文档库 最新最全的文档下载
当前位置:文档库 › 电锅炉蓄热技术在北方地区的应用分析

电锅炉蓄热技术在北方地区的应用分析

电锅炉蓄热技术在北方地区的应用分析
电锅炉蓄热技术在北方地区的应用分析

电锅炉蓄热技术在北方地区的应用分析

摘要:介绍了电锅炉固体蓄热技术应用的现状、设计原理、蓄热载体的选择、高温蓄热系统以及自控系统等,并以北京住宅为例分析了蓄热技术应用和运行费用的可行性。

关键词:低谷电价;固体蓄热技术;电锅炉;运行费

1.引言

固体蓄热式电锅炉,不仅可以享受到峰谷电价和国家的优惠政策,而对于能量的有效利用和节能也非常有意义。

根据国家“十·五”计划,今后五年我国能源消费年均增长约3.26%,煤炭将下降3.88%,发电量年均增长约5.08%,水电、核电、天然气等清洁能源的比重达到17.88%,提高5.6%。根据国际能源机构预测,到2007年全球新能源和可再生能源的比例,将发展到世界能源构成的54%以上。可以说电做为热源比油、气、煤有着更广阔的前景。

根据目前了解到的可靠信息,在山东乳山、荣城等城市国家正在建设核发电站。青岛、威海、烟台、日照、南京、上海等很多的城市投入巨资建设风力发电站。国家投入巨资建设的长江三峡,黄河小浪底等大型水力发电站,以及现在正在全球讨论和研发的太阳能蓄能技术。这些都在意味着国家对洁净、环保、节能等电力的开发和利用。电力作为最环保的能源在各国家都在使用。

中国针对这些电能的开发,是为了有效利用再生能源和控制稀有资源,相对出台了《中华人民共和国可再生能源法》。相对电力能源的开发和建设,电力能源的使用同时也出现了浪费现象。这就是低谷电的使用。在国外低谷电有效的进行了使用。我们国家针对低谷电的使用相对比较晚,主要原因是在技术方面和国家政策方面的滞后。现在通过国家发改委和电业部门及环保部门的大力支持和政策方面的落实,对于蓄能的使用起到了很大的促进作用。市场前景一片光明。

资源蓄热技术能够使能源得到合理有效的利用,通过控制技术,它可以按照系统所需要的热量提供给用户,不存在浪费的现象。首先电锅炉本身功率调节非常灵活方便,相比煤、气、油锅炉在能量有效利用方面具有优势。目前在我国北方很多地区,冬季采暖供热过剩现象极为严重,有些地方甚至出现“屋外数九寒天,屋内只穿衬衣仍在昌汗”的情景。如采用电锅炉蓄热技术,系统可以根据负荷预测或以往的经验,在不同热负荷日,设定不同的供水温度,根据时间及温度设定,系统进行自动调节。

2 电锅炉蓄热技术

2.1蓄热技术现状

对于电锅炉蓄热系统设计,主要是从技术可行、投资、经济性等几个方面考

虑。由于蓄热技术产生的历史较短,至今为止国家尚未有规范性的文件出台。蓄热技术发展良莠不齐,造成国内部分蓄热系统运行情况欠佳,但也不乏有很多成功的典范。青岛西泰能源科技有限公司于2006年引进了英国和韩国的蓄热技术,研究并开发了MgO固体蓄热技术,获得了世界能源器具发明家协会金奖,并获得了国际专利,通过了瑞典V attenfal认证和韩国电力研究所KERL品质认证等多项认证。

2.2蓄热系统原理结构图

蓄热电锅炉系统原理结构图如图1所示。

1-1图

该系统具有以下特点:

1.MgO压缩砖是非导体,在国内目前唯一一家使用本材料;其寿命25年左右;2.其蓄热温度高达800℃,世界上最小的同等蓄热量蓄热电锅炉,占地面积仅为水蓄暖的十分之一,传统锅炉的四分之一;

3.采用核工业专用的耐高温,耐火隔热保温材料;

4.全自动智能检测节能电子控制系统;无须人员管理;

5.热效率高达95-98%;

6.安装简单,安全可靠;

7.无需安装备用锅炉;

2.3蓄热载体的选择

目前蓄热技术根据热载体不同主要分为水蓄热和固体材料蓄热两种,但就目前技术分析,固体材料蓄热载体是最为理想和可行的。

所谓水蓄热就是将水加热到一定的温度,使热能以显热的形式蓄存在水中,当需要使用时,再将其释放出来提供采暖或直接作为热水供人们使用。一般来说,水的蓄热温度为40~130℃范围内。根据使用场合不同,对于生活用水,蓄热温度为40~70℃,可以直接提供使用;对于饮用开水,可以蓄至100℃;对于末端为风机盘管的空调系统,一般蓄热温度为90~98℃;对于末端为暖气片的采暖系统,蓄热温度为90~130℃或更高。但缺点就是占用建筑面积太大;保温效果差热效率低;控制系统繁琐,锅炉管理系统要求严格。

固体材料蓄热装置就是把热量储存在MgO砖内,蓄热温度达到800℃。当需用使用时,再将其释放出来提供采暖和洗浴及生活用水使用。使用温度随意设定。

2.4 蓄热装置

对于蓄热电锅炉系统,必须重点考虑蓄热装置内高温蓄热问题和高温材料使用问题。蓄热装置的温度设计和耐高温材料的选用是关键。通过国外的技术和材料解决了高温蓄热材料的问题,而且解决了高温加热元器件易损坏问题。这些设计方法在国内一些相关的文章中都有所介绍,就其高温材料的使用做出过分析。高温材料从蓄热砖到隔热材料;高温温度的自测控制系统;耐高温管路和水泵;汽化的热媒体混合罐技术及高温加热元器件等

2.5 高温蓄热系统。

众所周知,在大气压力下,水的饱和温度是100℃。如果增加压力的话,便可得到其饱和温度相应于所加压力、温度超过100℃的高温水。对电锅炉蓄热水系统而言,如果蓄热温度超过100℃便可称之为高温蓄热系统。高温蓄热系统是一个闭式系统。但是固体蓄热蓄的是温度而不是水,所以不存在高压的问题,是常压状态。锅炉出水温度控制在95℃以下,所以使用与采暖和洗浴。

通过对以上分析可以看出:

a)高温蓄热系统为常压系统,蓄热装置无需要采用有压罐。系统内无需增设定压、泄压、安全保护等装置。

b)虽然是高温度,但相应的管道及设备保温无需加厚,无需提高附属设施的承压承温要求。因为高温区全部在锅炉内部进行了解决;

c)系统在蓄热过程的温升和释热过程的温降值很大(一般达700℃),一般系统就意味在蓄热和释热时要相应的膨胀泄水和降压补水过程,这些过程在西泰固体蓄热电锅炉的系统里面采用进口混合管进行了合理的处理,不存在上诉的问题。

蓄热设备的投资可能因为蓄热能源的低廉价格而抵消,不是受机房面积限制,对于一些末端设备,如生活用水、风机盘管空调、洗浴、地暖、暖气片等一般推荐采用常温蓄热。

2.6 自控系统

自控装置与系统是组成蓄热系统的关键部分,自控设备均工作在条件相对恶劣的环境中,电动阀、传感元件均需在相对高温下工作,故自控装置采用进口设备较为可靠。

自控设备与器件包括:传感检测元件、电动阀、系统控制柜。整个系统的工业级可编程序控制器为核心,实现自动化控制。下位机和触摸屏在现场可以进行系统控制、参数设置和数据显示。

2.6.1 控制功能

蓄热控制系统通过对电锅炉、蓄热装置、板式热交换器、水泵、管路调节阀进行控制,调整蓄热与放热的运行工况,在最经济的情况下给末端提供一稳定的供水温度。

根据季节和机器运行情况,自控系统具备以下工况转换功能:

a)电锅炉蓄热同时供热模式;

b)电锅炉单独供热模式;

c)蓄热装置单独供热模式;

d)电锅炉与蓄热装置联合供热模式。

控制系统通过对系统进行运行监控、参数修改、数据采集等,让用户得到更好的服务。内容可扩展、参数可修改,通过通讯接口实现与楼宇系统的控制一体化,节约投资、方便管理。

3 北方地区蓄热分析

3.1 高寒地区采暖负荷特点

高寒地区年平均气温在-4~+4℃,取暖天数为120天左右。

采暖热负荷与室内外计算温差有关,对于办公类性质的建筑,虽然夜间室内值班温度(0~5℃)相对室内设计温度(18~20℃)较低,但由于高寒地区室外采暖计算温度很低(一般在-20℃以下),造成该地区办公建筑夜间负荷也较大(一般大于40%设计负荷)。而住宅夜间按12℃温度取暖,负荷也在80%设计负荷左右。这样的逐时负荷特性采用蓄热式电锅炉非常理想,因为有较优惠的电价政策和蓄热电锅炉的自控系统。

3.2 电锅炉蓄热系统举例分析

以下分别按北京20000m2住宅楼采用电锅炉蓄热为例,按照高温的蓄热模式,以及电锅炉优先和电锅炉避高峰运行的不同配置模式,对其设备配电功率,设备投资价格,运行费用进行对比分析。

按照北京现行住宅设计日采暖负荷按50W/m2计算,夜间负荷为设计负荷的80%。

高温蓄热供回温度按65℃/50℃,以此为依据进行系统配置。

供热方案:准备用电锅炉作为采暖热源,采用蓄热电锅炉,利用晚间23:00-次日7:00低谷电,在直供的同时,蓄热用于白天正常采暖。

3.3采暖选型依据

a.采暖面积:20000 m2

b.设备运行电加热时间:夜间低谷电时段(23:00-次日7:00)

c.采暖末端装置:暖气片、地暖、风机盘管等

d.采暖供回水温度为:65-50℃

e.冬季室内计算温度:t=18±2℃

f.年采暖天数:120天

g.设备动力电源:3相,380V/50H Z交流电

4.采暖负荷计算:

4.1采暖负荷计算:

机组运行方式采用24小时连续供热,采暖热指标为50W/m2,耗热量:Q=S ×q/1000(S:采暖面积m2;q:热指标W/m2)

则负荷计算如下:

采暖热负荷:Q=S×q/1000=20000×50/1000=1000 KW

4.2.采暖负荷分布:

直供总设计负荷(23:00-7:00):8000KW·h

蓄能总设计负荷(7:00-23:00):16000 KW·h

根据气候条件,50W/h为夜间最冷时需要的热量,而白天所需热量按70%计算即可,则蓄能时段的设计负荷按70%计算:

则16000×70%=11200 KW·h;

而夜间电锅炉8小时持续供热,夜间热量按80%计算即可:

则8000×80%=6400 KW·h;

运行负荷:11200+6400=17600KW

5.锅炉房主要设备及报价

说明:1、本设备的供货范围,相当于涵盖了水箱蓄热电锅炉的锅炉,蓄热水箱,水箱与锅炉之间的一次循环泵、一次补水泵、变频器、电动调节阀,控制柜,配电柜。

2、采用固体储热电锅炉,只需将外电源线,外系统的供回水管接上即可。

6.锅炉运行方式

采暖运行方式:晚上低谷时段(23:00-07:00)储热电锅炉蓄热,所蓄的热量供给整个建筑物的白天采暖及生活热水使用,晚上锅炉在蓄热的同时进行直供,保证建筑物夜间的低温供暖。

6.1固体储热电锅炉运行方式为全自动运行,夜间23:00低谷时段自行启动加热,至早7:00锅炉停止加热,并锅炉可根据室外温度情况,自行调节出口水温,节省能源,使运行费用最低,当室外温度较高时,如果锅炉蓄的热量在白天没有全部释放,剩余热量可留第二天使用。

6.2用户也可根据自己的需要,在不同的时段,设定不同的出口水温,锅炉可按用户的设置自动运行,较大的节省能源,降低运行费用。

6.3北京冬季:寒冷漫长。冬季长达5个月,若以平均温0℃以下为严冬,则有3个月(12—2月)。隆冬1月份平原地区平均温为-4℃以下,山区低于-8℃,极端最低气温平原为-2

7.4℃。冬季降水量占全年降水量的2%,常出现连续一个月以上无降水(雪)记录。冬季虽寒冷干燥,但阳光却多,平均日照在6小时以上。

6.4冬季采暖年使用天数按120天计算,将采暖日分为4部分,即设计负荷日、

70%设计负荷日、50%设计负荷日、30%设计负荷日。根据北京地区日均气温趋势图估计达到设计负荷日的天数为15天,达到70%设计负荷日的天数为30天;50%负荷的时间占35天;30%负荷的时间占40天。

6.5北京地区电力峰谷时段与电价如下(峰谷时段参照北京地区峰谷时段的数据)

7:00-23:00;0.564元/kW/h

23:00-7:00 0.204元/kW/h

按以上数据进行运行费计算,各类配置的投资及运用费用比较见表1-4表,运行费中不包含水泵等小功率设备耗电量。

7. 结语

7.1本分析结果对北京地区制定相应的峰谷电价有一定的参考意义,如果采用电锅炉蓄热采暖,电锅炉蓄热采暖运行费用与现行的集中热网的采暖收费标准有所降低;如果要使电锅炉蓄热采暖有竞争力,必须对峰谷电价结构作出必要的调整。

7.2根据对比分析测算,结果采用低谷电价均比现行电价降低63%左右,住宅采暖运行费就与现行集中热网收费标准便宜很多,锅炉蓄热采暖有很大的竞争力。

7.3采用高温蓄热与常规蓄热设备投资相差不大,能量守恒定律,;但蓄热装置占用建筑面积明显减少,前者大约为后者10%左右。

7.4住宅建筑采用避峰运行模式配置较燃油锅炉优先模式配置增加的投资,节约的运行费用可在1.5年左右收回。

五星级宾馆采暖蓄热电锅炉选型方案

项目名称: 五星级宾馆采暖用电锅炉 选型方案 电锅炉低谷电蓄热) xxx 设备有限公司 2011 年 5 月 5 日

电加热锅炉及蓄热水箱选型方案 、项目概况: 1宾馆地上四层,采暖总面积 25000m2。室内采暖为地暖盘管系统。 现在拟采用全自动常压电热水锅炉采暖,变压器容量须满足采暖电负荷使用的需要。 2、供热采暖温度:按国家有关规定要求,设计采暖室温 20 C 。 3、供热采暖时间: 主供暖时间为 6:00-22 : 00,计 16 小时, 22: 00 以后建筑物内值班低负荷保温供暖。 5、采暖供热锅炉:采用全自动常压电热水锅炉蓄热采暖技术,充分利用低谷电,配合蓄热水箱蓄 热。 6、系统组成: 本工程锅炉房系统分为二部分,一是蓄热部分,二是向系统供热部分。 蓄热部分由蓄热水箱+蓄热循环水泵+电锅炉组成,水箱最高水温为 85C ,最低水温为40C ; 供热部分由蓄热水箱+供热循环水泵+热交换系统+地热盘管组成,系统最高供水水温为 50C, 最低供水温度为 35 C 。 、系统供暖原则: 采暖供热集中在 6:00-22:00, 计 16 小时,其他时段 8小时相对供热要求低一点 ,因此,在供热时 应实行多供 6:00-22:00 ,其他时段相对少供的原则。 电锅炉蓄热式采暖工程是一个集暖通、电气、土建、自控、技经等专业的综合系统工程,采暖 方案设计就是要做到在保证供暖质量的前提下,使其初投资和运行费达到一个最佳的组合,以达到 最佳的技术经济比。 本方案运行方式: 采用全低谷电 8 小时 ,在每个采暖日采取了合理使用低谷电, 避开或慎用平峰电、 高峰电并配 合使用蓄热罐的供热方式。下面就这种情况计算锅炉的功率及蓄热水箱的容积。 四、采暖热指标 : 1、 在 6:00-22:00 时段 , 建筑采暖 正常补充热指标为: 80w/m 2 .h 2、 在22:00-6:00时段,建筑采暖保温补充热指标为: 48w/ m 2 . h (满负荷的60%) 五、蓄热式电锅炉及蓄热水箱的选型 1、 运行方式: 采暖采用全谷电8小时加热方式。即晚上23:00-7 : 00低谷电时段8小时锅炉边用蓄热水箱 蓄热边向宾 峰谷电时段表 23: 00--- -- 7 : 00 谷电 8 小时 电价: 0.36元/度 (估 值) 7: 00--- -- 8 : 00 平电 1小时 电价: 0.72 元/度( 估值) 8: 00--- ---11: 00 峰电 3 小时 电价: 1.04 元/度 (估值) 11: 00--- ---18 : 00 平电 7 小时 18: 00--- ---23 : 00 峰电 5 小时 值班低负荷保温期间为 22: 00—早上 6: 00,共计 8 小时。 4、

电极式电锅炉蓄热系统简介

电极式电锅炉蓄热系统 简介 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥ 6 kV); 大功率锅炉电压(可达13.5 kV); 控制电压380/220V 。 保护措施: 1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式: 功率调整范围:调整范围是1%-100%. 在 10%-100%的范围内可以做到无级调节。

优点: 锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。 当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图 二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。 年度主要发展里程碑 1905年世界上第一台电极锅炉在欧洲出现,电压等级限制在2000V以下 1920年代瑞典Z&I公司发明了浸没式电极锅炉,控制精度大幅度提高,采用高电压(6-15kV)直接供电,称为高压电极锅炉

电锅炉蓄热采暖系统的工作原理

电锅炉蓄热采暖系统的工作原理 电锅炉蓄热采暖系统是以电锅炉为热源,水为热媒,利用峰谷电价差,在供电低谷时,开启电锅炉将水箱的水加热、保温、储存;在供电高峰及平电时,关闭电锅炉,用蓄热水箱的热水供热。 系统是由电锅炉、蓄热水箱、换热器、水箱循环泵、供热泵、补水泵、定压装置、电动三通阀等设备组成。 电锅炉为热源,蓄热水箱用于蓄热和放热,定压装置用于用户侧定压,热交换器用于热源系统与采暖系统换热。 换热器一次侧由锅炉,蓄热水箱,蓄热泵,板换等组成热源系统。换热器二次侧由系统循环泵,换热器,定压装置,用户等组成了采暖供热系统。在系统中设置了电动三通调节阀,根据室外温度变化, 自动调节换热器二次侧的供水温度。从而节约能源,保证了采暖的舒适性。 系统内的电锅炉、水泵、电动三通阀均由系统控制柜控制,加上电动碟阀可做到无人值守全自动运行,在需要时全部设备也可手动操作运行。 电锅炉蓄热采暖的优越性 1.自动化程度高, 可根据室外温度变化调节采暖供水温度, 运行合理, 节约能源消耗。 2.运行安全可靠,具有过温、过压、过流、短路、断水、缺相等六重自动保护功能,实现了机电一体化。 3.无噪音、无污染、占地少(锅炉本体体积小,设备布置紧凑,不需要烟囱和燃料堆放地,锅炉房可建在地下)。 4.热效率高,运行费用低,可充分利用低谷电。 5.操作方便, 值班人员劳动强度小,节约人工费用。 6.适用范围广,可满足各种环境及条件的要求,可满足宾馆、饭店、机关、学校、厂房、住宅等多种取暖方式和生活热水的需要。 电锅炉蓄热采暖运行方式介绍 蓄热式电锅炉的运行方式,主要分为两种形式: 一种是全部使用低谷电,(23:00~7:00为低谷电价)即低谷时段电锅炉开启运行并蓄热,平电及高峰用电时段(7:00~8:00、11:00~18:00执行平电电价,8:00~11:00、18:00~23:00执行峰电电价)关闭电锅炉,由蓄热水箱中的热水向系统供热。 另一种运行方式是在使用低谷电的同时使用一部分平电,即低谷时段电锅炉开启运行并蓄热;白天关闭电锅炉,由蓄热水箱中的热水向系统供热、同时使用一部分平电蓄热或供热。

135电锅炉水蓄热技术的应用实例

电锅炉水蓄热技术的应用实例 现代建筑设计集团上海建筑设计研究院有限公司张伟程 摘要:介绍了电锅炉水蓄热技术在具体工程设计中的应用,并着重介绍了该系统的概况、流程以及各种运行模式下的控制方式。 关键词:电锅炉水蓄热运行模式控制 1 电锅炉水蓄热技术介绍 集中空调的冬季供暖部分,根据热源的类型,可以分为空气(或水)源热泵、燃油、燃煤气(或天然气)、燃煤、用电等几大类。 从用户的角度看,使用电作为热源不需要排废水、废气、废渣,也无明火,不需设置堆煤或储油场地,为最清洁能源,不存在消防、环保等特殊要求,且用电设备可以做到完全自动控制,减少人为操作所带来的浪费及管理难度。 对于以电能作为空调供暖热源的系统,在《公共建筑节能设计标准》GB50189-2005中有明确的规定:“除非夜间可利用低谷电进行蓄热、且蓄热式电锅炉不在日间用电高峰和平时段时间启用的建筑,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源。”故在实际应用时,不得采用电锅炉直供的形式,一般采用电锅炉水蓄热系统,且以全量蓄热为好。 电锅炉水蓄热系统是指在电力低谷期间,以水为介质将电锅炉产生的热量储存在蓄热装置中,适时供应给用热设备的系统[1]。这样在用电高峰时段就可以不开或者少开电锅炉,从而减少高峰时段用电量,起到移峰填谷的作用。电锅炉水蓄热从系统构成上来说只是在常规电热锅炉的基础上增加了一套水蓄热装置,其他各部分在结构上与常规热源系统并无不同,它在使用范围方面也与常规供热系统基本一致。通常水蓄热装置有常温(常压、温度低于100℃)和高温(高压、温度高于100℃)两种,蓄热量有全量和分量两种模式,蓄热系统有串联和并联两种流程。 电锅炉水蓄热系统具有以下几个显著优点: 1)适合在无集中供热与燃气源,而电力充足、供电政策支持和电价优惠的地区使用。 2)采用电能,不存在排放废水、废气、废渣之忧,无燃烧过程,安全可靠性高。 3)由于水蓄热系统是按白天全量负荷在夜间蓄热时段的平均值来确定电锅炉装机容量的,而电锅炉直供系统则是按白天的峰值负荷来确定的。所以相对于电锅炉直供系统,水蓄热系统减少了电锅炉装机容量,其附属运转设备和电力设施的装机容量也相应减少,从而减少了初投资费用。 4)可根据外界空调负荷的变化更及时、灵活、精确地供应储存的热量。 5)利用峰谷电价差,可以明显减少运行费用。有利于平衡用电负荷,缓解供电矛盾[2]。 6)当停电时,用小功率应急发电机带动循环水泵即可继续提供热量,提高了供暖系统的可靠性。 2 工程概况 陆家嘴时代金融中心(B3-5地块)冬季空调供暖设计计算热负荷峰值为5 044 kW:1~6层(裙房)973 kW,8~20层(低区)1 331 kW,22~34层(中区)1 331 kW,36~46层(高区)1 409 kW。考虑到当时的市政能源条件(无集中供热与燃气源,电力充足、供电政策支持和电价优惠)和初投资与运行费用的效益比以及机房安全条件,本工程采用常压型电热水锅炉生产的蓄热水作为空调供暖热源,采用常温全量(不考虑不可预见系数)蓄热模式、并联流程,并根据楼层分布情况分设4套系统,机房分别布置于7层,21层,35层,PH1设备层。每套系统均设有2台675 kW的电锅炉、1个有效容积为200m3的蓄热水箱,其设计蓄热水温为45~90 ℃,蓄热量为10 465 kWh;考虑10%的余量,联合供热(板式换热器的)总供热能力为1 600 kW;板式换热器一次侧的设计进、出水温度为55 ℃/45 ℃、二次侧(空调末端设备)的设计供、回水温度为50 ℃/40 ℃。该水蓄热系统夏季可兼作蓄冷用,其蓄热水箱转变为蓄冷水箱,主要用于新风空调箱的供冷。 系统有冬季电锅炉单蓄热、电锅炉单供热、蓄热水箱单供热、电锅炉与蓄热水箱联合供热(蓄热水箱优先)、电锅炉边蓄热边供热以及夏季制冷机蓄冷、蓄冷水箱放冷共7种运行模式,其原理见图1。

电锅炉采暖方案

电锅炉采暖方案 Prepared on 22 November 2020

电锅炉供暖方案 一、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间: 23:00~7:00 共计8小时; 平电时间: 7:00~8:00 11:00~18:00 共计8小时; 峰电时间: 8:00~11:00 18:00~23:00 共计8小时。 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23:00~7:00开启电锅炉加热水箱中的水,加热至95℃,向系统供热;

7:00~23:00关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电元/度 平电元/度 峰电元/度 4、自控: 蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。

电极式电锅炉蓄热系统概述

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥6 kV); 大功率锅炉电压(可达13.5 kV); 控制电压380/220V 。 保护措施:1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式:

功率调整范围:调整范围是1%-100%. 在10%-100%的范围内可以做到无级调节。 优点: ?锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 ?体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 ?在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图

二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。

电锅炉采暖方案

电锅炉供暖方案 一、工程概况 供暖采用电热水锅炉采暖系统 二、参照标准、依据 1、蓄热式电锅炉房设计施工图集。 2、常压蓄热水箱。 三、系统工作原理 1、蓄热系统直接向采暖系统供热,简称直接供热。直接供热在蓄热系统和采暖系统中不设热交换器,采暖系统中的循环水也回到蓄热水箱中。由于直接供热系统中不设热交换器、补水泵、定压装置,减少了设备,锅炉房管道也较为简单。 2、谷电、平电、峰电时间段(以北京地区为例) 谷电时间:23:00~7:00共计8小时;平电时间:7:00~8:0011: 00~18:00共计8小时;峰电时间:8:00~11:0018:00~23:00共计8小时。 电锅炉蓄热式供暖系统的运行,全部使用谷电: 23:00~7:00开启电锅炉加热水箱中的水,加热至95℃,向系统供热;7:00~23:00关闭电锅炉,由蓄热水箱向系统供热。 3、电网电价: 谷电0.21元/度 平电0.52元/度 峰电0.84元/度 4、自控:

蓄热状态和供热状态,蓄热水箱中的热水温度不断的在变化。但是锅炉房采暖供水温度却不能随蓄热水箱温度的变化而变化。为使锅炉房采暖供水温度保持在设定范围内,采取有效的温度调控装置是必须的。对直接供热的系统,采用合流三通阀来调控锅炉房采暖供水温度。淋浴系统出水管设温度自动控制阀。 5、蓄热式电锅炉房系统单独设置系统控制柜,系统控制柜一般应具备以下功能: ①控制蓄热箱是否达到蓄热温度。 ②控制锅炉在23:00自动启动,7:00达到蓄热温度后自动停炉。 ③控制电动三通阀,调控锅炉房采暖供水温度。 ④控制蓄热泵的启停,保证先启泵,后启炉,先停炉,后停泵。 6、电气部分: ①电锅炉的电源应由配电室直接供给,可用电缆或金属排输送。 ②锅炉控制柜及系统控制柜宜单独设置在控制室内。 ③所有设备外壳均应有可靠接地,接地电阻按有关要求执行。 四、设计参数 1、采暖系统: 采暖室外计算温度:-9℃ 采暖室内设计温度:20~22℃ 建筑物总耗热量:350KW 设计采暖天数:120天 采暖系统总阻力:60Kpa

电锅炉水蓄热技术的应用实例

电锅炉水蓄热技术的应 用实例 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

电锅炉水蓄热技术的应用实例 现代建筑设计集团上海建筑设计研究院有限公司张伟程 摘要:介绍了电锅炉水蓄热技术在具体工程设计中的应用,并着重介绍了该系统的概况、流程以及各种运行模式下的控制方式。 关键词:电锅炉水蓄热运行模式控制 1 电锅炉水蓄热技术介绍 集中空调的冬季供暖部分,根据热源的类型,可以分为空气(或水)源热泵、燃油、燃煤气(或天然气)、燃煤、用电等几大类。 从用户的角度看,使用电作为热源不需要排废水、废气、废渣,也无明火,不需设置堆煤或储油场地,为最清洁能源,不存在消防、环保等特殊要求,且用电设备可以做到完全自动控制,减少人为操作所带来的浪费及管理难度。 对于以电能作为空调供暖热源的系统,在《公共建筑节能设计标准》 GB50189-2005中有明确的规定:“除非夜间可利用低谷电进行蓄热、且蓄热式电锅炉不在日间用电高峰和平时段时间启用的建筑,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源。”故在实际应用时,不得采用电锅炉直供的形式,一般采用电锅炉水蓄热系统,且以全量蓄热为好。 电锅炉水蓄热系统是指在电力低谷期间,以水为介质将电锅炉产生的热量储存在蓄热装置中,适时供应给用热设备的系统[1]。这样在用电高峰时段就可以不开或者少开电锅炉,从而减少高峰时段用电量,起到移峰填谷的作用。电锅炉水蓄热从系统构成上来说只是在常规电热锅炉的基础上增加了一套水蓄热装置,其他各部分在结构上与常规热源系统并无不同,它在使用范围方面也与常规供热系统基本一致。通常水蓄热装置有常温(常压、温度低于100℃)和高温(高压、温度高于100℃)两种,蓄热量有全量和分量两种模式,蓄热系统有串联和并联两种流程。 电锅炉水蓄热系统具有以下几个显着优点: 1)适合在无集中供热与燃气源,而电力充足、供电政策支持和电价优惠的地区使用。 2)采用电能,不存在排放废水、废气、废渣之忧,无燃烧过程,安全可靠性高。 3)由于水蓄热系统是按白天全量负荷在夜间蓄热时段的平均值来确定电锅炉装机容量的,而电锅炉直供系统则是按白天的峰值负荷来确定的。所以相对于电锅炉直供系统,水蓄热系统减少了电锅炉装机容量,其附属运转设备和电力设施的装机容量也相应减少,从而减少了初投资费用。 4)可根据外界空调负荷的变化更及时、灵活、精确地供应储存的热量。 5)利用峰谷电价差,可以明显减少运行费用。有利于平衡用电负荷,缓解供电矛盾 [2]。 6)当停电时,用小功率应急发电机带动循环水泵即可继续提供热量,提高了供暖系统的可靠性。 2 工程概况 陆家嘴时代金融中心(B3-5地块)冬季空调供暖设计计算热负荷峰值为5 044 kW:1~6层(裙房)973 kW,8~20层(低区)1 331 kW,22~34层(中区)1 331 kW,36~46层(高区)1 409 kW。考虑到当时的市政能源条件(无集中供热与燃气源,电力充足、供电政策支持和电价优惠)和初投资与运行费用的效

电锅炉蓄热水箱和供热匹配性

电锅炉蓄热水箱和供热匹配性 采暖用热:116-140W/m2(100-200Kcal/h.m2); 淋浴用水量:100-200Kg/人,水温按40℃计算; 盆浴用水量:200Kg/人,水温按40℃计算。 根据以上数据,进行电锅炉的蓄热水箱和供热匹配。 假如电锅炉的输出功率是100KW,换算成产热量就是86000Kcal/h。 采暖面积就是(86000/120-86000/100)即是717-860平方米。 蓄热水箱容积计算:蓄热时间<低谷电时段8h,若选蓄热水箱容积10m3,设蓄热温升50℃,则蓄热所需时间:总蓄热量/电热水炉功率=50*10000/86000=5.8h 可供淋浴人数的计算:设冬季水温5-10℃,则蓄热水箱热水温度55-60℃,祖略地认为,10平方米这一温度的热水,在混合冷水后,可产生大约15平方米,40℃的热水。则可供淋浴的人数:15000/200-15000/100=75-150人。 即是说,15平方米,40℃的热水。则可供浴盆数为75人。 而电锅炉与燃煤、燃气锅炉相比较呢? 以30×10000kcal/h锅炉为例,标准煤的热值为 4800kcal/kg,煤锅炉热效率为65%,标准煤价格为350元/

吨;天然气的热值为9000kcal/Nm3,燃气蒸汽锅炉热效率为83%,燃气热水锅炉热效率为92%,天然气价格为2.2元/Nm3。 (1)燃煤锅炉小时最大费用:30×10000÷4800÷0.65×350÷1000=33.65元/小时 (2)燃气蒸汽锅炉小时最大费用:30×10000÷9000÷0.83×2.2=88.35元/小时 (3)燃气热水锅炉小时最大费用:30×10000÷9000÷0.92×2.2=79.71元/小时 综上比较,燃气蒸汽锅炉费用为燃煤锅炉费用的2.6倍,燃气热水锅炉费用为燃煤锅炉费用的2.4倍。

电极式电锅炉蓄热系统简介

电极式电锅炉蓄热系统简 介 Last revision on 21 December 2020

电极式电锅炉蓄热系统 一、产品简介 工作电压:一般采用中压电压(≥ 6 kV); 大功率锅炉电压(可达 kV); 控制电压380/220V 。 保护措施:1)、过流保护; 2)、缺相保护; 3)、短路保护; 4)、三相不平衡保护。 加热原理:一般采用电厂除盐水,加入一定电解质,使炉水具有一定电阻。利用水的高热阻特性,直接将电能转换为热能并产生蒸汽的一种装置,装置包含高电阻绝缘的压力容器和三相电级。 结构形式:

功率调整范围:调整范围是1%-100%. 在 10%-100%的范围内可以做到无级调节。 优点: ?锅炉利用水的电阻性直接加热,电能100%转化成热量,基本无热损失。 当锅炉缺水时,电极间的电流通道被切断,不存在类似常规锅炉干烧的现象。 ?体积小巧,启动速度快,从冷态启动到满负荷只需要几十分钟,从热态到满负荷只需1分钟。 ?在节能领域,电极热水锅炉结合大型蓄能设备,在低谷电价时间段把蓄能装置内热水加温,在高电价时使用,能够起到平衡电网负荷的作用。 图一:电极式电锅炉蓄热系统示意图 二、国内外同类产品水平综述 电极锅炉的应用在国外由来已久,世界上第一台电极锅炉于1905年诞生于欧洲。国内针对电极锅炉的研究始于20世纪80年代,主要是电热水锅炉技术,通常使用的是380V动力电,常压水箱作为蓄热体,此设备占地面积大、系统热效率低。20世纪80年代,承压蓄热一体化锅炉能有效减小设备占地面积,缺点是承压蓄热电锅炉技术的单台设备不能适用于高于100 m3的蓄热体积。20世纪90年代,喷射式电极锅炉通过美国西屋公司进入中国,开始了长达十余年的价格垄断阶段。目前,国内的少数企业通过吸收欧洲技术并经过改造升级,形成了常压电极锅炉。

电锅炉蓄热供暖方案

电加热锅炉及蓄热水箱选型方案 一、项目概况: 1、项目系一休闲山庄,两栋建筑物均为四层,地下一层,地上三层,采暖总面积约2000m2。室内采暖为散热片系统。 现拟采用全自动常压电热水锅炉蓄热式采暖方式,变压器总容量220KVA, 白天其余用户负荷约60KWH,夜间仅需照明,故电锅炉最大功率可控制在210KW以内。 2、供热采暖温度:按国家有关规定要求,结合项目性质,设计采暖室温16-18℃。 3、供热采暖时间: 主供暖时间为10:00-22:00,计12小时,22:00—早上10:00之间建筑物内值班低负荷保温供暖,共计12小时。 4、峰谷电时段表 24:00-----4:00 谷电4小时电价:0.35元/度; 4:00-----9:00 谷电5小时电价:0.45元/度; 9:00-----22:00 峰电13小时电价:0.85元/度; 22:00----24:00 平电2小时电价:0.65元/度。 5、采暖供热锅炉:采用全自动常压电热水锅炉蓄热采暖技术,充分利用低谷电,配合蓄热水箱蓄热。 6、系统组成: 本工程锅炉房系统可采用直接式供暖,即由蓄热水箱直接向供热用户供暖,蓄热水箱温度建议控制在65℃以内,最低回水温度35℃,并

且将蓄热水箱分隔为两部分,以保证供暖效果在整个供暖时段的稳定。 二、系统供暖原则: 采暖供热集中在10:00-22:00,计12小时,其他时段12小时相对供热要求低一点,因此,在供热时应实行多供10:00-22:00,其他时段仅进行保温供暖的原则。 三、运行方式: 根据用户性质和供暖总面积较小的特点,采暖方案设计要做到在保证局部时段供暖质量的前提下,使其初投资和运行费达到一个最佳的组合,以达到最佳的技术经济比。 本方案运行方式: 考虑到节省运行费用,本方案采用全低谷电9小时方案,在每个采暖日充分使用低谷电,少用或不用平电、避开高峰电并配合使用蓄热水箱的供热方式。下面就这种情况计算锅炉的功率及蓄热水箱的容积。 四、采暖热指标: 1、在10:00-22:00时段,建筑采暖正常补充热指标为:50w/m2.h 2、在22:00-10:00时段,建筑采暖保温补充热指标为:25w/ m2 .h(满负荷的50%) 五、蓄热式电锅炉及蓄热水箱的选型 1、运行方式: 采暖采用全谷电9小时加热方式。即晚上24:00-9:00低谷电时段9小时锅炉边用蓄热水箱蓄热边向建筑进行低负荷供暖、其他时段

蓄热电锅炉及电加热选型方案

蓄热电锅炉及电加热选型方案 一、项目概况: 1、项目系一休闲山庄,两栋建筑物均为四层,地下一层,地上三层,采暖总面积约2000m2。室内采暖为散热片系统。 现拟采用全自动常压蓄热电锅炉采暖方式,变压器总容量220KVA, 白天其余用户负荷约60KWH,夜间仅需照明,故电锅炉最大功率可控制在210KW以内。 2、供热采暖温度:按国家有关规定要求,结合项目性质,设计采暖室温16-18℃。 3、供热采暖时间: 主供暖时间为10:00-22:00,计12小时,22:00—早上10:00之间建筑物内值班低负荷保温供暖,共计12小时。 4、峰谷电时段表 23:00-----7:00 谷电8小时电价:0.30元/度; 7:00-----10:00 谷电3小时电价:0.45元/度; 10:00-----22:00 峰电12小时电价:0.85元/度; 22:00----23:00 平电2小时电价:0.65元/度。 5、采暖蓄热电锅炉:采用全自动常压电热水蓄热电锅炉采暖技术,充分利用低谷电,配合固体蓄热储能模块。 6、系统组成: 本工程锅炉房系统可采用蓄热式电锅炉供暖,即由蓄热固体模块直接向采暖用户供暖,蓄热固体模块温度在800摄氏度左右,最低回水温度50℃,并且将蓄热储能模块分隔为几个部分,以保证供暖效果在整个供暖期间的备用和稳定 二、系统供暖原则: 采暖供热集中在10:00-22:00,计12小时,其他时段12小时相对供热要求低一点,因此,在供热时应实行多供10:00-22:00,其他时段仅进行保温供暖的原则。 三、运行方式: 根据用户性质和供暖总面积较小的特点,采暖方案设计要做到在保证局部时段供暖质量的前提下,使其初投资和运行费达到一个最佳的组合,以达到最佳的技术经济比。 本方案运行方式: 考虑到节省运行费用,本方案采用全低谷电8小时方案,在每个采暖日充分使用低谷电,少用或不用平电、避开高峰电并配合使用蓄热水箱的供热方式。下面就这种情况计算锅炉的功率及蓄热模块的容积。 四、采暖热指标: 1、在10:00-22:00时段,建筑采暖正常补充热指标为:50w/m2.h 2、在22:00-10:00时段,建筑采暖保温补充热指标为:25w/ m2 .h(满负荷的50%) 五、蓄热式电锅炉及蓄热模块的选型 1、运行方式: 采暖采用全谷电8小时加热方式。即晚上23:00-7:00低谷电时段8小时锅炉边用蓄热模块蓄热边向建筑进行低负荷供暖、其他时段16小时锅炉停止工作,由蓄热装置向建筑供暖。 2、每天采暖热负荷: (1)在10:00-22:00时段,12小时正常采暖期间热负荷:2000m2×50W/ m2.h×12h=1200KW (2)在22:00-10:00时段, 12小时保温采暖期间热负荷:2000 m2×25W/ m2.h×12h =600KW (3)日总供暖负荷1200KW +600KW =1800KW 3、蓄热固体模块容积及锅炉选型(不含8小时谷电时段采暖热负荷)(1)总蓄热负荷功率=正常供暖期间12小时热负荷+保温供暖期间3小时热负荷150KW(8小时边蓄热边低负荷直供,) (2 ) 总蓄热量116万大卡(1KW=860Kcal/h)(3)蓄热固体模块供水温度差:Δt =95℃

电锅炉与蓄热系统

电锅炉及其蓄热系统 ——两个电锅炉房的设计介绍 胡瑜想 (中南建筑) 20世纪50—60年代,电锅炉在国外先进国家已得到普遍应用,这是因为这些国家的发电能力大幅度提高,对耗电大户有了供应保证,更重要的是,电热锅炉占地面积小,热效率高,无三废排放,无噪音污染,自动化程度高,操作简单,维修方便,因而得到迅速发展。而我国由于工业落后,电力供应更是僧多粥少,怎能奢谈用电锅炉? 近年来,由于我国电力工业的持续发展,产业结构发生了很大变化,而且人民生活质量不断提高,尤其是一些中心城市对环境保护的特殊要求和某些电力供应较为充足的地方,对电锅炉在中国的应用培育了一片沃土,而且,前些年,由于某些原因,产生了电供大于求的暂时现象,供电部门便出台了一些优惠政策(如有的地方许诺减免增容费、电价最低低至0.18元/KW),从而使电锅炉在中国的诞生创造了各方面的条件,如笔者设计的某工程,热负荷(包括办公室、客房空调、住宅采暖、酒店及住宅卫生热水、酒店餐厅、洗衣房用汽等)高达8000KW。我们原来设计了二台4.2MW的有压燃油热水炉及一台0.5t/h的蒸汽炉,后由于当

地供电局许诺减免增容费和低价供电,且由于环保要求高,贮油罐不好布置,业主发文要求我们改为电锅炉,但等电锅炉及其附属设备已到货正等安装时,业主又一次要求我们经过分析比较加上了半蓄热系统;某工程建筑面积近二十万平方米,写字楼部分空调用热就达4000KW,也是在上述优惠政策及环保要求高,用地面积少的情况下,选用了四台1000KW的电锅炉。 通过上述二个电锅炉房的设计,我们总结了下述一些经验: 一、设计前必须做好方案比较: 建筑用热现在无非是煤、油、气、电(少数地方有地热,但不普遍,应用场合较窄)几种热源,对于相对应的热源设备、配套设施、占地面积、热源价格要作出详细的认真的准确的可行性与经济技术分析报告。尤其是锅炉,同热源的锅炉,由于有进口与国产之别,价格差别很大,有人在做分析时,往往为了表达某种观点,将锅炉价格定为国产或进口的,造成假象,误导业主,我们在分析时,采取了下列格式: 出力相同(如同为1.4KW热水炉或2T/t蒸汽炉)的各种热源技术经济比较表:

电锅炉高温水蓄热采暖工程简介_邵小珍

电锅炉高温水蓄热采暖工程简介 邵小珍,滕力,余莉 (国电华北电力设计院工程有限公司,北京 100011) 摘 要:高温水蓄热可减小蓄热装置体积,提高蓄热品质。本文介绍了护国寺中医院高温水蓄热工程。并对高温水蓄热的设计蓄热温度,工作压力的选择进行了阐述。 关键词:电锅炉;高温水;蓄热;温度;采暖 中图分类号:TU2 文献标识码:B 文章编号:1671-9913(2003)04-0071-06 The Electrical Boiler Project of Storing Heating with High Temperature Water SHAO Xiao-zhen,TENG Li,YU Li (North China Power Enginee ring Co.,Ltd.,Beijing 100011,China) A bstract:Storing heatin g with high temperature water can reduce the volume of the device,improving the quality of the storing heatin g.The article introduces the first project storing heating with high temperature water in domestic.And discuss the choice of the design temperature and the working pressure for storing heating with high temperature water. Key words:electrical boiler;high temperature water;storing heating;temperature;collecting heat 电锅炉蓄热采暖是在用电低谷时段,通过电锅炉将热能储存在储热介质中,在用电高峰时段,将储热介质中的热能释放出来,供用户使用。目前,电蓄热采暖的储热介质主要为水。 电锅炉蓄热采暖工程中,蓄热装置可采用无压蓄热水箱和承压蓄热罐。无压蓄热水箱中水的可利用温差为90℃-50℃,蓄热水箱体积较大。承压蓄热罐蓄热温度较高,可达到150℃或更高,可利用温差为150℃-60℃,蓄热罐的体积也较小,所蓄能量品质较高,可适应北方地区采暖的各种要求,还可为用户提供蒸汽。 1 工程概述 护国寺中医院建筑采暖面积为13200m2,原有2台1.4MW燃煤热水锅炉,改造后的锅炉房主要为医院门诊楼,病房楼,办公楼提供采暖。病房楼要求采暖温度为22℃。该工程锅炉房利用原有燃煤锅炉房,将电锅炉,蓄热罐布置在原有锅炉间内。水泵、水处理设备、热交换器等布置在原有水泵房内。电锅炉房用电由2台800 KVA的箱式变电站提供。锅炉房原有烟道,烟囱拆除,布置2台箱式变电站。 本工程为国内首例采用承压蓄热罐蓄热,蓄热温度达到145℃的高温水蓄热式电锅炉房工程。通过2个采暖季的运行,各项参数均达到设计要求。 2 设计方案 2.1 蓄热温度、压力的选择 根据热水锅炉安全规程要求,热水锅炉运行 收稿日期:2003-08-27 作者简介:邵小珍(1971-),女,江苏人,工程师。 电力勘测设计 2003年12月 第4期 71

相关文档
相关文档 最新文档