文档库 最新最全的文档下载
当前位置:文档库 › STemWin驱动移植-FLASH_PSRAM(MCP)接口驱动设计

STemWin驱动移植-FLASH_PSRAM(MCP)接口驱动设计

STemWin驱动移植-FLASH_PSRAM(MCP)接口驱动设计
STemWin驱动移植-FLASH_PSRAM(MCP)接口驱动设计

STemWin驱动移植-FLASH&PSRAM(MCP)接口驱动设计

问题:

在合计智能穿戴应用的时候,为了更好的用户体验和丰富的人机交互界面,需要更多的存储(RAM和FLASH)来存储自定义的图片资源 ;由于可穿戴类的产品体积都非常小,因此FLASH&PSRAM 集成在一起的MCP存储芯片是一个不错的选择.

我们的STM32 FMC外设是可以支持MCP存储芯片的,而且只需要简单的配置就可以实现MCP的访问.

调研:

下面介绍使用STM32CubeMX配置MCP驱动的过程,我们使用STM32F429+MX69V28F64举例说明:

一、配置过程:

1.MX69V28F64的总线结构和PIN定义:

2.下面我们使用STM32CubeMX来配置MCP接口:

a.新建STM32F429ZIYx的工程,在FMC根据MCP芯片来配置FMC的参数:

b.在configuration选项卡中配置FMC的详细参数,

c.根据MX69V28F64 datasheet中对时间的要求来更改NOR/PSRAM timing的参数:

c.配置完成后,生成代码,FMC主要初始化如下:

/* FMC initialization function */

void MX_FMC_Init(void)

{

FMC_NORSRAM_TimingTypeDef Timing;

/** Perform the SRAM1 memory initialization sequence

*/

hsram1.Instance = FMC_NORSRAM_DEVICE;

hsram1.Extended = FMC_NORSRAM_EXTENDED_DEVICE;

/* hsram1.Init */

hsram1.Init.NSBank = FMC_NORSRAM_BANK1;

hsram1.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_ENABLE;

hsram1.Init.MemoryType = FMC_MEMORY_TYPE_PSRAM;

hsram1.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;

hsram1.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;

hsram1.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_HIGH; hsram1.Init.WrapMode = FMC_WRAP_MODE_DISABLE;

hsram1.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;

hsram1.Init.WriteOperation = FMC_WRITE_OPERATION_DISABLE;

hsram1.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;

hsram1.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;

hsram1.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_ENABLE;

hsram1.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;

hsram1.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY; /* Timing */

Timing.AddressSetupTime = 2;

Timing.AddressHoldTime = 2;

Timing.DataSetupTime = 6;

Timing.BusTurnAroundDuration = 0;

Timing.CLKDivision = 16;

Timing.DataLatency = 17;

Timing.AccessMode = FMC_ACCESS_MODE_A;

/* ExtTiming */

HAL_SRAM_Init(&hsram1, &Timing, NULL);

/** Perform the NOR2 memory initialization sequence

*/

hnor2.Instance = FMC_NORSRAM_DEVICE;

hnor2.Extended = FMC_NORSRAM_EXTENDED_DEVICE;

/* hnor2.Init */

hnor2.Init.NSBank = FMC_NORSRAM_BANK2;

hnor2.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_ENABLE;

hnor2.Init.MemoryType = FMC_MEMORY_TYPE_NOR;

hnor2.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_16;

hnor2.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE;

hnor2.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;

hnor2.Init.WriteOperation = FMC_WRITE_OPERATION_DISABLE;

hnor2.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;

hnor2.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;

hnor2.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE;

hnor2.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;

hnor2.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY;

/* Timing */

Timing.AddressSetupTime = 5;

Timing.AddressHoldTime = 15;

Timing.DataSetupTime = 7;

Timing.BusTurnAroundDuration = 2;

Timing.CLKDivision = 16;

Timing.DataLatency = 17;

Timing.AccessMode = FMC_ACCESS_MODE_A;

/* ExtTiming */

HAL_NOR_Init(&hnor2, &Timing, NULL);

}

二、软件如何使用:

用户在编写软件的时候,直接访问FMC Bank1的分区地址即可,FMC外设会生成读写MCP芯片的时序.

结论:

处理:

重要通知 - 请仔细阅读

意法半导体公司及其子公司(“ST”)保留随时对ST 产品和/ 或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在 订货之前应获取关于ST 产品的最新信息。ST 产品的销售依照订单确认时的相关ST 销售条款。

买方自行负责对ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的ST 产品如有不同于此处提供的信息的规定,将导致ST 针对该产品授予的任何保证失效。

ST 和ST 徽标是ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

? 2015 STMicroelectronics - 保留所有权利

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

较大功率直流电机驱动电路的设计方案

1 引言 直流电机具有优良的调速特性,调速平滑、方便、调速围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。 许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。 2 H 桥功率驱动电路的设计 在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速围不大,一般都是配合变压调速使用。因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。 2.1 H 桥驱动原理 要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

顶部驱动钻井系统顶驱下套管装置、软扭矩系统、扭摆减阻系统

A A 附 录 A (规范性附录) 顶驱下套管装置 A.1 概述 顶驱下套管装置是基于顶驱装置进行下套管作业的一种工具,按照驱动方式可分为液压驱动、机械驱动、液压机械复合驱动顶驱下套管装置。根据夹持套管的部位不同可分为内卡式顶驱下套管装置和外卡式顶驱下套管装置。顶驱下套管装置的设计及制造应满足以下功能及技术要求。 A.2 功能要求 A.2.1 概述 顶驱下套管装置应具备相应的功能,产品部件和整机安装完成后均应进行试验以评定其功能是否达到设计要求。 A.2.2 顶驱下套管装置功能描述 A.2.2.1顶驱下套管装置应和顶驱具有良好的兼容性,与顶驱连接后应留有安全作业空间。 A.2.2.2顶驱下套管装置通过顶驱的提升和下放实现套管柱的提升和下放动作;通过顶驱的主轴旋转带动顶驱下套管装置的卡瓦夹持总成实现套管螺纹的连接和松开。套管的钻井液灌注和循环通过顶驱钻井液通道完成,顶驱下套管装置的密封导向总成应具备密封套管的能力。 A.2.2.3顶驱下套管装置下放套管规格应符合GB/T 19830。 A.2.2.4顶驱下套管装置下套管作业数据(扭矩、转速)源于顶驱控制系统,应具有设定、记录和归档功能,具备追溯性。 A.2.2.5顶驱下套管装置为可选配套装置,不作为顶驱的标准配置出厂。 A.3 顶驱下套管装置设计要求 A.3.1 由于不同规格套管的抗内、外压能力不同,为了安全起见,当套管标称外径大于等于168.28 mm时宜采用内卡的夹持方式,当套管标称外径小于168.28 mm时宜采用外卡的夹持方式。 A.3.2 顶驱下套管装置与顶驱之间应具有良好的接口(连接螺纹、控制管线),安装时应不拆除内防喷器,安装后不应影响顶驱的基本功能。 A.3.3 顶驱下套管作业时,宜使用加长吊环,可在原吊环的基础上利用短吊环加长原吊环,以满足安全提升管柱要求为准则。 A.3.4 顶驱下套管装置在满足安全提升和扭矩载荷的前提下,一套装置应能满足多种规格套管的作业需求,减少设备的数量。

大功率LED的驱动电路设计(PT4115应用)

大功率LED 的驱动电路设计(PT4115应用) 摘要:LED (light emitting diode )即发光二极管,是一种用途非常广泛的固体发光光源,一种可以将电能转化为光能的电子器件。由于LED 具有节能、环保、使用寿命非常长,LED 元件的体积非常小,LED 的发出的光线能量集中度很高,LED 的发光指向性非常强,LED 使用低压直流电即可驱动,显色性高(不会对人的眼睛造成伤害)等优点,LED 被广泛应用在背光源、照明、电子设备、显示屏、汽车等五大领域。而且随着LED 研发技术的不断突破,高亮度、超高亮度、大功率的LED 相继问世,特别是白光LED 的发光效率已经超过了常用的白炽灯,正朝着常照明应用的方向发展,大有取代传统的白炽灯甚至节能灯的趋势。 本论文主要介绍采用恒流驱动方式实现驱动电路,并且提出一种基于恒流驱动芯片PT4115的高效率的大功率LED 恒流驱动解决方案。该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。。 关键词:大功率LED ;驱动电路;恒流驱动芯片PT4115 一、LED 主要性能指标: 1)LED 的颜色:目前LED 的颜色主要有红色,绿色,蓝色,青色,黄色,白色,暖白,琥珀色等其它的颜色; 2)LED 的电流:一般小功率的LED 的正向极限电流多在20mA 。但大功率LED 的功率至少在1W 以上,目前比较常见的有1W 、3W 、5W 、8W 和10W 。1W LED 的额定电流为350mA,3W LED 的750mA 。 3)LED 的正向电压:LED 的正极接电源正极,负极接电源负极。一般1W 的大功率LED 的正向电压为3.5V~3.8V 。 4)LED 的反向电压:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏 LED 发光强度:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),单位为坎德拉(cd )。 5)LED 光通量:光源在单位时间内发射出的光量称为光源的发光通量。单位为流明(lm)。如1W 大功率LED 的光通量一般为60~80LM 。 6)LED 光照度:1流明的光通量均匀分布在1平方米表面上所产生的光照度.,单位为勒克斯(lx)。 7)LED 显色性:光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼真的程度。 8)LED 的使用寿命:LED 一般可以使用50,000小时以上。 9)LED 发光角度:二极管发光角度也就是其光线散射角度,主要靠二极管生产时加散射剂来控制。 二、大功率LED 的驱动方式: LED 驱动简单的来讲就是给LED 提供正常工作条件(包括电压,电流等条件)的一种电路,也是LED 能工作必不可少的条件,好的驱动电路还能随时保护LED ,避免LED 被损坏。 LED 驱动通常分为以下三种方式: (1) 镇流电阻驱动:就是简单的的在LED 变LED 的驱动电流.。 LED 的工作电流为: R U U I L -= 所以I 与镇流电阻R 成反比;当电源电压U 时,R 能限制I 的过量增长,使I 不超出LED

直流电机驱动与控制系统设计

直流电机驱动与控制系统设计 【摘要】介绍了基于AT89C52单片机,利用光电传感器检测直流电机的转速,采用PWM调速方式,通过AT89C52单片机产生控制信号直接控制驱动芯片LMD18200,从而间接控制直流电机的速度、正反转,以及停止,并可以调节速度至预先设定的速度。 【关键词】直流电机;单片机;lmd18200;PWM调速 直流电机在机器人和各种自动化控制领域发挥着重要的作用,而对电机速度的控制尤其重要,传统的控制系统通常采用模拟元件,如晶体管、各种线性运算电路等,虽在一定程度上满足了生产要求,但线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,从而使系统的运行特性也随之变化,故系统的运行可靠性及准确性得不到保证,甚至出现事故[1]。直流电机的数字控制已经成为了电动机控制的发展趋势,用单片机对电动机进行控制是实现电机数字控制的最常用手段,但是仅仅使用单片机进行控制会使运行程序复杂。为了减小单片机的负担,本文使用专门的直流电机控制芯片LMD18200,设计了一种基于单片机的直流电机驱动控制系统。 1.硬件电路的组成 系统硬件电路结构框图如图1所示,主要包括单片机电路、稳压电路、转速检测电路、转数显示电路、隔离电路、LMD18200驱动电路等。 1.1 稳压电路 硬件系统需要两个不同大小的电压供电。一个电压是所用驱动芯LMD18200电源端口的电压,该电压最大可以使用55V,在该硬件电路中使用的是24V;另一个电压大小为5V,该电压提供给单片机、转数测量电路中的LM393芯片以及隔离电路中的光电耦合芯片6N137。为了减少成本,硬件调试方便及满足设计的合理性,本设计中使用了稳压芯片LM7805,从而实现一个24V电源对整个硬件电路供电。具体电路如图2所示。电路左边接入24V的电经过稳压芯片LM7805将右边输出电压稳定到5V。 1.2 隔离电路 单片机输出的控制信号包括PWM控制信号和转向信号。由于驱动芯片LDM18200的控制信号是由单片机产生的,而驱动芯片输入电压较大,如果电路发生问题,电流就直接流入单片机,这样会对单片机造成损害,为了解决这个问题,在单片机和驱动芯片之间接入隔离电路,从而使单片机和驱动芯片进行隔离。同时考虑到PWM信号频率高[2],高达16.5khz,普通的光电隔离器件不能应用,故选用了高速光电耦合器芯片6N137。以PWM信号为例,转向信号类似,具体电路如图3所示,该种连接方法在传输过程中逻辑状态不变,单片机产生的PWM 信号从芯片6N137的3号引脚输入,从网络标号PWM端输出。 1.3 转速检测电路 采用光电传感器测量直流电机的转速。在直流电机转轴的末端贴上一个黑白交替的塑料卡片,该塑料卡片由三层组成,上下两层由透明塑料组成,中间夹着十张均匀分布的小黑纸。根据光电传感器的工作原理,直流电机转动一周,光电传感器输出引脚输出十个脉冲信号。同时考虑到光电传感器输出的脉冲信号不规则,将其输入到单片机后,不宜于单片机对其识别,因此在光电传感器的输出引脚连接一个由运放芯片LM393组成的脉冲整形电路[3]。具体电路如图4所示,

钻井顶驱介绍

钻井顶驱介绍 顶部驱动钻井装置TDS(TOP DRIVE DRILLING SYSTEM),是美国、法国、挪威近20年来相继研制成功的一种顶部驱动钻井系统。它可从井架上部空间直接旋转钻杆,沿专用导轨向下送进,完成钻杆旋转钻进,循环钻井液,接立柱,上卸扣和倒划眼等多种钻井操作。该系统显著提高了钻井作业的能力和效率,并已成为石油钻井行业的标准产品。自20世纪80年代初开始研制,现在已发展为最先进的整体顶部驱动钻井装置IDS(INTEGRATED TOP DRIVE DRILLING SYSTEM),是当前钻井设备自动化发展更新的突出阶段成果之一。 顶部驱动装置的出现,使得传统的转盘钻井法发生了变革,诞生了顶部驱动钻井方法。该方法在1000多台海洋钻机和特殊陆地钻机上的成功使用,得到了使用者和市场的认同。它的重要意义是促进了海上和陆地钻井技术自动化的进步;其另一个意义则在于:顶部驱动钻井使用自动化接单根起下钻设备,从而不必要再试制和研究始于20世纪60年代的方钻杆接单根方法。 顶部驱动钻井装置的旋转钻柱和接卸钻杆立根更为有效的方法。该装置可起下28M立柱,减少了钻井时三分之一的上卸扣操作。它可以在不影响现有设备的条件下提供比转盘更大的旋转动力,可以连续起下钻、循环、旋转和下套管,还可以使被卡钻杆倒划眼。 作为当前最新的钻井方式,有许多不同于方钻杆钻井的优点。同以前的方法相比,顶部驱动钻井装置还有一些特定优点: 1.节省接单根时间 顶部驱动钻井装置不使用方钻杆,不受方钻杆长度限制,避免了钻进9米左右接单根的麻烦。取而代之的是利用立柱钻进,大大节省了接单根的时间,从而节约了钻井时间。 2.倒划眼防止卡钻 顶部驱动钻井装置具有使用28米立柱倒划眼的能力,可在不增加起钻时间的前提下,顺利地循环和旋转将钻具提出井眼。在定向钻井过程中,可以大幅度地减少起钻总时间。 3.下钻划眼 顶部驱动钻井装置具有不解接方钻杆钻过砂桥和缩径点的能力。使用顶部驱动钻井装置下钻时,可在数秒内接好钻柱,立刻划眼,从而减少卡钻的危险。 4.人员安全 顶部驱动钻井装置可减少接单根次数2/3,从而降低了事故发生率。接单根只需要打背钳。钻杆上卸扣装置总成上的倾斜装置可以使吊环、吊卡向下摆至鼠洞,大大减少了人员工作的危险程度。 5.设备安全 顶部驱动钻井装置采用马达旋转上扣,上扣平稳,并可从扭矩表上观察上扣扭矩,避免上扣扭矩过盈或不足。钻井最大扭矩的设定,使钻井中出现蹩钻

数控机床驱动与控制标准系统

第四章数控机床的驱动与控制系统 第一节位移、速度、位置传感器 数控机床若按伺服系统有无检测装置进行分类,可分为开环系统和闭环(或半环)系统。也就是说检测装置是闭环(半闭环)系统的重要部件之一,它的作用是测量工作实际位移并反馈送至数控装置,使工作台按规定的路径精确移动。因此对于闭环系统来说,检测装置决定了它的定位精度和加工精度。数控机床对检测装置的主要要求为: (1)工作可靠,抗干扰性强; (2)使用维护方便,适应机床的工作环境; (3)满足精度和速度的要求; (4)成本低。 通常,数控装置要求位置检测的分辨率为0.001~0.0lmm;测量精度为±0.002~±0.02mm/m,能满足数控机床以1~l0m/min的最大速度移动. 位置检测装置的分类列表于4-1中。本章仅就其中常用的检测装置(旋转变压器感应同步器光栅、磁栅、编码盘)的结构和原理予以讲述。 旋转变压器

是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。 工作原理 当转子绕组的磁轴与定子绕组的磁轴自垂直位置转动一角度θ时,绕组中产生的感应电势应为 E1=nV1sinθ =nV m sinωt sinθ 式中n——变压比; V1——定子的输入电压; V m——定子最大瞬时电压。 当转子转到两磁轴平行时(即θ=90o),转子绕组中感应电势最大,即 E1=nV m sinωt 旋转变压器的应用 V3=nV m sinωt sinθ1 + nV m cosωt cosθ1 =nV m cos(ωt –θ1) ?感应同步器 感应同步器是一种电磁式位置检测元件,按其结构特点一般可分为直线式和旋转式两种。直线式感应同步器由定尺和滑尺组成;旋转式感应同步器由转子和定子组成。前者用于直线位移的测量,后者用于角度位移的测量。 它们的工作原理都与旋转变压器相似。感应同步器具有检测精度高、抗干扰性强、寿命长、维护方便、成本低、工艺性好等优点,广泛应用于高精度的数控机床。本节主要以直线式感应同步器为例,对其结构特点和工作原理进行讲述。

顶部驱动装置

顶驱的全称为顶部驱动钻井装置TDS(TOP DRIVE DRILLING SYSTEM),是美国、法国、挪威近20年来相继研制成功的一种顶部驱动钻井系统。它可从井架上部空间直接旋转钻杆,沿专用导轨向下送进,完成钻杆旋转钻进,循环钻井液,接立柱,上卸扣和倒划眼等多种钻井操作。该系统显著提高了钻井作业的能力和效率,并已成为石油钻井行业的标准产品。自20世纪80年代初开始研制,现在已发展为最先进的整体顶部驱动钻井装置IDS(INTEGRATED TOP DRIVE DRILLING SYSTEM),是当前钻井设备自动化发展更新的突出阶段成 果之一。 顶部驱动装置的出现,使得传统的转盘钻井法发生了变革,诞生了顶部驱动钻井方法。该方法在1000多台海洋钻机和特殊陆地钻机上的成功使用,得到了使用者和市场的认同。它的重要意义是促进了海上和陆地钻井技术自动化的进步;其另一个意义则在于:顶部驱动钻井使用自动化接单根起下钻设备,从而不必要再试制和研究始于20世纪60年代的方钻杆接单根方法。 顶部驱动钻井装置的旋转钻柱和接卸钻杆立根更为有效的方法。该装置可起下28M立柱,减少了钻井时三分之一的上卸扣操作。它可以在不影响现有设备 的条件下提供比转盘更大的旋转动力,可以连续起下钻、循环、旋转和下套管,还可以使被卡钻杆倒划眼。 优点: 作为当前最新的钻井方式,有许多不同于方钻杆钻井的优点。同以前的方法相比,顶部驱动钻井装置还有一些特定优点: 1.节省接单根时间 顶部驱动钻井装置不使用方钻杆,不受方钻杆长度限制,避免了钻进9米左右接单根的麻烦。取而代之的是利用立柱钻进,大大节省了接单根的时间,从而节约了钻井时间。 2.倒划眼防止卡钻 顶部驱动钻井装置具有使用28米立柱倒划眼的能力,可在不增加起钻时间的前提下,顺利地循环和旋转将钻具提出井眼。在定向钻井过程中,可以大幅度地减少起钻总时间。 3.下钻划眼 顶部驱动钻井装置具有不解接方钻杆钻过砂桥和缩径点的能力。使用顶部驱动钻井装置下钻时,可在数秒内接好钻柱,立刻划眼,从而减少卡钻的危险。 4.人员安全 顶部驱动钻井装置可减少接单根次数2/3,从而降低了事故发生率。接单根只需要打背钳。钻杆上卸扣装置总成上的倾斜装置可以使吊环、吊卡向下摆至鼠洞,大大减少了人员工作的危险程度。 5.设备安全 顶部驱动钻井装置采用马达旋转上扣,上扣平稳,并可从扭矩表上观察上扣扭矩,避免上扣扭矩过盈或不足。钻井最大扭矩的设定,使钻井中出现蹩钻扭矩

顶驱钻井技术

顶部驱动钻井系统 顶部驱动钻井系统的功能和类型 顶部驱动钻井系统的结构及工作原理 顶部驱动钻井系统的特点

一、功能 最早的顶部驱动装置是“动力水龙头”,即:在水龙头上设置动力装置置动力装置,,驱动水龙头的中心管旋转驱动水龙头的中心管旋转,,中心管下部直接接钻杆。这样这样,,在钻井过程中在钻井过程中,,可以省去转盘可以省去转盘。。 现在的顶部驱动钻井系统现在的顶部驱动钻井系统,,无论在功能上无论在功能上,,还是在结构上,都发展得日益完善都发展得日益完善。。它的主要功能有它的主要功能有:: 1、旋转钻进旋转钻进;; 2、循环钻井液循环钻井液;; 3、起吊钻具起吊钻具;; 4、上卸钻柱上卸钻柱。。 顶部驱动钻井系统的功能和类型

二、类型 顶部驱动钻井系统是在80年代末,由美国、法国、挪威相继研制而成。基本类型有三大类: 1、全液压驱动(如Maritime Hydraulics 公司的产品)驱动主轴旋转的动力源是液压能。由两台轴向柱塞马达经齿轮减速箱带动主轴旋转。 2、直流电驱动(如美国Varco公司的产品) 驱动主轴旋转的动力源是直流电。由直流电动机经齿轮减速箱带动主轴旋转。直流电源是来自电动钻机的AC —SCR 系统。 3、交流电驱动(如挪威的DDM型) 驱动主轴旋转的动力源是交流电。由交流电动机经齿轮减速箱带动主轴旋转。调速则利用AC/AC变频技术。 三种类型三种类型,,都把无级调速特性作为基本要求都把无级调速特性作为基本要求。。

与常规旋转钻井方式不同与常规旋转钻井方式不同,,采用顶驱装置钻进一次可 接入和钻进一个立根,上卸扣时间减少了三分之二;在起钻遇阻遇卡时可以迅速接上钻具钻遇阻遇卡时可以迅速接上钻具,,一边旋转一边循环,进行倒划眼行倒划眼,,可以大大减少卡钻事故可以大大减少卡钻事故。。 DQ40BC DQ70BSC DQ90BSC

一顶部驱动石油钻机发展现状和水平差距分析

、顶驱制造基本情况 (一)目前本厂机械装备制造总体情况 主要产品生产FR3150DJ顶驱钻井装置 (二)技术创新与新产品研发制造情况 通过本项目的研究,研制成功了交流变频驱动顶部驱动钻井装置,并进行了厂内模拟试验与现场工况应用,主要形成了如下几个方面的成果: 1、电控系统冗余工作原理: 软冗余系统由A和B两套PLC控制系统组成。开始时,A系统为主,B系统为备用,当主系统A 中的任何一个组件出错,控制任务会自动切换到备用系统B 当中执行,这时,B 系统为主,A 系统为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153 接口模块的整体切换。 系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换。 2、形成了八项专利技术: (1)、顶部驱动钻井装置的倾摆式自夹紧背钳,申请号: ZL .8。 (2)、内套插入式顶部驱动钻井装置,申请号: ZL .7。 (3)、单导轨总成,申请号: ZL .6 (4)、自夹紧背钳反扭矩插入式顶部驱动钻井装置,申请号:

ZL .0。 (5)、用于石油钻井的顶部驱动钻井装置的电机,申请号: 265.1。 (6)、顶部驱动钻井装置的上卸钻具装置,申请号: 6265.6。 (7)、顶部驱动钻井装置性能测试方法及其测试系统,申请号: 4279.8。 (8)、顶部驱动钻井装置性能测试系统,申请号: 2148.x。 创新点 1、内套插入式箱体结构: 该结构利用内套的端部轴肩并结合与箱体轴孔部位的过赢配合,使两者结合为牢固地整体,构成双负荷通道的基础,提高了助推力轴承的使用寿命;再通过合理的连接法兰及套筒体结构,将背钳上卸扣的扭矩传递到箱体之上,避免了回转密封的侧向受力问题,提高了回转密封的可靠性和密封件寿命。 2、液压驱动对夹式环形背钳 该背钳结构设计新颖,钳牙的夹紧、松开动作都在液压的驱动下完成,操作快捷迅速,松开到位且保持位置不变,避免了顶驱钻进过程中钳牙动作缓慢以及钻进过程中钳牙伸出对钻杆的损伤。 3、主电机轴轴深齿轮结构: 该结构是将主电机传动轴和轴深部位的的第一级主动齿轮作成一体,避免了电机齿轮二次装配时存在的同轴度误差,保证了齿轮的啮合精度,以提高齿轮的使用寿命。

电机驱动控制系统

电机驱动控制系统 摘要 由于单片机具有体积小、集成度高、运算速度快、运行可靠、应用灵活、价格低廉以及面向控制等特点,因此在工业控制、数据采集、智能仪器仪表、智能化设备和各种家用电器等领域得到广泛的应用,而且发展非常迅猛。随着单片机应用技术水平不断提高,目前单片机的应用领域已经遍及几乎所有的领域。 与交流电动机相比,直流电机结构复杂、成本高、运行维护困难,但是直流电机具有良好的调速性能、较大的启动转矩和过载能力强等许多优点,因此在许多行业仍大量应用。近年来,直流电动机的机构和控制方式都发生了很大的变化。随着计算机进入控制领域以及新型的电力电子功率元器件的不断出现,采用全控型的开关功率元件进行脉宽调制(Pulse Width Modulation,简称PWM)已成为直流电机新的调速方式。这种调速方法具有开关频率高、低速运行稳定、动态性能良好、效率高等优点,更重要的是这种控速方式很容易在单片机控制系统中实现,因此具有很好的发展前景。 本设计为单片机控制直流电机,以AT89C51单片机为核心,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。由键盘控制电动机执行启停、速度和方向等各种功能,用红外对管测量电机的实际转速,并通过1602液晶显示出控制效果。设计上,键盘输入采用阵列式输入,用4*4的矩阵键盘形式,这样可以有效的减少对单片机I/O口的占用。

关键词:AT89C51 PWM 电机测速 一、硬件设计 1、总体设计

20 929303456781011121314151617318RFB 91112 10k 23

1918 2122232425262728 1.2.2 1602液晶显示模块 本模块实现了转速等显示功能。 D :方向;占空比;预设转速;实测速度; 1.2.3键盘模块 根据实验要求,需由按键完成对直流电机的控制功能,并经分 析得出需要16个按键,为节省I/O 口并配合软件设计,此模块使用了4*4的矩阵模式。并通过P1口与主机相连。 1.2.4 PWM 驱动电路模块设计与比较

全液压钻机顶部驱动钻井装置

全液压钻机顶部驱动钻井装置 一.顶部驱动钻井装置概述 顶部驱动钻井装置TDS(TOPDRIVEDRILLISNGYSTEM),是美国、法国、挪威近20年来相继研制成功的一种顶部驱动钻井系统,取代了转盘带动方钻杆钻井的钻井技术。全液压传动( 主绞车、转盘、泥浆泵均采用) 的石油钻机将成为常规机械传动钻机的换代产品之一。 全液压传动钻机的主要优点如下: a) 可方便与电脑相联接, 通过微电-电-液放大, 实现整套钻机的回转、升降和泥浆供应量的无级调节, 以实现钻井、升降电脑程序自动控制, 并可以大大减少井场操作人员。 b) 由于钻机旋转、升降和冲洗液的供给, 均可实现无级调速、调排量, 有优越的转速-扭矩、压力-排量性能曲线, 从而可通过电脑优选参数, 指令实现优选参数的钻进和提升时的恒功率调节, 提高工作效率, 并充分利用动力。 c) 可在钻井工艺的全过程实现安全操作。这是由于液压系统优越的压力—力矩指示和过载自动保护所决定的( 过载即超液压、通过溢流阀卸荷) 。 d) 明显减轻设备质量和节约占用空间。 e) 对于全液压传动的泥浆泵还省去了一整套曲轴、齿轮传动机构和经常需要更换活塞的时间。对于全液压传动的绞车, 还具有下钻时的安全制动, 没有转动时的运转惯性和具有大直径滚筒可使快绳平滑地运动和减少磨损等优点。 f) 可以与全液压顶部驱动、铁钻工、自动排放钻具、液压机械手和天车型液压钻柱运动补偿器组合而成全部钻井工艺过程的自动化操作系统。 二.国外全液压顶驱发展现状 顶驱系统(TDS)开始从海洋石油钻机向陆地钻机发展;从直流电动机驱动为主向液压传动和交流变频电动机驱动方向发展;向简单化轻便化方向发展,质量减轻,尺寸减小,满足修井机和轻型钻机的要求。而国内外正在对全液压驱动顶驱进行深入的研究。加拿大Tesco公司套管钻机、挪威MH公司Ram Rig钻机和意大利Drillmec公司推出的HH系列全液压钻机已形成980~2 942 kN钩载系列产品。 液压驱功钻机更适合于采用新的钻井工艺。如套管钻井新工艺,采用全液压驱动套管钻机是最合适最经济的。液压驱动钻机向全新模式钻机发展。如Ram Rig钻机绞车和提升系统超出了常规钻机模式,采用液压驱动,体积小,质量轻,成本低,使绞车和提升系统结构更简单。液压驱动钻机向多个小功率液压马达传动发展。挪威MH公司生产的海洋2013kW液压驱动单轴绞车,采用多个小功率液压马达通过滚筒两侧的内齿轮传动滚筒轴,用4个小功率液压马达传动转盘,用2个液压马达传动顶驱。德国Wirth公司用多个液压马达传动绞车,用2个液压马达传动转盘。加拿大Tesco公司采用2个液压马达传动顶驱。 挪威Maritime Hydraulics 公司产品(PTD轻便式顶部驱动钻井系统) A、系统组成 PTD轻便式顶部驱动钻井系统主要由水龙头(借用钻机原配的常规水龙头); 液控钻具防喷器;钻井马达总成钻杆上卸扣装置,液压动力系统五部分组成。 B、顶部驱动装置总成

顶部驱动钻进装置的结构

顶部驱动钻井装置的结构 本章将简述顶部驱动钻井装置的主要部件和选择件。各主要部件在用户服务手册中都有独立章节予以叙述,不同类型钻机专用设备在操作说明书里有叙述。 顶部驱动钻井装置由以下主要部件和附件组成: l)水龙头-钻井马达总成(关键部件之一); 2)马达支架/导向滑车总成(关键部件之一) 3)钻杆上卸扣装置总成(关键部件之一,它是体现顶部驱动钻井装置最大优点的设备); 4)平衡系统; 5)冷却系统; 6)顶部驱动钻井装置控制系统; 7)可选用的附属设备。 第一节水龙头-钻井马达总成 水龙头-钻井马达总成是顶部驱动钻井装置的主体部件,见图2-l。它由水龙头、马达和一级齿轮减速器组成。钻井水龙头额定载荷是6500 kN;采用串激(或并激)直流电动机立式传动,驱动主轴。轴上端装有气动刹车(16VC600气离合器)。当气压为0.62 MPa 时,可产生47.5 kN?m的扭矩,用于马达的快速制动。这是由于主轴带动质量很大的钻具旋转时,旋转体转动惯量大,惯性则大,因此立即刹止,改变运动方式是不易的,故要有气刹车刹止才能克服惯性,制止钻具的旋转运动。马达轴下伸轴头装有小齿轮(Z=18),与装在主轴上的大齿轮(Z=96)相啮合,主轴下方接钻杆柱,最大转速为 430 r/min。 钻井时,当马达电枢电流为 1325 A时,间隙尖峰扭矩51.5 kN?m,而当电流为1050A时,连续运转扭矩为39.1kN?m,主轴转速可达180r/min。 由上可见,水龙头-钻井马达总成包括下述主要部件:。 1)钻井马达和制动器(气刹车) 2)齿轮箱(变速箱); 3)整体水龙头;

4)平衡器。 以下将分别对每个部件进行说明。 一、钻井马达 在TDS-3S型顶部驱动钻井装置上安装的是 1100/1300hp的并激直流钻井马达。马达配置双头电枢轴和垂直止推轴承。气刹车用于承受钻柱扭矩,避免马达停车并有利于定向钻井的定向工作。气刹车由一个远控电磁阀控制。如需要输出扭矩和齿轮传动比卡片,可参阅用户手册。 二、齿轮箱(变速箱)总成 TDS-3S型顶部驱动钻井装置的单速变速箱由下述主要部件组成: 1) 96齿大齿轮; 2) 18齿大齿轮; 3)上、下箱体; 4)主轴/驱动杆; 5)马达支座机罩。 TDS-3S变速箱是一个单速齿轮减速装置,齿轮减速比5.33:1。由于大齿轮的缘故,马达中心线与主轴中心线距离为

一顶部驱动石油钻机发展现状和水平差距分析

一、顶驱制造基本情况 (一)目前本厂机械装备制造总体情况 主要产品生产FR3150DJ顶驱钻井装置 (二)技术创新与新产品研发制造情况 通过本项目的研究,研制成功了交流变频驱动顶部驱动钻井装置,并进行了厂内模拟试验与现场工况应用,主要形成了如下几个方面的成果: 1、电控系统冗余工作原理: 软冗余系统由A和B两套PLC控制系统组成。开始时,A系统为主,B系统为备用,当主系统A中的任何一个组件出错,控制任务会自动切换到备用系统B 当中执行,这时,B系统为主,A系统为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153接口模块的整体切换。 系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换。 2、形成了八项专利技术: (1)、顶部驱动钻井装置的倾摆式自夹紧背钳,申请号:ZL03206846.8。 (2)、内套插入式顶部驱动钻井装置,申请号:ZL03270653.7。 (3)、单导轨总成,申请号:ZL03267017.6 。 (4)、自夹紧背钳反扭矩插入式顶部驱动钻井装置,申请号:ZL01275909.0。 (5)、用于石油钻井的顶部驱动钻井装置的电机,申请号:20042011265.1。 (6)、顶部驱动钻井装置的上卸钻具装置,申请号:200520106265.6。 (7)、顶部驱动钻井装置性能测试方法及其测试系统,申请号:200910014279.8。 (8)、顶部驱动钻井装置性能测试系统,申请号:200920022148.x。 创新点 1、内套插入式箱体结构: 该结构利用内套的端部轴肩并结合与箱体轴孔部位的过赢配合,使两者结合为牢固地整体,构成双负荷通道的基础,提高了助推力轴承的使用寿命;再通过合理的连接法兰及套筒体结构,将背钳上卸扣的扭矩传递到箱体之上,避免了

电机驱动控制系统

电机驱动控制系统 “安邦信”是中国变频器行业的一块老品牌,在技术上沉淀了二十几年,在产、学、研、市场应用的道路上积累深厚的经验。1992年3月在江苏徐州成立,1998年10月迁址深圳,更名为“深圳市安邦信电子有限公司”是第一批国家电子工业部20家变频器企业之一,专注于变频器的研发、生产和销售,快速为客户提供个性化的解决方案。 “安邦信”是国内少数同时生产高、中、低压变频器的企业,主要服务于装备制造业、节能环保、新能源三大领域,营销网络遍布全国。公司在国产品牌厂商中名列前茅,其中专用变频系列产品在多个细分行业处于业内首创或领先地位。 “安邦信”旗下的电机科技有限公司,具有30年多年专注工业电动机与汽车电机的研发、制造历史。拥有先进自动化生产线和专业检测设备,拥有资深的专业电机设计、工艺,工装设计工程师。 多年来,始终坚持“产品做精、市场做专”的经营方针。投重金搭建研发平台,精诚与多所院校建立研发联盟。获得了各种技术专利100多项,掌握了永磁同步、异步、电流开环、闭环矢量控制与485、CAN、PROFIBUS通讯的技术。完成了40V-1000V电压等级,0.4KW-8700KW功率等级产品供货能力。市场横跨电动汽车、工业控制两大行业领域,在电动汽车领域具有永磁电机、异步电机控制,40V-560V电压等级、1.5KW-250KW功率范围,风冷、水冷、油冷全系列的产品供应。当前生产的电动车电机有高效永磁同步电机,高效铜转子异步电机,高效鼠笼式异步电机三大系列。 “安邦信”制造基地根据公司的研发优势,大量采用自动化生产设备,生产设备及仪器业内领先,空间布局,生产线结构都依据国际标准设计,年产能超过15万台。 规范的流程,先进的设备,敬业的员工是安邦信制造体系的核心竞争力,严谨而人性化的生产管理实现了大规模生产效应。 电机驱动控制系统产品 “安邦信”针对市场的需求研发出电机驱动控制系统产品,形成一套驱控体系,为整车厂提供电机驱控系统解决方案,提高整车效率。其中72V,7.5KW和144V,15KW系列产品,经过市场验证,深受好评获得客户良好认可。 7.5KW和15KW电机驱动控制器系统,电机驱动控制系统具有高峰值转矩、高可靠性、低成本的特点。同时具有高效异步铜转子电机采用双冷技术,同步降低电机定转子温度,电机具有高效、高功率密度、

数控机床的驱动与控制系统

第四章数控机床的驱动与控制系统学 时 章节教学内容重点、难点 2 §4-1 位移、速度、位置传感器理解其应用情况 1 §4- 2 进给伺服驱动系统 4 §4-3.1 典型进给伺服系统(位置控制) ——步进式伺服系统 掌握系统的组成及工作 原理 1 §4-3. 2 闭环、半闭环进给伺服系统 第一节位移、速度、位置传感器 数控机床若按伺服系统有无检测装置进行分类,可分为开环系统和闭环(或半环)系统。也就是说检测装置是闭环(半闭环)系统的重要部件之一,它的作用是测量工作实际位移并反馈送至数控装置,使工作台按规定的路径精确移动。因此对于闭环系统来说,检测装置决定了它的定位精度和加工精度。数控机床对检测装置的主要要求为: (1)工作可靠,抗干扰性强; (2)使用维护方便,适应机床的工作环境; (3)满足精度和速度的要求; (4)成本低。 通常,数控装置要求位置检测的分辨率为0.001~0.0lmm;测量精度为±0.002~±0.02mm/m,能满足数控机床以1~l0m/min的最大速度移动. 位置检测装置的分类列表于4-1中。本章仅就其中常用的检测装置(旋转变压器感应同步器光栅、磁栅、编码盘)的结构和原理予以讲述。 旋转变压器 位置检测装置分类

是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。 ?工作原理 当转子绕组的磁轴与定子绕组的磁轴自垂直位置转动一角度θ时,绕组中产生的感应电势应为 E1=nV1sinθ =nV m sinωt sinθ 式中n——变压比; V1——定子的输入电压; V m——定子最大瞬时电压。 当转子转到两磁轴平行时(即θ=90o),转子绕组中感应电势最大,即 E1=nV m sinωt ?旋转变压器的应用 V3=nV m sinωt sinθ1 + nV m cosωt cosθ1 =nV m cos(ωt –θ1) ?感应同步器 感应同步器是一种电磁式位置检测元件,按其结构特点一般可分为直线式和旋转式两种。直线式感应同步器由定尺和滑尺组成;旋转式感应同步器由转子和定子组成。前者用于直线位移的测量,后者用于角度位移的测量。 它们的工作原理都与旋转变压器相似。感应同步器具有检测精度高、抗干扰性强、寿命长、维护方便、成本低、工艺性好等优点,广泛应用于高精度的数控机床。本节主要以直线式感应同步器为例,对其结构特点和工作原理进行讲述。

国外顶部驱动钻井系统的最新进展

国外顶部驱动钻井系统的最新进展 近两年来,世界顶部驱动钻井系统(以下简称为“顶驱”)有了较大发展,主要特点是:不断开发新型顶驱,并且形成系列。在AC-SCR-DC电驱动顶驱基础上,又开发了更先进的AC变频电驱动顶驱,Varco公司和National-Oilwell公司目前已经基本上形成AC变频电驱动顶驱系列。下面介绍最新进展。 本文主要介绍了美国Varco公司、National-Oilwell公司、Bowen公司、BJ公司,加拿大Tesco公司、CANRIG公司,挪威MH公司,法国Acb公司顶部驱动近两年来的最新进展,以及各公司最新顶驱系列。 1.美国Varco公司顶驱 美国Varco公司是最早研究开发顶驱的一家公司,多年来先后研究开发和应用了10多种型式顶驱。目前该公司生产的顶驱在世界油田的应用数量占世界第一位,成为研究开发制造销售顶驱世界最大的一家公司。V arco公司在近两年将原来10多种顶驱以及新研究开发的顶驱归纳成为7种规格新系列顶驱(见表1)。在新系列顶驱中,增加了新研制的TDS—8SA 型和TDS—11SA型两种AC变频电驱动顶驱,取消了原来的TDS—3型、TDS—3S型、TDS —5型、TDS—7S型顶驱,保留了IDS—1型、TDS—4H型、TDS—4S型、TDS—6S型、TDS—9S型、TDS—10S型顶驱。API提升载荷为2500kN~7500kN,连续工作扭矩为10.2kN.m~86.94kN.m,间隙工作扭矩为18.47kN.m~129.72kN.m,全功率最高转速为120r/min~500r/min,顶驱系统高度为4.7m~7.9m。新系列顶驱全部采用电驱动型式,其中IDS—1型、TDS—4H和TDS—4S型、TDS—6S型顶驱动均采用AC—SCR—DC电驱动型式,串激或并激DC电动机。其中TDS—8SA型、TDS—9SA型、TDS—10SA型和TDS—11SA型顶驱均采用AC变频电驱动型式,AC电动机。其中TDS—9SA型和TDS—11SA型两种顶驱均采用两个AC电动机,其余顶驱均为一个电动机,两个电动机结构紧凑,尺寸小。 IDS—1型顶驱,是AC—SCR—DC电驱动单速传动机构。适用于海洋自升式钻井装置,钻井船和平台石油钻机和陆地石油钻机。 TDS-4H型TDS-4S型顶驱,是AC-SCR-DC电驱动双速传动机构。适用于所有海洋石油钻机,座底式钻井船和大型陆地石油钻机。 TDS-6S型顶驱,是AC-SCR-DC电驱动单速传动机构。适用于大型海洋石油钻机。 TDS-8SA型顶驱,是AC变频电驱动单速传动机构。适用于所有海洋和大型陆地石油钻机。具有较好的钻井性能和经济效益。 TDS-9SA型顶驱,是AC变频电驱动双电动机单速传动机构。适用于中小型陆地和平台钻机。 TDS-10SA型顶驱,是AC变频电驱动单速传动机构。用于中小型陆地石油钻机和平台钻机。 TDS-11SA型顶驱,是AC变频电驱动双电动机单速传动机构。用于中小型陆地钻机和平台钻机。 2.美国National-Oilwell公司顶驱 美国National-Oilwell公司原生产PS—350/500型,PS—500/650型和PS500/650(双速)型等3种规格系列顶驱。近两年又研究开发了PSZ—650/650型和PSZ—750型两种双速传动机构顶驱,并把PS—500/650型顶驱改进为PS—500/500型顶驱;PS—500/650(双速)型顶驱改为PSZ—500/500型顶驱,保留了PS—350/500型顶驱,组成了5种规格新系列顶驱。全系列顶驱可选用AC-SCR-DC电驱动型式,GE752型串激或并激DC电动机,也可选用

AB类功率放大器驱动电路的设计与研究

1 AB类功放驱动电路设计目标 在实用电路中,往往要求放大电路的末级(即输出级)输出一定的功率,以驱动负载。能够向负载提供足够信号功率的放大电路称为功率放大电路,简称功放。经典功率放大器有4种类型:A类,AB类,B类和C 类,他们的主要差别在于偏置的情况不同。理想的4类经典放大器的最大效率的理论值与导通角的函数关系如图1所示。 A类功率放大器的线性度好,功率传递能力差,效率最大值为50%,导通角为360°;B类功率放大器通过减少一个周期中晶体管工作的时间来提高效率(最好可达78.5%),保持了实现线性调制的可能性,工作周期为半周期;C类功率放大器提供了接近100%的效率,但同时归一化的功率传递能力和功率增益都趋于零,线性度差;AB类放大器的效率和线性度在A类和B类放大器之间,其最大的特点是导通角的范围为180°~360°,相应的设计目标就是实现他在一个周期的50%和100%之间的某段时间内导通的工作方式,对于单MOS管来说,就是使他的漏极有电流通过的时间多于半个周期。 2 功放驱动电路的具体设计和仿真 2.1 镜像电流偏置方式

在采用双电源供电的差分放大电路中,两管的静态工作点电流直接由恒流源电路提供。对恒流源偏置电路的要求,除了提供稳定的静态工作点电流外,还应具有高的输出交流电阻。镜像恒流源电路是目前应用最广的一种高稳定恒流源电路,他特别适合于用在集成电路中。图2就是采用镜像电流偏置方式实现的驱动电路结构图。 这个电路是由2个性能上严格匹配的NMOS管和1个电阻、1个电感组成,IM1和IM2分别为电路中两个NMOS管M1和M2的漏极电流。M1管与M2管的衬底与源短接,不存在体效应。由于两个NMOS管宽长比完全一样,因此, 改变VDD或R,IM1和IM2相应的也就随之改变。鉴于IM2犹如IM1的镜像,故将这种恒流源电路称为镜像恒流源电路。图中的C和L作用跟前面分压偏置方式中论述的一样。 当两管完全对称时,温度的变化就不会引起IM1和IM2的变化,因此镜像恒流源电路是一种高热稳定的偏置电路。这一偏置方法还消除了与固定电压栅偏置有关的热漂移问题。 对于AB类功放,给定VDD为3 V,Vin为直流偏置2 V,振幅1 V,频率1 GHz的正弦波,选定R为800 Ω,C为0.5 pF,L为0.065 nH,M1和M2均为宽0.6μm,长0.18 μm的NMOS。从图3晶体管M2的漏极电流HSpice仿真波形图中可以看出Vg≥0.297 V的时长为0.69 ns,大于0.5

相关文档