文档库 最新最全的文档下载
当前位置:文档库 › 聚合物的纯化

聚合物的纯化

聚合物的纯化
聚合物的纯化

聚合物的纯化

仔细纯化高聚物不仅对准确的分析表征很重要,而且还因为杂质对力学、电学和光学性能有很大的影响,同时,即使是微量的杂质也会引起或加速降解反应或交联反应。高聚物的纯化有两层含意:1.除去聚合物样品中的低分子,如残留单体、助剂和低聚物;2.聚合物的分级。而通常所说的纯化是指去除聚合物样品中的低分子物,常用的方法有:抽提法、离子交换树脂法和再沉淀法。

抽提法常用于分离低相对分子质量化合物,因为溶剂仅对低分子进行选择性溶解,对聚合物不溶解,故此法常用于分析聚合物中所含的其他成分。可采用冷萃取或热萃取,或用水蒸汽蒸馏,以除去杂质。对水溶性聚合物中分离低分子,可用渗析法或电渗析法。

离子交换树脂法适用于带电荷的聚电解质的纯化。

最常用的纯化的方法是再沉淀法,是先将聚合物溶于某种溶剂,然后向溶剂里添加沉淀剂,或将溶液液滴滴加到沉淀剂中,使聚合物再沉淀出来,而杂质留在溶剂中。通常是在搅拌下,将含聚合物含量≦5%的溶剂倾入到过量的沉淀剂(4~10倍量)中。重复沉淀,必要时用不同的溶剂—沉淀剂对,直到检查不出干扰杂志为止。沉淀物再在真空下干燥,除去挥发性物质。

因为许多聚合物对溶剂或沉淀剂有强烈的吸附或包藏作用,因此聚合物的干燥常很困难。为干燥好,应尽量将样品弄碎,可采用冷冻干燥技术,或进而将冷冻干燥和喷射沉淀综合并用。

常用的分级方法有沉淀分级和萃取分级两种,两种均是利用溶解

度随相对分子量增大而降低的原理。前者是向溶液中逐步加入沉淀剂,因而第一个级分相对分子量最高,最后的级分最小;后者是用不同混合比例的溶剂—沉淀对,依次萃取聚合物样品,首先从构成最不良溶剂的混合溶剂开始,因此与沉淀分级相反,第一级分相对分子量最小,最后级分最高。

对聚合物样品分析之前,为缩小分析范围,有时还要对样品进行初步检查,常用的方法有溶解性实验与燃烧性实验。

摘自:《聚合物结构分析》

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

微生物菌种的分离和纯化方法

从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。在分子生物学的研究及应用中,不仅需要通过分离纯化技术从混杂的天然微生物群中分离出特定的微生物,而且还必须随时注意保持微生物纯培养物的“纯洁”,防止其他微生物的混入。 1、用固体培养基分离和纯化 单个微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体,称为菌落。当固体培养基表面众多菌落连成一片时,便成为菌苔。不同微生物在特定培养基上生长形成的菌落或菌苔一般都具有稳定的特征,可以成为对该微生物进行分类、鉴定的重要依据。大多数细菌、酵母菌、以及许多真菌和单细胞藻类能在固体培养基上形成孤立的菌落,采用适宜的平板分离法很容易得到纯培养。所谓平板,即培养平板的简称,它是指固体培养基倒入无菌平皿,冷却凝固后,盛固体培养基的平皿。这方法包括将单个微生物分离和固定在固体培养基表面或里面。固体培养基用琼脂或其它凝胶物质固化的培养基,每个孤立的活微生物体生长、繁殖形成菌落,形成的菌落便于移植。最常用的分离、培养微生物的固体培养基是琼脂固体培养基平板。这种由Kock建立的采用平板分离微生物纯培养的技术简便易行,100多年来一直是各种菌种分离的最常用手段。1.1 稀释倒平板法 首先把微生物悬液作一系列的稀释(如1:10、1:100、1:1000、1:10000),然后分别取不同稀释液少许,与已熔化并冷却至50℃左右的琼脂培养基混合,摇匀后,倾入灭过菌的培养皿中,待琼脂凝固后,制成可能含菌的琼脂平板,保温培养一定时间即可出现菌落。如果稀释得当,在平板表面或琼脂培养基中就可出现分散的单个菌落,这个菌落可能就是由一个细菌细胞繁殖形成的。随后挑取该单个菌落,或重复以上操作数次,便可得到纯培养。 1.2 涂布平板法 因为将微生物悬液先加到较烫的培养基中再倒平板易造成某些热敏感菌的死亡,且采用稀释倒平板法也会使一些严格好氧菌因被固定在琼脂中间缺乏氧气而影响其生长,因此在微生物学研究中常用的纯种分离方法是涂布平板法。其做法是先将已熔化的培养基倒入无菌平皿,

金属配位聚合物的研究现状_武文

金属配位聚合物的研究现状 武 文 (安徽教育出版社,安徽 合肥 230063) [摘 要]叙述了国际、国内金属配位聚合物的研究现状及应用前景。[关键词]金属配合物;聚合物;研究现状 [中图分类号]065 [文献标识码]A [文章编号]1001-5116(2007)03-0090-03 1 引言 金属配位聚合物以其复杂多变的空间结构和电子结构以及由此产生的电、磁等物理化学性质、功能及多方面的应用前景引起了各国科学家的极大重视。因此,促进了物理、化学和材料科学三大学科之间的交叉和渗透,成为各国科学家研究的热点。 目前国外许多著名学得如法国的Lehn ,美国的Yaghi ,Zubieta 、德国的Muller 、意大利的Ciani 、澳洲的Robson 、日本的Fujita 和韩国的K im 等研究组开展了卓有成效的研究[1-5]。2 金属配位聚合物的研究 2001年,美国的Yaghi 教授报道的以苯环的1, 3和5位作为三角形的第二构筑板块,即以4,4’, 4”2笨21,3,52三2苯三甲酸(B TB )得到一个层状的开 放式结构Cu 3(B TB )2(H 2O )3?(DM F )9(H 2O )2就是一个非常典型的例子[5]。这个晶体结构是由一对完全一样的骨架构成的,每个B TB 基团连接 Cu (Ⅱ)离子形成“螺旋桨式”簇的图案。每个B TB 基团连接三个这样的簇,而每个簇连接四个B TB 基团(Fig 11A 2C ),这些三角形基团(表现在羧酸的苯环 中心上)在3168!距离(与强的π2 π堆积作用相一致)内取代,在0186!距离内允许交汇成两个亚单元(Fig 11D ) 。 Fig 11 Single 2crystal st ruct ure of Cu 3(B TB )2(H 2O )3(DM F )9(H 2O )2composed of (A )square paddle -wheel and t riangular B TB SBU s ,which assemble into (B and C )a pair of augmented Pt 3O 4net s t hat are held toget her by (D )numerous p -p and C 2Hzzzp interactions to yield (E )a pair of interwoven t hree 2dimension 2al porous f rameworks 1(F )Two MOF 214f rameworks interwoven about a p -minimal surface wit hout inter 2secting t he surface 1 [收稿日期]2007-01-10 [作者简介]武文,理学硕士,安徽教育出版社副编审。 在两个苯环相到占有紧密连接在一起的B TB 基团间有六个C 2H 的π堆积作用(3169!)。在这个化合物中,两个不连续的网络在(1/2,1/2,1/2)替代另一个,也独立于双曲线表面。尽管在双曲线表面上的两个网络是分离的,但一个网络的环由于相到贯穿而有效连接另外一个(Fig.1.E ),交叉作用有效地加强了体积庞大的B TB 基团,独立的维持刚性不是很强的开放式骨架结构。该物质的一对骨架的交织贯穿占据含有很大空腔的晶体的可利用空间,球的每个空腔的直径为1614!。又如2003年,Yaghi 等人在Science 杂志上发表的“Hydrogen Storage in 92007年5月第25卷第3期 安徽教育学院学报Journal of Anhui Institute of Education May.2007 Vol.25No.3

聚合物流变学复习题参考答案

1聚合物流变学复习题参考答案 一、名词解释(任选5小题,每小题2分,共10分): 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象. 2.端末效应:流体在管子进口端一定区域内剪切流动与收敛流动会产生较大压力降,消耗于粘性液体流动的摩擦以及大分子流动过程的高弹形变,在聚合物流出管子时,高弹形变恢复引起液流膨胀,管子进口端的压力降和出口端的液流膨胀都是与聚合物液体弹性行为有密切联系的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。

4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。 8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。

微生物菌种的分离和纯化方法

在从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。 不仅需要通过分离纯化技术从混杂的天然微生物群中分离出特分子生物学的研究及应用中,防止其他微生物的混入。定的微生物,而且还必须随时注意保持微生物纯培养物的“纯洁”, 、用固体培养基分离和纯化1 有繁殖到一定程度可以形成肉眼可见的、单个微生物在适宜的固体培养基表面或内部生长、便成称为菌落。一定形态结构的子细胞生长群体,当固体培养基表面众多菌落连成一片时,可以成为菌苔。不同微生物在特定培养基上生长形成的菌落或菌苔一般都具有稳定的特征,以及许多真菌和单细胞藻鉴定的重要依据。大多数细菌、酵母菌、为对该微生物进行分类、所谓平板,类能在固体培养基上形成孤立的菌落,采用适宜的平板分离法很容易得到纯培养。即培养平板的简称,它是指固体培养基倒入无菌平皿,冷却凝固后,盛固体培养基的平皿。固体培养基用琼脂或其它凝这方法包括将单个微生物分离和固定在固体培养基表面或里面。胶物质固化的培养基,每个孤立的活微生物体生长、繁殖形成菌落,形成的菌落便于移植。建立的采用Kock最常用的分离、培养微生物的固体培养基是琼脂固体培养基平板。这种由多年来一直是各种菌种分离的最常用手段。平板分离微生物纯培养的技术简便易行,100 稀释倒平板法1.1 ),然后分别取不、1:100001:1000首先把微生物悬液作一系列的稀释(如1:10、1:100、50℃左右的琼脂培养基混合,摇匀后,倾入灭过菌的培同稀释液少许,与已熔化并冷却至如果养皿中,待琼脂凝固后,制成可能含菌的琼脂平板,保温培养一定时间即可出现菌落。这个菌落可能就是由一个在平板表面或琼脂培养基中就可出现分散的单个菌落,稀释得当,细菌细胞繁殖形成的。随后挑取该单个菌落,或重复以上操作数次,便可得到纯培养。涂布平板法1.2 且采用稀释因为将微生物悬液先加到较烫的培养基中再倒平板易造成某些热敏感菌的死亡,因此在微生物倒平板法也会使一些严格好氧菌因被固定在琼脂中间缺乏氧气而影响其生长,学研究中常用的纯种分离方法是涂布平板法。其做法是先将已熔化的培养基倒入无菌平皿,再用无菌玻璃涂棒将将一定量的微生物悬液滴加在平板表面,制成无菌平板,冷却凝固后,)。菌液均匀分散至整个平板表面,经培养后挑取单个菌落(图1供参 考. 涂布平板法1 图平板划线法1.3 最简单的分离微生物的方法是平板划线法,即用接种环以无菌操作沾取少许待分离的材料,),微

题目配位聚合物的应用研究

题目:配位聚合物的应用研究 研究组姓名联系方式 选题意义 配位聚合物(coordination polymers)是有机配体与金属离子通过自组装过程形成的具有周期性网络结构的晶体材料。它结合了复合高分子和配位化合物两者的特点,是一类具有特殊性质的杂化材料。作为新型功能性分子材料,配位聚合物的设计与合成,结构及其性能的研究越来越受到各个领域科学家的重视,形成了跨越多个学科的热点研究领域。 报告内容 具有三维空旷网络结构的金属有机骨架材料(metal-organic framework,MOFs)是一种稳定的配位聚合物材料。MOFs材料在溶剂分子脱除后能保持骨架结构稳定,具有超大的比表面积和孔体积。稳定性的提高大大拓展了MOFs 材料的应用领域,成为MOFs材料发挥其特殊性质的基础。MOFs材料可以用于类分子筛载体、气体存储和分离、非线性光学、分子磁体、手性拆分、发光材料、光电转化、催化等众多领域。其中MOFs在多相不对称催化和光催化领域的应用由于其重要性逐渐受到科学家的重视。 使用具有手性催化活性的有机分子作为配体,可以得到具有手性催化活性的MOFs材料。这是一种特殊的多相化方式,催化剂负载量大,活性中心均匀分布,开放的孔道有利于底物与活性中心接近。在手性催化中具有重要应用的卟啉、席夫碱、联萘配体都已成功合成了MOFs材料,而且材料具有较好的手性选择性。以光学纯的手性酒石酸衍生物为配体,合成具有手性孔道的MOFs材料,不仅可以成功地拆分外消旋的配位化合物,而且还成功实现了对酯交换反应的不对称催化作用。 前景展望 由于作为配位聚合物组成部分的金属离子和有机配体的高度可调性和配位方式的多样性,配位聚合物具有无限的组成和结构可裁性,这是其它材料所无法比拟的。作为一种新型的功能性分子材料,易功能化的特性使配位聚合物具有广泛的应用领域。越来越多的具有特定结构和特殊性质的材料被不断的开发出来,在各个领域发挥着重要作用。经过合理设计,定向合成具有特定拓扑结构或预期功能特性的配位聚合物材料,将是一个最重要的研究方向。

聚合物改性复习题

1、聚合物改性的定义,改性的方法。 答:聚合物改性:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程。主要方法:共混改性、填充改性、复合材料、化学改性、表面改性。共混改性指两种或两种以上的聚合物经混合制成宏观均匀的过程。填充改性指人们在聚合物中添加填充剂有时只是为了降低成本,但也有很多时候是为了改善聚合物的性能。复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。化学改性是通过化学反应改变聚合物的物理、化学性质的方法。表面改性:改善工件表面层的机械、物理或化学性能的处理方法。 2、化学改性(改变分子链结构)和物理改性(高次结构)的本质区别。 答: 第二章:基本观点: 1、共混物与合金的区别。 答:高分子合金不能简单等同于聚合物共混物,高分子合金是指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。 2、共混改性的分类(熔融、乳液、溶液和釜内) 答:按照共混时物料的形态:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点。溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备。乳液共混:共混产品以乳液的形式应用。斧内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其聚合过程,在聚合的同时也完成了共混。 3、共混物形态研究的重要性。 答:共混物的形态与共混物的性能密切相关,而共混物的形态又受到共混工艺条件和共混物组分配方的影响,所以,共混物的形态研究就成了研究共混工艺条件和共混组分分配与共混物性能的关系的重要中间环节。 4、共混物形态的三种基本类型——均相体系、非均相体系(海岛结构、海海结构) 答:一是均相体系。二是非均相体系(两相体系):包括“海-岛结构”------连续相+分散相。“海-海结构”------两相均连续,相互贯穿。 5、相容性对共混物形态结构的影响。 答:在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力。两种聚合物的相容性越好就越容易相互扩散而达到均匀的混合,过渡区也就宽广,相界面越模糊,相畴越小,两相之间的结合力也越大。有两种极端情况,其一是两种聚合物完全不相容,两种聚合物链段之间相互扩散的倾向极小,相界面很明显,其结果是混合较差,相之间结合力很弱,共混物性能不好。第二种极端情况是两种聚合物完全相容或相容性极好,这时两种聚合物可相互完全溶解而成为均相体系或相畴极小的微分散体系。这两种极端情况都不利于共混改性的目的(尤其指力学性能改性)。 一般而言,我们所需要的是两种聚合物有适中的相容性,从而制得相畴大小适宜、相之间结合力较强的复相结构的共混产物。 6、与形态有关的因素:相容性、分散度和均一性的概念和作用。 答:相容性(compatibility)----共混物各组分彼此互相容纳,形成宏观均匀材料的能力。作用:通过相容性的大小,可以反映共混物聚合物之间的相互容纳能力和共混物的形态。 分散度:两相体系中分散相物料的破碎程度,常用分散相颗粒的大小和平均粒径来表示。均一性:分散相物料分散的均匀程度,亦即分散相浓度的起伏大小。作用:分散度和均一性都是用于表征分散相的分散状况。 7、相容性的概念和相容性的8种判据。 答:A)溶解度参数(δ)相近原则:△H=0,最小,表明此时聚合物对相容性最好; δ是聚合物内聚能密度的平方根,δ越相近的聚合物对相容性越好。 B)共同溶剂原则(试验法):通过实验确定聚合物相容性,方法简单,但是受到温度和浓度的影响较大,不够精确。 C)浊点法则:共混物由均相体系变为非均相体系时,共混物的透光率会发生变化,把该相转变点称为“浊点”。所以通过一定的方法测定浊点,可判断聚合物的相容性。 D)薄膜法:不同的聚合物折射率不同,将共混物制成均相溶液后制成薄膜,如果薄膜的透明度差且脆,则为不相容;反之,弱薄膜透明且有韧性,则相容性良好。缺点:误差较大,对折射率相同的聚合物,不能用此法。 E)显微镜法:目前分析共混物相容性的最准确,最直观,最有用的技术。对不相容或部分相容的体系,还可以进一步确定出分散相的颗粒大小、分布、形态和包藏结构等信息。用透射电镜观察共混物的相结构发现:即使是相容的共混体系,在微观下也是两相分布,而不是达到分子水平的混合。 F)Tg法则:比较科学、常用的方法,关键在于Tg的测定。Tg的测定方法: 动态力学法(DMA)(利用力学性质的变化) 机械分析法(利用力学性质的变化)

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

配位聚合物的单晶培养

配位聚合物的单晶培养 摘要:配位聚合物(MOFs)因在磁性、催化、给药、传感、气体吸附、分子与离子交换、手性识别与分离、分子磁性质、发光与非线性光学性质,以及电学性质等功能材料领域具有良好的应用价值而成为目前最活跃的前沿研究课题之一。本文主要介绍配位聚合物及其单晶培养方法。 关键词:配位聚合物、单晶培养方法 1 前言 配位化学是一门在无机化学基础上发展起来的交叉学科,现代配位化学不仅和化学学科中的物理化学、有机化学、材料化学和高分子化学有着密切的关系,而且与物理学和生物学等一级学科相互渗透和交叉[1]。自1893年瑞士化学家A.Werner创立配位理论以来,对配合物的研究就成为无机化学中最活跃的领域之一。配位化学的早期研究集中在以金属阳离子M为中心和以含N、O、S、P 等给体原子的配体L而形成的“Werner配合物”。中心原子M是指过渡金属元素的原子或离子,具有空的价轨道,而配体L则有一对或一对以上的孤对电子,M和L间通过配位键结合为带电荷的配位离子或中性的配位分子。而随着社会的发展和科学技术的进步,交叉学科、新兴学科不断涌现,配位化学也与其他的相关学科交叉并产生新的生长点,互相渗透,互相发展,特别是价键理论、晶体场理论、分子轨道理论和配位场理论的提出丰富了配位化学的内容,同时也促进了与其他相关学科的交叉发展[2]。近年来,科学工作者对配位化学深入的研究,其中涉及到超分子化学、晶体工程学、配位聚合物、大环配合物、功能性配合物等领域。超分子化学是超越分子的化学,是分子间键的化学,与两种或两种以上的化学物种依靠分子间力结合在一起而形成的具有更高复杂性的有组织的实体有关,分子间力主要包括范德华力(静电力、诱导力、色散力和交换力)、氢键、堆积作用(∏-∏堆积、n-∏堆积和疏水相互作用等)和金属离子的配位键等等[3]。晶体工程学则是根据分子堆积和分子间的相互租用,将超分子化学的原理方法用于晶体的设计和制备,以期得到具有特定的物理性质和化学性质的新晶体,寻求分子识别和分子组装的规律,获得具有预期功能品质的分子材料,并对分子之间的相互作用进行表征,是实现从分子到材料的重要途径。溶液中的超分子结构较复杂难以精确地表征和测试,而分子晶体可以通过X-射线单晶衍射得到其精确的结构。[2]根据晶体的结构和性质来寻求分子识别和分子组装的规律,进而研究其潜在的应用[4]。配位聚合物是有机配体L和金属离子M间通过配位键形成的具有高度规整的无限网络结构的配合物。设计合成配合物的过程中需要考虑很多影响因素,除了金属离子的配位性质(离子价数、半径、配位能力等)和配体的性质(配位原子的电负性,配体分子半径等)外,还包括阴离子,有机或无机模板分子、溶剂、反应物的物质的量比及反应体系的pH值、反应温度等影响因素,其中配体和金属离子的性质是主要的影响因素。[5]有机桥联配体在金属离子中间起到连接作用,可提供各种各样的桥联方式和配位点以单齿、多齿或桥联方式进行配位。有机桥联配体根据所带电荷可分为中性、负电性和正电性,同时根据有机配体的空间结构可以分为直线型、角形、平面三角形、四面体型等。[6]最常用的有机连接配体为含有N、O等能提供孤对电子的原子的刚性配体,如多羧酸、

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

配位聚合物材料

配位聚合物材料 配位聚合物是指通过有机配体和金属离子间的配位键形成的,并且具有高度规整的无限网络结构的配合物。配位聚合物的设计与合成是配位化学研究的重要内容。 配位聚合物研究需要把有机配体的结构和不同配位能力的给体原子与具有不同配位倾向性的金属离子综合考虑,是无机、有机、固态、材料化学的交叉科学。由有机配体和金属离子形成任何复合物物种原则上都是一个自组装过程,配体聚合物的设计重点在于配体的设计和金属离子的选择,二者相互作用产生重复单元,按被控方式形成确定的结构。在自发过程中,充分利用了两类组分的结构和配位性质:金属离子一方面像结合剂一样把具有特定功能和结构的配体结合在一起;另一方面,又作为中心把配体定位在特定的方位上。虽然配位聚合物的结构也有可能展现出不同于组成成分的性质,但是设计最终目的仍是通过预先设计结构单元来控制最终产物的结构和功能,在非线性光学材料、磁性材料、超导材料及催化等多方面都有极好的应用前景。 配位聚合物在多孔材料、催化、发光、磁学、药物存储和运输等方面具有潜在白勺应用价值,是当今化学、材料科学、生命科学等分析领域白勺热点课题之一。羧酸类配体配位才能强、配位方式灵敏,还可以将金属离子连接成刚性次级构造单元(SBU),和金属离子配位组装可以生成许多构造新颖、性质共同白勺配位聚合物材料。本论文在配位聚合物晶体工程白勺指导下,分别以1,5-二硝基萘-3,7-二甲酸(H2NNDC)和2,2',4,4'-联苯四甲酸(2,2’,4,4’-H4bptc)为桥联配体,同过渡金属离子或者镧系金属离子配位组装,或引入联吡啶类中性桥联配体或螯合配体辅助配位,构筑了32个新颖白勺零维、一维、二维和三维构造白勺化合物,在晶体构造分析白勺基础上分析了部分配位聚合物白勺磁性、稳定性和发光性质。分析工作主要分为以下几个部分:1.1,5-二硝基萘-3,7-二甲酸配合物:以H2NNDC为桥联配体,或者辅以不同长度白勺联吡啶类桥联共配体(4,4'-联吡啶(4,4’-bipy)、1,2-二吡啶基乙烯(bpe)、1,4-二氮杂二环[2.2.2]辛烷(dabco))和螯合端基共配体(1,10-邻菲啰啉),通过水热、溶剂热法分别合成了25个零维、维、二维和三维构造白勺配合物,测定了它们白勺晶体构造,从晶体工程角度讨论了合成方法、反响条件和共配体对配合物构造白勺影响,并分析了其中多孔材料白勺热稳定性、客体分子交换性质以及部分配合物白勺磁学性质。(1)以H2NNDC为桥联配体,分别同Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)和Mn(Ⅱ)合成了一系列构造各异白勺配合物。配合物1中白勺NNDC配体白勺羧基氧和Co(Ⅱ)双齿配位,在氢键和π-π堆积作用下形成共同白勺三维超分子构造,磁性测试表示配合物1具有铁磁性。配合物2和3是一维链构造,配合物2依靠氢键形成简单立方白勺三维超分子拓扑网络,配合物3则依靠氢键和π-π堆积作用形成共同白勺三维超分子梯子构造。配合物4是具有线性白勺三核锰单元([Mn3(COO)6])白勺简单立方拓扑网络,羧基采用syn-syn方式桥联Mn(Ⅱ),配合物4存在反铁磁耦合作用。(2)在以H2NNDC为

实验二微生物的分离、纯化和接种

实验二微生物的分离、纯化和接种 微生物的分离、纯化 1、目的要求 1.1了解微生物分离和纯化的原理 1.2掌握常用的纯化分离微生物的方法 2、基本原理 从混杂的微生物群体中获得只含有某一种或某一株微生物的过程称为微生物的分离与纯化。本实验采用平板分离法:该方法操作简便,普遍用于微生物的分离与纯化。其基本原理是选择适合于待分离微生物的生长条件,如营养成分、pH值、温度和溶解氧等要求,或者加入某种抑制剂造成只利于该微生物生长,而抑制其它微生物生长的环境,从而淘汰一些不需要的微生物。 微生物在固体培养基生长形成的单个菌落可以是一个细胞繁殖而成的集合体,因此可通过挑取单菌落而获得一种纯培养。获得单个菌落的方法可通过稀释涂布平板或平板划线等技术来完成。而纯培养的确定除观察其菌落特征外,还要结合显微镜检测个体形态特征后才能确定,有些微生物的纯培养要经过一系列分离与纯化过程和多种特征鉴定才能得到。 本实验将在混合有几种微生物菌液中分离纯化出两种微生物来。 3、实验材料 3.1培养基 肉汤培养基(固体)。

3.2溶液或试剂 盛4.5ml无菌水的试管,其中有一只盛有玻璃珠。 3.3仪器或其他用具 无菌玻璃涂棒,无菌吸管,接种环,无菌培养皿,涂布器等。 4流程 倒平板制备梯度稀释液涂布(或划线法)培养挑单菌落保存。 5、步骤 5.1平板划线分离法 5.1.1倒平板 倒平板的方法:右手持盛培养基的试管或三角瓶置火焰旁边,用左手将试管塞或瓶塞轻轻地拔出,试管或瓶口保持对着火焰;然后左手拿培养皿并将皿盖在火焰附近打开一缝,迅速倒入培养基约15ml,加盖后轻轻摇动培养皿,使培养基均匀分布在培养皿底部,然后置于桌面上,待凝固后即成平板(教材p367图13-14)。并用记号笔标明培养基名称、菌液编号和试验日期。 5.1.2划线 在近火焰处,左手拿皿底,右手拿接种环,挑取菌悬液一环在平板上划线(教材p367图13-15)。划线的方法很多,但无论采用哪种方法,其目的都是通过划线将样品在平板上进行稀释,使之形成单个菌落。

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

配位聚合物的应用研究

Seminer ?摘要专业年级博士研究生电子邮箱 配位聚合物的应用研究 研究组姓名 选题意义 配位聚合物(coordination polymers)是有机配体与金属离子通过自组装过程形成的具有周期性网络结构的晶体材料。它结合了复合高分子和配位化合物两者的特点,是一类具有特殊性质的杂化材料。作为新型功能性分子材料,配位聚合物的设计与合成,结构及其性能的研究越来越受到各个领域科学家的重视,形成了跨越多个学科的热点研究领域。 报告内容 具有三维空旷网络结构的金属有机骨架材料(metal-organic framework,MOFs)是一种稳定的配位聚合物材料。MOFs材料在溶剂分子脱除后能保持骨架结构稳定,具有超大的比表面积和孔体积。稳定性的提高大大拓展了MOFs 材料的应用领域,成为MOFs材料发挥其特殊性质的基础。MOFs材料可以用于类分子筛载体、气体存储和分离、非线性光学、分子磁体、手性拆分、发光材料、光电转化、催化等众多领域。其中MOFs在多相不对称催化和光催化领域的应用由于其重要性逐渐受到科学家的重视。 使用具有手性催化活性的有机分子作为配体,可以得到具有手性催化活性的MOFs材料。这是一种特殊的多相化方式,催化剂负载量大,活性中心均匀分布,开放的孔道有利于底物与活性中心接近。在手性催化中具有重要应用的卟啉、席夫碱、联萘配体都已成功合成了MOFs材料,而且材料具有较好的手性选择性。以光学纯的手性酒石酸衍生物为配体,合成具有手性孔道的MOFs材料,不仅可以成功地拆分外消旋的配位化合物,而且还成功实现了对酯交换反应的不对称催化作用。 理论计算表明,MOFs材料也是一种合适的半导体材料,能带带隙在1.0到5.5eV之间。有机部分吸收光子的能量,能够发生从有机到无机部分的电荷转移。从而像半导体一样,能作为电子给体和受体。光激发后,MOFs材料能发生光致变色、光催化产氢、光催化氧化有机物等反应。 前景展望 由于作为配位聚合物组成部分的金属离子和有机配体的高度可调性和配位方式的多样性,配位聚合物具有无限的组成和结构可裁性,这是其它材料所无法比拟的。作为一种新型的功能性分子材料,易功能化的特性使配位聚合物具有广泛的应用领域。越来越多的具有特定结构和特殊性质的材料被不断的开发出来,在各个领域发挥着重要作用。经过合理设计,定向合成具有特定拓扑结构或预期功能特性的配位聚合物材料,将是一个最重要的研究方向。

微生物的分离和纯化

实验十四微生物的分离和纯化 一、目的要求 掌握倒平板的方法和几种分离纯化微生物的基本操作技术。 二、基本原理 在土壤、水、空气或人及动、植物体中,不同种类的微生物绝大多数都是混杂生活在一起,当我们希望获得某一种微生物时,就必须从混杂的微生物类群中分离它,以得到只含有这一种微生物的纯培养,这种获得纯培养的方法称为微生物的分离与纯化。 为了获得某种微生物的纯培养,一般是根据该微生物对营养、酸碱度、氧等条件要求不同,而供给它适宜的培养条件,或加入某种抑制剂造成只利于此菌生长,而抑制其他菌生长的环境,从而淘汰其他一些不需要的微生物,再用稀释涂布平板法或稀释混合平板法或平板划线分离法等分离、纯化该微生物,直至得到纯菌株。 土壤是微生物生活的大本营,在这里生活的微生物无论是数量和种类都是极其多样的,因此,土壤是我们开发利用微生物资源的重要基地,可以从其中分离、纯化到许多有用的菌株。 三、器材 高氏1号琼脂培养基,肉膏蛋白胨琼脂培养基,马丁氏琼脂培养基,盛9ml无菌水的试管,盛90ml无菌水并带有玻璃珠的三角烧瓶,无菌玻璃涂棒,无菌吸管,接种环,10%酚,无菌培养皿,链霉素,土样等。 四、操作步骤 1.稀释涂布平板法 (1)倒平板将肉膏蛋白胨培养基、高氏1号琼脂培养基、马丁氏琼脂培养基溶化,待冷至55—60℃时,向高氏1号琼脂培养基中加入10%酚数滴,向马丁氏培养基中加入链霉素溶液,使每毫升培养基中含链霉素30μg。然后分别倒平板,每种培养基倒三皿,其方法是右手持盛培养基的试管或三角烧瓶,置火焰旁边,左手拿平皿并松动试管塞或瓶塞,用手掌边缘和小指、无名指夹住拔出,如果试管内或三角烧瓶内的培养基一次可用完,则管塞或瓶塞不必夹在手指中。试管(瓶)口在火焰上灭菌,然后左手将培养皿盖在火焰附近打开一缝,迅速倒入培养基约15ml,加盖后轻轻摇动培养皿,使培养基均匀分布,平置于桌面上,待凝后即成平板。也可将平皿放在火焰附近的桌面上,用左手的食指和中指夹住管塞并打开培养皿,再注入培养基,摇匀后制成平板,如图Ⅶ-1所示。最好是将平板放室温2—3天,或 37℃培养24小时,检查无菌落及皿盖无冷凝水后再使用。 (2)制备土壤稀释液称取土样10g,放入盛90ml无菌水并带有玻璃珠的三角烧瓶中,振摇约20分钟,使土样与水充分混合,将菌分散。用一支1ml无菌吸管从中吸取1ml土壤悬液注入盛有9ml无菌水的试管中,吹吸三次,使充分混匀。然后再用一支1ml无菌吸管从

聚合物流变学

聚合物流变学的学习与心得体会 通过一学期的聚合物流变学的学习,使我对其有了初步的了解。现在针对 平时学习笔记和课后浏览相关书籍所获知识进行总结。 1、 聚合物流变学学习内容 1. 流变学中的基本概念 流变学是研究材料的流动和变形规律的科学,是一门介于力学、化学、物理与工程科学之间的新兴交叉学科。聚合物随其分子结构、分子量的不同,以 及所处温度的不同,可以是流体或固体,它们的流动和变形规律各不相同,也 即有不同的流变性能。聚合物流变学是研究聚合物及其熔体的变形和流动特性。 1.1 粘弹性流体特性及材料流变学分类 粘性流体的流动是:变形的时间依赖性;变形不可恢复(外力作的功转化为热能);变形大,力与变形速率成正比,符合Newton's 流动定律。 根据经典流体力学理论,不可压缩理想流体的流动为纯粘性流动,在很小的剪切应力作用下流动立即发生,外力释去后,流动立即停止,但粘性形变不 可恢复。切变速率不大时,切应力与切边速率呈线性关系,遵循牛顿粘性定律, 且应力与应变本身无关。 流体→流动→粘性→耗散能量→产生永久变形→无记忆效应 根据经典固体力学理论,在极限应力范围内,各向同性的理想弹性固体的形变为瞬时间发生的可逆形变。应力与应变呈线性关系,服从胡克弹性定律, 且应力与应变速率无关。 固体→变形→弹性→储存能量→变形可以恢复 聚合物流动时所表现的粘弹性,即有粘性流动又有弹性变形,与通常所说 的理想固体的弹性和理想液体的粘性大不相同,也不是二者的简单组合。 材料流变学分类 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

相关文档