13(180,300) 1 2串联后13并联

太阳能小屋设计参考方案.(优选)

2012数学建模B题太阳能小屋设计参考方案 问题1:请根据山西省大同市的气象数据,仅考虑贴附安装方式,选定光伏电池组件,对小屋(见附件2)的部分外表面进行铺设,并根据电池组件分组数量和容量,选配相应的逆变器的容量和数量。 1.地表斜面上辐射量的计算公式 1.1、倾斜太阳能集热器上接收到的太阳辐射能

2太阳能电池方阵设计 (1)太阳能电池组件串联数Ns 将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。 计算方法如下: Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2) 式中:UR为太阳能电池方阵输出最小电压; Uoc为太阳能电池组件的最佳工作电压; Uf为蓄电池浮充电压; UD为二极管压降,一般取0.7V; UC为其它因数引起的压降。 表1我国主要城市的辐射参数表:需补充的蓄电池容量Bcb为: Bcb=A×QL×NLAh(5)

④太阳能电池组件并联数Np的计算方法为: Np=(Bcb+Nw×QL)/(Qp×Nw)(6) 式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。 (3)太阳能电池方阵的功率计算 根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P: P=Po×Ns×NpW(7) 式中:Po为太阳能电池组件的额定功率。 问题2:电池板的朝向与倾角均会影响到光伏电池的工作效率,请选择架空方式安装光伏电池,重新考虑问题1。 太阳能电池板方阵安装角度怎样计算? 由于太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考

数学建模太阳能小屋的设计说明

太阳能小屋的设计 摘要:本文讨论了太阳能小屋设计中,光伏电池在小屋外表面的优化设计的问题。基于对问题的分析和给定的部分太辐射强度,不同种类光伏电池规格数据,以及满足最大发电量、最小投资量的要求,以对光伏电池性价比选择为中心,综合运用了SPSS、MATLAB、Excel等软件,使用了多种综合分析方法,研究了在太阳能小屋的设计中,不同种类的光伏电池之间,光伏电池与逆变器之间的最优串并联组合,以实现光伏电池在小屋外表面的优化铺设。 首先,影响光伏电池每峰瓦实际发电效率或发电量的主要因素太辐射总强度的分析,计算出倾斜平面的太辐射总强度,并利用选取每月选取一个代表日的方法,求得三类电池在阀值限制下的年辐射总量。(见表1) 其次,对三种类型光伏电池的最优选择,通过建立三种类型光伏电池的性价比选择模型(模型一),来寻找在既满足全年太阳能光伏发电总量尽可能大,又满足单位发电量的费用尽可能小的最优光伏电池组件,并求得各类电池一年的总发电量(见表2),光伏电池的最优性价比,该模型可适用于不同类型的物质的性价比优选,即可以保证最大出产,又可以顾及最小投入,从而达到最优选择。 再次,是对最优串并联组合的选取,我们得到了所需光伏电池的种类的块数后,通过分析结合之前所求得的性价比,利用线性规划模型得出最优串并联组合,和小屋外表面的铺设阵列,并最终求得投资的回收年限(见表4-6)。 最后,在解决问题二和问题三上,在光伏电池的最优选取和最优串并联组合的选取上,可以直接套用解决问题一是所用的模型,只需着重分析太辐射强度的变化及光伏电池的安装部位及方式(贴附或架空)。

关键词:太总辐射强度性价比选择线性规划 最优串并联组合每月代表日 一、问题的重述 在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。 附件1-7提供了相关信息。请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期的发

太阳能小屋的优化设计

2012高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛地竞赛规则 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上 咨询等)与队外地任何人(包括指导教师)研究、讨论与赛题有关地问题 我们知道,抄袭别人地成果是违反竞赛规则地,如果引用别人地成果或其他公开地资料(包括网上查到地资料),必须按照规定地参考文献地表述方式在正文引用处和参考文献 中明确列出? 我们郑重承诺,严格遵守竞赛规则,以保证竞赛地公正、公平性?如有违反竞赛规则地行为,我们将受到严肃处理? 我们授权全国大学生数学建模竞赛组委会,可将我们地论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等) 我们参赛选择地题号是(从 A/B/C/D中选择一项填写): B 我们地参赛报名号为(如果赛区设置报名号地话): 所属学校(请填写完整地全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):教练组 日期:2012年9月10日 赛区评阅编号(由赛区组委会评阅前进行编号)

2012高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号) 全国统一编号(由赛区组委会送交全国前编号) 全国评阅编号(由全国组委会评阅前进行编号)

太阳能小屋地优化设计 摘要 本文通过对题中所给数据和相关资料地分析,给出了光伏电池在小屋外表面地优化铺设方案 . 问题一:根据山西省大同市地气象数据,在仅考虑贴附安装方式地情况下,建立了多目标非线性规划模型 .根据该模型地结果,得出 35 年总发电量为: 1065202.28 度,单位发电量地花费为: 0.1566 元,总经济效益为:365751.12 元,成本回收年限为: 19 年. 问题二:在问题一地基础上,考虑了电池板地朝向与倾角对光伏电池地工作效率地影响,采用架空方式安装光伏电池,使之随着太阳位置地改变而均匀地、稳定地、连续地改变,建立了太阳辐射总强度地连续模型,并求其定积分,仍然是多目标非线性规划模型.最 终得出 35 年总发电量为: 1316013.03 度、单位发电量地花费为: 0.11 元,总经济效益为: 578835.8 元,比模型一多了 213084.7 元,成本回收年限为: 14 年. 问题三:根据大同地位置地坐标,以及太阳方位角和高度角地变化情况,小屋被设计为梯形,并画出了小屋地外形图,并给所设计小屋地外表面优化铺设光伏电池,给出铺设及分组连接方式,模型类似于模型一和二 .最终求得地 35 年总发电量为 1316013.03 度,单位发电量地花费为: 0.12元,总经济效益为:500883.975 元. 由本文求解结果可知,太阳能电池不仅是从能源还是环保上来说,都是一项很有发展前景地能源 .合理地利用这项资源,会给人们带来很好地经济效益. 关键字:多目标规划模型光伏电池太阳辐射 、问题重述 在太阳能小屋地设计中,研究光伏电池在小屋外表面地优化铺设是很重要地问题.本文 需通过参考附件提供地数据,对下列三个问题,分别给出小屋外表面光伏电池地铺设方案,使小屋地全年太阳能光伏发电总量尽可能地大,而单位发电量地费用尽可能地小,并计算出小屋光伏电池 35 年寿命期内地发电总量、经济效益及投资地回收年限. 在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表 .

太阳能小屋的设计数学建模

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等) 与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的 资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参 考文献中明确列出。 我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则 的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 010048 所属学校(请填写完整的全名):呼伦贝尔学院 参赛队员 (打印并签名) :1. 苑伟 2. 曦 3. 海平 指导教师或指导教师组负责人 (打印并签名): 日期: 2012 年 09月 09 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

B题太阳能小屋的设计 摘要 随着当今社会资源的匮乏,合理利用能源显得越来越重,其中太阳能做为一种新能源,给人们的生活和生产带来了很多帮助。在设计太阳能小屋时,需在建筑物表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V 交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋表面的优化铺设是很重要的问题。 问题1仅考虑贴附安装方式,那么光伏电池组件的夹角就可以忽略了小屋的表面安装的个数根据其面积比例就可以计算出来。问题2的架空方式考虑到电池板的朝向与倾角会影响光伏电池的工作效率,会使小屋产电量更大。问题3中设计的小屋应尽可能多的装电池组件,以使发电量总量尽可能大。 在问题一中,根据各种光伏电池组件的连接方式和平均发电功率的比较和逆变器的价格(写出数据的对比),选择电池组件*和逆变器*,每个面的面积选择了*个逆变器……利用表格数据作图得到…… 在问题二中,根据市的每个面得辐射总量知道太阳照射比较强的是*面,于是再根据其每个方向的辐射量的比较选择按*度角安装电池组件 在问题三中,根据问题一和问题二的比较,知道用架空方式设计小屋会更有效率,小屋的结构比例和安装方向选择了电池组件*和逆变器*…… 关键字:光伏电池、光伏电池组件、逆变器、辐射强度、年发电量。

太阳能小屋的设计

% 太阳能小屋的设计 摘 要 近年来,光伏技术受到人们的青睐,同时材料成本费在产品应用过程中起着举足轻重的作用。本文研究如何使光伏电池板在满足一定的约束条件下合理、有效的布置电池板,从而提高电池板材料的利用率。我们的主思路就是:如何布置光伏电池板使得总发电量在尽可能大的情况下,单位发电量效益尽可能小。根据太阳能电池外形以及房屋的外形,我们决定用填充算法与遗产算法相结合的矩形优化排样模型。 针对问题一,我们采用对太阳能电池板采用贴附式的方法进行铺设的模式。一方面,我们在确保每个电池组件都贴附着房屋的情况下来排布尽可能多的电池板,使排放区域的板材废料尽可能少,以提高板材的利用率。另一方面,我们考虑光伏电池组件的分组及逆变器选择的要求,运用遗传算法模型进行编程求解,最终求得35年的总发电量为367951kwh ,经过28年后成本收回,开始盈利,35年总的收益为24180元。 针对问题二,我们是采用架空式安装电池板的模式。基于问题一的模型基础上,由于铺的最多板的数目已确定,我们的目的:建立模型尽可能的使已铺的电池板吸收更多的太阳能。一方面,为了保证太阳能电池板能够最大的将照射在上面的太阳光吸收,我根据倾斜面上的所接受到的各种光照建立了最佳倾角模型,最终得出山西省大同市的最佳倾角为度。另一方面,为了消除由于太阳能电池板之间产生的阴影,我们建立了最优电池阵列间距模型。在最佳倾角模型的基础上,我们得出一年中冬至日的高度角最小, 通过数学几何知识,进一步得出电池阵列间距?2.27cos l ,最终得到总发电量为436470kwh ,经过17年收回成本,总收益为42600元。 针对问题三,我们对房屋进行重新设计。该题要求自己设计房屋,我们根据以下方面:(1)采光度最好,确定方向为坐北朝南。(2)太阳辐射强度最大,所以应使屋顶的面积尽可能大。经过问题二的计算,确定房顶的倾斜度为?3.37,根据以上条件,画出小屋的外观模型。根据问题二的排板模型,我们得到了太阳能电池板的排列方法,如图。求得总发电量为535710kwh ,经过15年成本收回,收益为53160元。 * 关键字:光伏电池 矩形优化排样模型 采光度 最佳倾角 '

2013数学建模B题国家一等奖Matlab程序

附录3:程序源文件 1.duqu_image.m文件 %数据读取预处理文件 %将附件中的图片读取到matlab矩阵中,并保存为image_1,image_2,image_3,image_4,image_5a,image_5b %所有附件均放在文件夹 D:\B 中%%%%%%%%%%%%%%%%%%%%%%%%图片名序列 %图像名称序号 b = [ones(1,10);0 1 2 3 4 5 6 7 8 9]'; image_num= [ strcat( num2str(0*b(:,1)),num2str(0*b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(2*b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(3*b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(4*b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(5*b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(6*b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(7*b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(8*b(:,1)),num2str(b(:,2)) ), strcat( num2str(0*b(:,1)),num2str(9*b(:,1)),num2str(b(:,2)) ), strcat( num2str(b(:,1)),num2str(0*b(:,1)),num2str(b(:,2)) ), strcat( num2str(b(:,1)),num2str(b(:,1)),num2str(b(:,2)) ), strcat( num2str(b(:,1)),num2str(2*b(:,1)),num2str(b(:,2)) ), strcat( num2str(b(:,1)),num2str(3*b(:,1)),num2str(b(:,2)) ), strcat( num2str(b(:,1)),num2str(4*b(:,1)),num2str(b(:,2)) ), strcat( num2str(b(:,1)),num2str(5*b(:,1)),num2str(b(:,2)) ), strcat( num2str(b(:,1)),num2str(6*b(:,1)),num2str(b(:,2)) ),

太阳能小屋的设计

太阳能小屋的设计 摘 要 近年来,光伏技术受到人们的青睐,同时材料成本费在产品应用过程中起着举足轻重的作用。本文研究如何使光伏电池板在满足一定的约束条件下合理、有效的布置电池板,从而提高电池板材料的利用率。我们的主思路就是:如何布置光伏电池板使得总发电量在尽可能大的情况下,单位发电量效益尽可能小。根据太阳能电池外形以及房屋的外形,我们决定用填充算法与遗产算法相结合的矩形优化排样模型。 针对问题一,我们采用对太阳能电池板采用贴附式的方法进行铺设的模式。一方面,我们在确保每个电池组件都贴附着房屋的情况下来排布尽可能多的电池板,使排放区域的板材废料尽可能少,以提高板材的利用率。另一方面,我们考虑光伏电池组件的分组及逆变器选择的要求,运用遗传算法模型进行编程求解,最终求得35年的总发电量为367951kwh ,经过28年后成本收回,开始盈利,35年总的收益为24180元。 针对问题二,我们是采用架空式安装电池板的模式。基于问题一的模型基础上,由于铺的最多板的数目已确定,我们的目的:建立模型尽可能的使已铺的电池板吸收更多的太阳能。一方面,为了保证太阳能电池板能够最大的将照射在上面的太阳光吸收,我根据倾斜面上的所接受到的各种光照建立了最佳倾角模型,最终得出山西省大同市的最佳倾角为37.7度。另一方面,为了消除由于太阳能电池板之间产生的阴影,我们建立了最优电池阵列间距模型。在最佳倾角模型的基础上,我们得出一年中冬至日的高度角 最小,通过数学几何知识,进一步得出电池阵列间距?2.27cos l ,最终得到总发电量为436470kwh ,经过17年收回成本,总收益为42600元。 针对问题三,我们对房屋进行重新设计。该题要求自己设计房屋,我们根据以下方面:(1)采光度最好,确定方向为坐北朝南。(2)太阳辐射强度最大,所以应使屋顶的面积尽可能大。经过问题二的计算,确定房顶的倾斜度为?3.37,根据以上条件,画出小屋的外观模型。根据问题二的排板模型,我们得到了太阳能电池板的排列方法,如图。求得总发电量为535710kwh ,经过15年成本收回,收益为53160元。 关键字:光伏电池 矩形优化排样模型 采光度 最佳倾角

2013数学建模国赛B题

3v2013高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件5给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】 (1)每一附件为同一页纸的碎片数据。 (2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。 (3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。 (4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面。该附 件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1)附件1、附件2的结果:将碎片序号按复原后顺序填入1×19的表格; (2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格; (3)附件5的结果:将碎片序号按复原后顺序填入两个11×19的表格; (4)不能确定复原位置的碎片,可不填入上述表格,单独列表。

太阳能小屋的设计最终优选稿

太阳能小屋的设计最终 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

2016重庆邮电大学大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子 邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关 的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其 他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式 在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违 反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆邮电大学 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期:2015年8月24日赛区评阅编号(由赛区组委会评阅前进行编号):

2016重庆邮电大学大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

摘要 本文用EXCEL软件对给出的山西大同典型气象年逐时参数进行全面性分析,进而计算出各个类型的光伏太阳能电池板的各项参数,采用模糊综合评价的模型在光电池的功率,转换效率,工作时长以及价格进行比较,选择出最佳的光电池 问题一:以各光伏太阳能电池板的额定功率为阀值,筛选出以额定功率工作的时长和低于额定功率状态时所做的功,通过模糊综合评价的模型对各电池板的性能进行综合性评价,再计算出各光电池一年内所获得利润大小,最后选出合适的电池板为B2和A3。根据小屋各个面的面积确定出电池板的数量,进而选出合适的逆变器。在35年使用寿命内,经济效益约为元,投资回收年限为28年。 问题二:在第一问的基础上,考虑到地理纬度,电池板倾斜角度等因素的影响,我们对太阳方位角、太阳高度角、太阳赤纬角、太阳时角进行了量化处理,通过月总辐射量在全年范围内求和,利用matlab工具采取计算机循环寻优 算法,计算出电池板的最佳倾角为44,沿用解决问题一的思路对逆变器进行 了选择。在35年使用寿命内,经济效益约为万元,投资回收年限为年问题三:基于之前的计算结果和结论,并对小屋的建筑要求进行了线性规划,用LINGO软件进行处理,找到了小屋面积,朝向及其屋顶倾角的最合理的设计方法,选出了相应的逆变器。在35年使用寿命内,经济效益约为万元,投资回收年限为年。 关键词:太阳能光伏电池板;模糊综合评价;投资回收年限;最佳倾角;计算机循环寻优;

数学建模B题 含代码

2013高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):华南师范大学增城学院 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日

赛区评阅编号(由赛区组委会评阅前进行编号):

2013高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

DVD在线租赁 摘要 问题(三):题目需要我们回答购买各种DVD的数量来使95%的会员能看到他DVD想看到的DVD,并且要怎么分配才能使满意度达到最大;每种建立以总的购买数最小、会员满意度最大为双目标的规划模型。通过确定在一个月内每张DVD的在每个会员中手中的使用率;然后通过c语言程序编程来确定每种DVD 的购买量;建立0-1规划模型;通过LINGO软件使满意度达到最大,来最终确定DVD的分配; 一级,二级目标,将多目标规划转化为单目标;同时将第j种DVD的购买量y的整数约束去掉,求解出最小购买数为张。将最小购买数作为约束条件,优j 化满意度后,得到最大满意度为95%;然后对此时DVD的购买量 y向上取整,得 j 到总购买数为186张。当购买数为186张时,会员满意度达到97%。 三、模型假设 1、租赁周期为一个月,每月租两次的会员可以在月中再租赁一次; 2、同一种DVD每人只能租赁一次; 3、DVD在租赁过程中无损坏; 4、会员每月至少交一次订单; 5、会员只有把前一次所借的DVD寄回,才可以继续下一次租赁 6、月底DVD全部收回,继续下个周期的租赁; 7、随着时间的推移,该网站的会员们的流动情况不会出现大变动。 四、符号说明

2013年数学建模B题一等奖优秀论文1

基于最小二乘法的碎纸片拼接复原数学模型 摘要 首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。 针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。经计算,得到附件1的拼接结果为: 08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。 附件2的拼接结果为: 03,06,02,07,15,18,11,00,05,01,09,13,10,08,12,14,17,16,04。 针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。 针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。经计算,附件5的拼接结果见表14和表15 该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。 关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼 一、问题重述 碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。对于一页印刷文档,针对不同的破碎方法,讨论下列三个问题: (1)将给定的一页印刷文字文件纵切,建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。 (2)对于碎纸机既纵切又横切的情形,设计碎纸片拼接复原模型和算法,并针对附

太阳能小屋设计

太阳能小屋的设计 摘要: 太阳能小屋是利用太阳能发电的新热点,具有节约占用地,减少由于输电的线路投资和损失等优点。在设计太阳能小屋时,铺设在建筑外表面的光伏电池发电量受诸多因素的影响。因此,研究光伏电池在小屋外表面的优化铺设是光伏电池产业发展的一个实际课题。 问题1:根据要求,小屋的全年太阳能光伏电池发电量尽可能大,单位发电量的费用尽可能小。我们通过35年经济效益最大化来实现上述两个量的选择,在实现最优化的过程中我们引进两个原则: (1)逆变器的选择方式通过单位功率价格来优先选择,计算结果显示,功率大的逆变器较为划算,同时当逆变器选定后,电池的增加不会增加电池的相应单 位发电量的成本,为了使逆变器对应的单位发电量费用降低,应尽可能让逆 变器满载。 (2)电池的选择通过单位面积效益来选定。通过电池的单位面积效益我们选出较优的电池。 同时考虑并联的光伏组件端电压相差不应超过10%的正常工作条件约束、选配的逆变器的容量应大于等于光伏电池组件分组安装的容量的安全约束,建立多目标规划模型。通过软件求解,最后只有南顶面要铺电池, 35年的发电量为.6度,经济效益为4422.3元,回报年限为33年 问题2:题目要求考虑电池板的朝向和倾角均会影响光伏电池的工作效率,选择架空的方式进行铺设,该问可视为第一问的模型优化。非水平面上晴天实际日射强度的计算公式,根据实际情况,公式化简为: n ' , (1cos) cos sin 2 A D Q s s αα αα+ =++ ┻,s 通过使坡面一年的辐射能量最大,利用C语言进行求解,求出当架空面的倾角为α=41时,坡顶面接收到的辐射总能量是最大。 关键词:光伏电池、逆变器、辐射强度、多目标规划、excel

2000年数学建模B题解答

2000年数学建模B题 解答 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

钢管订购和运输 摘要:本文建立了一个运输问题的最优化模型。 通过分析题图一,我们利用Floyd算法求出铁路网和公路网各点间最短路线,然后转化成最少运输,去掉了铁路和公路的性质,使运输网络变成一张供需运输价格表,然后建立了一个以总费用为目标函数的非线性规划模型,利用 Lingo 软件,求出问题一的最优解为1278632万元 通过对问题一中lingo运行结果的分析,我们得出S5钢厂钢管的销价的变化对购运计划和总费用影响最大,S1钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大。 问题三模型的建立原理和问题一的相同,利用Lingo 软件,求得最优解为1407149万元. 关键词:Floyd算法,非线性规划,0-1规划

一 问题重述 有7个生产厂,可以生产输送天然气主管道的钢管 721,,S S S 。要沿着 1521A A A →→→ 的主管道铺设, 如题图一所示。图中粗线表示铁路,单细线表示公路,双 细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。为方便计,1km 主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表: 123456780080010002000200020003000160155155160155150160 i i s i p 1单位钢管的铁路运价如下表: 里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 20 23 26 29 32 里程(km) 501~600 601~700 701~800 801~900 901~1000 运价(万元) 37 44 50 55 60 1000km 以上每增加1至100km 运价增加5万元。 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。 钢管可由铁路、公路运往铺设地点(不只是运 到点,而是管道全线)。 (1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对题图二按(1)的要求给出模型和结果。 二 问题分析 问题一,首先,所有钢管必须运到天然气主管道铺设路线上的节点 1521,,,A A A

2013年美国数学建模竞赛B题

水资源计划 摘要 本文是要设计一个有效的,可行的,低成本的用水计划,来满足某国2025年的用水需求。我们选择中国为研究对象,根据中国各地区历年的水资源总量并求出其均值,参考各地区历年用水总量来预测2025年的用水总量,将两者相减得出差值,并以此为依据将中国各地区分为缺水地区,不缺水地区,水资源丰富地区三类。经研究分析有两种可行性高的方案。第一种,由水资源丰富地区向缺水地区提供水。第二种,是由沿海缺水城市进行海水淡化并运往其他缺水城市。我们主要考虑经济因素对两种方案进行分析研究,最终得出结论由水资源丰富地区铺设管道向缺水地区提供水为最优方案。并以各省的省会作为核心城市,说明全省的需水和调水情况,并以省会城市或直辖市为顶点构成一个赋权图,即把问题转换为求水资源丰富地区到缺水地区的最短路问题,并用图论的知识来解决问题。在此基础上考虑到此方案会改变就业,生产力,水资源利用等因素,从而对经济,物理,环境产生不同程度的影响,并用层次分析加以研究,最终以报告的方式向政府反映。 关键词:回归分析最小生成树层次分析法

一、问题重述 淡水是世界大部分地区的发展限制。试建立一个数学模型,用来确定一个有效的、可行的和低成本的水资源战略,以满足2025年预计的用水需求,特别是,您的数学模型必须解决存储和输送,去盐碱化和环境保护等问题。如果可能的话,用你的模型探讨此战略在经济,物理和环境等方面的影响。试提供一个非技术性的文件,向政府相关部门介绍你的方法以及其可行性和成本,并说明为什么它是“最好的水战略”。 二、符号说明 ?y:预测得出的2025年用水量; S:输水的造价; 1 S:海水淡化的造价; 2 d1: 输水工程的单位造价; d2:海水淡化的单位造价; 2 R:拟合度. 三、模型假设 1.从2013年到2025年各外部因素对水资源总量无影响,例如:雪灾、地震、 洪水、战争等对环境的影响; 2.各地区海水淡化单位费用相同; 3.不同地区淡水转移的单位费用相同; 4.人们的消费水平及劳动力费用不会随意外事故发生明显改变。 四、问题分析 以下内容以中国为例,考虑到中国的实际国情,我国是世界上12个贫水国家之一,淡水资源还不到世界人均水量的1/4。全国600多个城市半数以上缺

2013年数学建模(B题)碎纸片的拼接复原模型

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛 参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网 站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、 网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果 或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在 正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如 有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开 展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内 容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2013 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

2013年全国大学生数学建模竞赛B题全国一等奖论文

碎纸片的拼接复原 【摘要】 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。本文主要解决碎纸机切割后的碎纸片拼接复原问题。 针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录2.1、2.2,纵切中文及英文结果表分别如下: 思想仍为贪心算法,整体思路为先对209张碎纸片进行聚类还原成11行,再对分好的每行进行横向排序,最后对排序好的各行进行纵向排序。本文在充分考虑汉字与拉丁字母结构特征差异以及每块碎纸片携带信息减少的基础上,创新地提出一种特征线模型来分别描述汉字及拉丁文字母的特征用于行聚类。对于行聚类后碎片的横向排序,本文综合了广义Jaccard系数、一阶差分法、二阶差分法、Spearman系数等来构建扩展的边界差异度模型,刻画碎片间的差异度。对于计算机横向排序存在些许错误的情况,本文给出了人工干预的位置节点和方式。对于横向排序后的各行,由于在一页纸上,文字的各行是均匀分布的,本文基于各行文字的特征线,在确定首行的位置后,估计出其他行的基准线位置,得到一页的基准线网格,并通过各行基准线在基准线网格上的适配实现纵向的排序。最终,本文成功的将附件3、4碎纸片分别拼接复原得到复原图片及结果表见附录1.3、1.4、2.3、2.4,同时本文给出了横向排序中人工干预的位置节点和方式。 针对第三问,附件5为双面文件既横切又纵切后的209张碎片(包含正反面),即包含418张图像。本文整体解决思路同第二问中对于拉丁文碎片的复原类似,并且由于正反两面的特征可以同时作为差异度判断条件,特征信息丰富,综合使用各种差异度函数后可以将各行全部正确排列,无需人工排错,同时正确排序时自然分出两面。以与问题二类似的方法,确定出每一面的第一行后,用基准线网格确定各行的位置并排序。然而由于附件5原件的第3、第4行及第9、第10行的两个切口正好切到了两行行间的空白,同时两面文字高度一致,所以计算机不可能分辨二者是否在同一面,此处必须由人工介入,通过上下文区分。最终,本文成功的将附件5所有碎片分别拼接复原得到复原图片及结果表见附录1.5、1.6、2.5、2.6。对于本问题,本文只在最后模块的上下文判断和横向排列的方法选择时进行了干预,自动化程度高。 本文发现在横向排序中,一、二阶差分法对于样本量大的情况适配成功率很高,而广义Jaccard系数及Spearman系数则对样本量小但特征显著的情况适配的成功率更高。 关键词:图像拼接复原贪心算法差异度相似系数文字基准线 1

太阳能小屋的设计

太阳能小屋设计 摘要:太阳能利用的重点是建筑,其应用方式包括利用太阳能为建筑物供热(生活热水、采暖)和供电,因此太阳能与建筑一体化是 未来太阳能技术的发展方向。我国已于2009 年正式启动了“太阳能屋顶计划”,但是目前已实施的太阳能屋顶上的电池板均为固定 安装,从而限制了太阳辐射量的吸收,减少了发电产量,降低了太阳能屋顶的工作效率。本文的智能太阳能屋顶模型将太阳跟踪技 术应用于屋顶太阳能电池板上,使其能够根据太阳方位的变化自动调节角度,大大提高了太阳辐射量的吸收。 关键词:太阳能屋顶;太阳跟踪技术;计算机辅助 太阳能作为迄今人类所认识的最清洁的可再生能源,其与建筑一体化将在建筑节能中起到十分重要的作用。屋顶在建筑外围结构中所接受的日照时间最长,接受的太阳辐射量也最大,具有利用太阳辐射的优越条件,同时,屋顶较开阔,便于大面积连续布置太阳能设备,因此,在城市中,建筑屋顶是太阳能利用的最佳场所。目前,许多国家已纷纷实施和推广“太阳能屋顶计划”,如有德国 十万屋顶计划、美国百万屋顶计划以及日本的新阳光计划等[2]。我国属于太阳能利用条件较好的地区,尤其是青藏高原地区太阳能资源最为丰富[3]。2009 年5 月21 日,财政部与住房和城乡建设部联合出台的《关于加快推进太阳能光伏建筑应用的实施意见》正式

启动了我国的“太阳能屋顶计划”。如今,我国已有许多太阳能光伏建筑一体化的应用实例,如国家体育馆太阳能发电系统、首都博物馆太阳能光伏系统、上海虹桥铁路客运站光伏发电项目等[4],但是,这些建筑上的太阳能电池板都是固定安装的,很大程度上限制了太阳辐射量的吸收,从而影响了发电产量。本文将太阳跟踪技术应用于太阳能屋顶上,使用计算机进行模拟实验,并与固定式太阳能电池板各时刻的太阳辐射吸收量进行了数据对比,从而量化的显示出了这种智能太阳能屋顶的优势。 1 太阳能光伏建筑一体化 1.1 太阳能屋顶 目前,我国及国际上的屋顶太阳能光热和光电利用技术已经比较成熟。利用太阳能光热系统可以给建筑提供生活热水或是冬季的暖源;利用太阳能光电系统可以提供建筑的日常用电[5]。太阳能光伏建筑一体化指的是太阳能发电,即每座建筑就是一座发电站,发出的电首先能够满足建筑自身的需求,多余的进入电网传输出去[6]。 所谓太阳能屋顶,是将太阳能电池板安装在建筑物的屋顶,引出端经过控制器、逆变器与公共电网相连接,由太阳能电池板、电网并联向用户供电,组成户用并网光伏系统。 1.2 太阳能光伏与建筑的结合方式 根据2009 年财政部、住房和城乡建设部光电建筑应用示范项目的申报和实施情况,将太阳能光伏与建筑的结合方式分为光伏

相关文档 最新文档