文档库 最新最全的文档下载
当前位置:文档库 › 接触网的供电方式及其供电示意图

接触网的供电方式及其供电示意图

接触网的供电方式及其供电示意图
接触网的供电方式及其供电示意图

接触网的供电及其供电示意图

一、接触网的供电方式

接触网是架设在铁路线上空向电力机车提供电能的特殊形式的输电线路。电能由地方电力网输送到铁路牵引变电所后,经主变压器降压达到电力机车正常使用所需电压等级,再由馈电线将电能送至接触网。电力机车靠从接触网上获取电能以提供牵引动力,保证列车运行。

目前,我国电气化铁道干线上牵引变电所牵引侧母线上的额定电压为27.5kV(自耦变压器供电方式为2×27.5kV),接触网的额定电压为25kV,最高电压为29kV。在供电距离较长时,电能在输电线路和接触网中产生电能损耗,使接触网末端电压降低。但接触网末端电压不应低于电力机车的最低工作电压20kV,系统在非正常运行情况(检修或事故)下,机车受电弓上的电压不得低于19kV,所以两牵引变电所之间的距离一般为40~60km,具体间距需经供电计算确定。

电压从牵引变电所经馈电线送至接触网,流过电力机车,再经轨道回路和回流线,流回牵引变电所。应该指出:由于轨道和大地间是不绝缘的,在电力机车的电流流到轨道以后,并非全部电流都沿着轨道流回牵引变电所。实际上有部分电流进入大地,并在地中流回牵引变电所。这种由大地中流经的电流称地中电流(又称泄漏电流或杂散电流)。牵引变电所向接触网正常供电的方式有两种:单边供电和双边供电。如图1—3—1所示。

图1-3-1 电气化铁道供电系统

1—发电厂;2—区域变电所;3—输电线;4—分区亭;5—牵引变电所

6—接触线;7—轨道回路;8—回流线;9—电力机车;10供电线

1.单边供电

两个牵引变电所之间将接触网分成两个供电分区(又称供电臂),正常情况两相邻供电臂之间的接触网在电气上是绝缘的,每个供电分区只从一端牵引变电所获得电能的供电方式称为单边供电。单边供电时,相邻供电臂电气上独立,运行灵活;接触网发生故障时,只影响到本供电分区,故障范围小;牵引变电所馈线保护装置较简单。这是中国电气化铁道采用的主要形式,乐昌供电车间也在用这种供电方式。

2.双边供电

若两个供电分区通过开关设备,在电路上连通,两个供电分区可同时从两个牵引变电所获得电能,这种供电方式称为双边供电。双边供电可提高接触网电压水平,减少电能损耗。但馈线及分区亭的保护及开关设备都教复杂,因此,目前采用较少。

3.越区供电

单边和双边供电为正常的供电方式,还有一种非正常供电方式(也称事故供电方式)叫越区供电,如图l一3—2所示。

图1-3-2 区域供电示意

1—故障牵引变电所;2—越区供电分区

由于越区供电的供电量大大伸长,如果列车运行数量相同的情况下,则延伸供电臂的末端电压就会大大降低,倘若低于电力机车允许最低工作电压时,将造成机车不能运行,这是不允许的。因此,越区供电只能保证客车或重要货车通过,是作为避免中断运输的临时性措施。

在复线区段中,其供电情况与单线区段类同,只是牵引变电所有四回馈出线分别向两侧上、下行接触网供电。在同一侧,上、下行接触网供电相别相同,以便于上、下行实现并联供电,可提高接网末端电压。越区供电时,通过分区所内的开关设备来实现。复线区段供电示意如图1—3—3所示。

图1-3-3 复线区段供电示意图

二、牵引供电系统的供电方式

我国电气化铁道采用单相工频25 kV交流制,由于单相大电流在线路周围空间产生较强电磁场,使邻近通信、广播设备等产生杂音干扰和感应电压。为减少电气化铁道对沿线通信设备的干扰,保障其设备、人身安全及正常工作,在牵引供电系统中采取了许多防干扰措施,形成了不同的牵引供电方式。目前我国的牵引供电方式主要有下列三种:直供加回流供电方式、BT供电方式和AT供电方式。

1.直供加回流供电方式

在我段管内滦县供电车间采用的供电方式就是,直供加回流供电方式,所以在此重点说说这种直供加回流供电方式。如图1—3—4所示。

在近几年新建的电气化铁道区段,我国普遍采用一种称为直供加回流线的供电方式,它与直供、BT供电方式不同的是在接触网支柱田野侧,架设一条回流线不设吸流变压器。每隔一定距离,通过吸上线将回流线与轨道扼流变压器中性点相连。扼流变压器起到平衡两条钢轨间电压,降低对信号轨道电路的影响。

直供加回流线供电方式,其回流线不仅仅提供牵引电流通道,而且也起到了防干扰的作用,即回流线中的电流与接触网中的牵引电流大小相等方向相反,空间电磁场互相抵消。去掉了吸流变压器减小了牵引网阻抗,也减少投资和维修工作量,是目前经济技术指标比较好的一种供电方式。

电气化铁道主要供电方式

接触网的供电方式 我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。 1、直接供电方式 如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过

的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。

2、吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。 由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。 BT供电方式原理结线图 H—回流线;T—接触网;R—钢轨; SS—牵引变电所;BT—吸流 变压器。 牵引网阻抗与机车至牵引变电所的长度不是简单的线性关系。随着机车取流位置的不同,牵引网内的电流分布可有很大不同,例如图中当机车位于供电臂内第一台BT前方时,牵引负荷未通过吸流变压

接触网的供电方式及其供电示意图

接触网的供电及其供电示意图 一、接触网的供电方式 接触网是架设在铁路线上空向电力机车提供电能的特殊形式的输电线路。电能由地方电力网输送到铁路牵引变电所后,经主变压器降压达到电力机车正常使用所需电压等级,再由馈电线将电能送至接触网。电力机车靠从接触网上获取电能以提供牵引动力,保证列车运行。 目前,我国电气化铁道干线上牵引变电所牵引侧母线上的额定电压为27.5kV(自耦变压器供电方式为2×27.5kV),接触网的额定电压为25kV,最高电压为29kV。在供电距离较长时,电能在输电线路和接触网中产生电能损耗,使接触网末端电压降低。但接触网末端电压不应低于电力机车的最低工作电压20kV,系统在非正常运行情况(检修或事故)下,机车受电弓上的电压不得低于19kV,所以两牵引变电所之间的距离一般为40~60km,具体间距需经供电计算确定。 电压从牵引变电所经馈电线送至接触网,流过电力机车,再经轨道回路和回流线,流回牵引变电所。应该指出:由于轨道和大地间是不绝缘的,在电力机车的电流流到轨道以后,并非全部电流都沿着轨道流回牵引变电所。实际上有部分电流进入大地,并在地中流回牵引变电所。这种由大地中流经的电流称地中电流(又称泄漏电流或杂散电流)。牵引变电所向接触网正常供电的方式有两种:单边供电和双边供电。如图1—3—1所示。 图1-3-1 电气化铁道供电系统 1—发电厂;2—区域变电所;3—输电线;4—分区亭;5—牵引变电所 6—接触线;7—轨道回路;8—回流线;9—电力机车;10供电线

1.单边供电 两个牵引变电所之间将接触网分成两个供电分区(又称供电臂),正常情况两相邻供电臂之间的接触网在电气上是绝缘的,每个供电分区只从一端牵引变电所获得电能的供电方式称为单边供电。单边供电时,相邻供电臂电气上独立,运行灵活;接触网发生故障时,只影响到本供电分区,故障范围小;牵引变电所馈线保护装置较简单。这是中国电气化铁道采用的主要形式,乐昌供电车间也在用这种供电方式。 2.双边供电 若两个供电分区通过开关设备,在电路上连通,两个供电分区可同时从两个牵引变电所获得电能,这种供电方式称为双边供电。双边供电可提高接触网电压水平,减少电能损耗。但馈线及分区亭的保护及开关设备都教复杂,因此,目前采用较少。 3.越区供电 单边和双边供电为正常的供电方式,还有一种非正常供电方式(也称事故供电方式)叫越区供电,如图l一3—2所示。 图1-3-2 区域供电示意 1—故障牵引变电所;2—越区供电分区 由于越区供电的供电量大大伸长,如果列车运行数量相同的情况下,则延伸供电臂的末端电压就会大大降低,倘若低于电力机车允许最低工作电压时,将造成机车不能运行,这是不允许的。因此,越区供电只能保证客车或重要货车通过,是作为避免中断运输的临时性措施。

电气化铁路接触网

电气化铁路接触网 电气化铁路接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路。其由接触悬挂、支持装置、定位装置、支柱与基础几部分组成。 接触悬挂包括接触线、吊弦、承力索以及连接零件。接触悬挂通过支持装置架设在支柱上,其功用是将从牵引变电所获得的电能输送给电力机车。 支持装置用以支持接触悬挂,并将其负荷传给支柱或其它建筑物。根据接触网所在区间、站场和大型建筑物而有所不同。支持装置包括腕臂、水平拉杆、悬式绝缘子串,棒式绝缘子及其它建筑物的特殊支持设备。 定位装置包括定位管和定位器,其功用是固定接触线的位置,使接触线在受电弓滑板运行轨迹范围内,保证接触线与受电弓不脱离,并将接触线的水平负荷传给支柱。 支柱与基础用以承受接触悬挂、支持和定位装置的全部负荷,并将接触悬挂固定在规定的位置和高度上。我国接触网中采用预应力钢筋混凝土支柱和钢柱,基础是对钢支柱而言的,即钢支柱固定在下面的钢筋混凝土制成的基础上,由基础承受支柱传给的全部负荷,并保证支柱的稳定性。预应力钢筋混凝土支柱与基础制成一个整体,下端直接埋入地下。 接触网的电压等级 接触网的电压等级:工频单相交流制:25KV 接触悬挂的类型 电气化铁路接触网的分类大多以接触悬挂的类型来区分。我们所讲的接触悬挂的分类是对接触网的每个锚段而言的。接触悬挂的种类较多,一般根据其结构的不同分成简单接触悬挂和链形接触悬挂两大类。 简单接触悬挂(以下简称简单悬挂)系由一根接触线直接固定在支柱支持装置上的悬挂形式。国内外对简单悬挂做了不少研究和改进。我国现采用的带补偿装置的弹性简单悬挂系在接触线下锚处装设了张力补偿装置,以调节张力和弛度的变化。在悬挂点上加装8~16m 长的弹性吊索,通过弹性吊索悬挂接触线,这就减少了悬挂点处产生的硬点,改善了取流条件。另外跨距适当缩小,增大接触线的张力去改善弛度对取流的影响。 链形悬挂的接触线是通过吊弦悬挂在承力索上。承力索悬挂于支柱的支持装置上,使接触线在不增加支柱的情况下增加了悬挂点,利用调整吊弦长度,使接触线在整个跨距内对轨面的距离保持一致。链形悬挂减小了接触线在跨距中间的弛度,改善了弹性,增加了悬挂重量,提高了稳定性,可以满足电力机车高速运行取流的要求。

配电网供电能力评价的研究现状

配电网供电能力评价的研究现状 目前,国内在供电能力的评价方法和评价指标方面所做工作不多,主要采取了三种思路对供电能力进行评价:一是评价城市电网供电能力的常用方法,包括容载比法错误!未找到引用源。、尝试法、最大最小负荷倍数法错误!未找到引用源。和网络最大流法错误!未找到引用源。以及采用基于直流潮流的线性规划(1inear programming ,LP)模型错误!未找到引用源。和基于交流潮流的模型错误!未找到引用源。来求解城市电网最大供电能力指标;二是通过选取影响电网供电能力的主要影响因素,并引入模糊评估算法,对城网供电能力的各项指标和整体进行模糊评估;三是以主变互联关系为基础进行电网供电能力计算。本节将对上述三种思路分别进行分析与介绍,为后续章节对供电能力计算方法及评价体系研究提供背景资料。 2.1 常用评价方法 2.1.1容载比法 容载比法采用反映城市电网宏观供电能力的变电容载比来表示电网的供电能力,该方法主要从网络的变电能力角度来评价网络的供电能力错误!未找到引用源。。根据《城市电力网规划设计导则》中的定义,容载比是某一供电区域变电设备总容量(kV A )与对应的总负荷(kW )的比值,在工程中通常采用如下方法估算容载比: max P S R ei S ∑= (2-1) 式中:R S ——容载比,kV A/kW ; P max ——该电压等级的全网最大预测负荷; S ei ——该电压等级变电站i 的主变容量。 变电容载比在计算过程中没有考虑到配电网的网架结构,当网络的配电能力不足时该方法的准确性较差。并且该方法仅仅给出了变电设备容量适应负荷的能力,并没有提出配电网供电能力的计算方法,更不能给出配电网供电能力的大小。因此,容载比可以作为评价电网供电能力的一个重要指标,在一定程度上能够反

铁路牵引网的供电方式与接触网结构

铁路牵引网的供电方式与接触网结构 1 牵引网的供电方式 铁路牵引供电系统的主要功能是将地方电力系统的电能引入牵引变电所,通过牵引变电所和接触网等,向电力机车提供持续电能。牵引网主要由馈电线、接触网、钢轨、回流线组成。馈电线(Feeder)是指从牵引变电所母线连接出来连接到接触网之间的传输导线。接触网(Catenary)悬挂在铁道钢轨线正上方,对地标称电压27.5kV,是沿电气化铁路架空敷设的供电网,通过受电弓向电力机车或动车组提供电能。接触网主要由承力索、吊弦、接触线组成,接触线与路轨轨面的高度通常为 6.5m。牵引网供电方式主要有:直接供电方式、BT供电方式、AT供电方式、CC供电方式。目前我国高速铁路和客运专线普遍采用带回流线的AT 供电方式。 1.1 AT供电方式 AT(Auto-Transformer)供电方式的即自耦变压器供电方式,AT 供电方式具有更好的防干扰效果和更大的牵引能力,目前我国高速铁路和载重铁路基本使用AT 供电模式,牵引变电所的进线电源为交流110kv或220 kV,出线电压为交流2×27.5 kV。牵引变电所主变压器输出二次侧分别接于牵引馈线(T)相和(F)相,每隔10~15km 设立一个自耦变压器所,并联接入牵引网中,变压器的首端和尾端与接触网的(T)相和(F)相相连,绕组的中点与钢轨相连接。接触网和正馈线中的电流大小相等,方向相反,且电流大小仅为电力机车电力的一半,减少了电弧对接触网烧伤和受电弓滑板等问题,对邻近通信线路的干扰大大降低。与其它供电方式相比,线路上的电压降可以减少一半,因此供电臂可延长一倍,达到50km—60km。采用AT 供电方式无需加强绝缘就能使供电回路的电压提高一倍,在AT 区段电力机车是由前后两个AT 所同时并联供电,因此适宜与高速铁路和重载铁路等大负载电流运行。 图1 A T供电方式 2 接触网结构 高速铁路接触网功能是从牵引变电所引入电能,并将电能输送到沿铁路钢轨运行的电力机车的受电弓上。接触网主要包括支柱和导线,导线包括传输线(T 线)、承力索、正馈线(F

铁路接触网组成与分类

接触网的组成 接触网是沿铁路上空架设的一条特殊形式的输电线路,它由接触悬挂、支持装置、定位装置、支柱与基础等几部分组成,如图1-1-1所示。 1.支持装置 支持装置是接触网中支持接触悬挂,并将其机械负荷传给支柱固定的部分。支持装置包括腕臂、平腕臂(或水平拉杆、悬式绝缘子串)、棒式绝缘子及接触悬挂的悬吊零件。根据接触网所在区间、站场和大型建筑物需要的不同,支持装置表现为不同的形式,如:腕臂结构(图1—1—1所示为区间腕臂装配形式)、软横跨、硬横跨(多

股道站场使用)及隧道、桥梁和其它大型建筑物上的特殊支持结构。 2.定位装置 定位装置包括定位管、定位器、定位线夹及其连接零件。其作用是固定接触线的横向位置,使接触线水平定位在受电弓滑板运行轨迹围,保证接触线与受电弓不脱离,使受电弓磨耗均匀,同时将接触线的水平负荷传给支柱。 3.支柱与基础 支柱与基础用以承受接触悬挂、支持和定位装置的全部负荷,并将接触悬挂固定在规定的位置和高度上。我国接触网中主要采用预应力钢筋混凝土支柱和钢柱。基础用来承载支柱负荷,即将支柱固定在地下用钢筋混凝土制成的基础上,由基础承受支柱传给的全部负荷,并保证支柱的稳定性。预应力钢筋混凝土支柱可不设单独的基础,支柱直接埋入地下,起到基础的作用。

接触悬挂的类型 接触网的分类大多以接触悬挂的类型来区分。在一条接触网线路上,接触线和承力索在延伸一定长度后,为了满足供电和机械方面的要求,总是将接触网分成若干一定长度且相互独立的分段,这就是接触网的锚段。我们所讲的接触悬挂分类是针对架空式接触网中的每个锚段而言。根据其结构的不同分成简单接触悬挂和链形接触悬挂两大类。 1.简单接触悬挂 简单接触悬挂(以下简称简单悬挂)系由一根接触线直接固定在支柱支持装置上的悬挂形式。它在发展中经历了未补偿简单悬挂、季节调整式简单悬挂和目前采用的带补偿装置及弹性吊索式简单悬挂。其结构分别如图1—2—1和图1—2—2所示。 接触线(或承力索)端头同支柱的连接称为线索的下锚。下锚分两种方法,一是将线索端头同支柱直接固定连接,称为硬锚或者未补偿下锚。另一种是加装补偿装置,以调整线索的弛度和力称为补偿下锚。 未补偿的简单悬挂结构简单,要求支柱高度较低,因此建设投资低,施工和检修方便。其缺点是导线的力和弛度随气温的变化较大,接触线在悬挂点受力集中,形成硬点,弹性不均匀,不利于电力机车高速运行时取流。

供配电环网柜基本知识

供配电环网柜基本知识 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

什么是环网柜 为提高供电可靠性,使用户可以从两个方向获得电源,通常将供电网连接成环形。这种供电方式简称为环网供电。在工矿企业、住宅小区、港口和高层建筑等交流10KV配电系统中,因负载容不大,其高压回路通常采用负荷开关或真空接触器控制,并配有高压熔断器保护。该系统通常采用环形网供电,所使用高压开关柜一般习惯上称为环网柜。环网柜除了向本配电所供电外,其高压母线还要通过环形供电网的穿越电流(即经本配电所母线向相邻配电所供电的电流),因此环网柜的高压母线截面要根据本配电所的负荷电流于环网穿越电流之和选择,以保证运行中高压母线不过负荷运行。目前环形柜产品种类很多,如HK-10、MKH-10、8DH-10、XGN-15和SM6系列。 环网柜是一组高压开关设备装在钢板金属柜体内或做成拼装间隔式环网供电单元的电气设备,其核心部分采用负荷开关和熔断器,具有结构简单、体积小、价格低、可提高供电参数和性能以及供电安全等优点。它被广泛使用于城市住宅小区、高层建筑、大型公共建筑、工厂企业等负荷中心的配电站以及箱式变电站中。 环网柜一般分为空气绝缘和SF6绝缘两种,用于分合负荷电流,开断短路电流及变压器空载电流,一定距离架空线路、电缆线路的充电电流,起控制和保护作用,是环网供电和终端供电的重要开关设备。柜体中,配空气绝缘的负荷开关主要有产气式、压气式、真空式,配SF6绝缘的负荷开关为SF6式,由于SF6气体封闭在壳体内,它形成的隔断断口不可见。环网柜中的负荷开关,一般要求三工位,即切断负荷,隔离电路、可行靠接地。产气式、压气式和SF6式负荷开关易实现三工位,而真空灭弧室只能开断,不能隔离,所以一般真空负荷环网开关柜在负荷开关前再加上一个隔离开关,以形成隔离断口。 环网与环网柜 环网是指环形配电网,即供电干线形成一个闭合的环形,供电电源向这个环形干线供电,从干线上再一路一路地通过高压开关向外配电。这样的好处是,每一个配电支路既可以同它的左侧干线取电源,又可以由它右侧干线取电源。当左侧干线出了故障,它就从右侧干线继续得到供电,而当右侧干线出了故障,它就从左侧干线继续得到供电,这样以来,尽管总电源是单路供电的,但从每一个配电支路来说却得到类似于双路供电的实惠,从而提高了供电的可靠性。 所谓“环网柜”就是每个配电支路设一台开关柜(出线开关柜),这台开关柜的母线同时就是环形干线的一部分。就是说,环形干线是由每台出线柜的母线连接起来共同组成的。每台出线柜就叫“环网柜”。实际上单独拿出一台环网柜是看不出“环网”的含义的。 这些环网柜的都不大,因而环网柜的高压开关一般不采用结构复杂的断路器而采取结构简单的带高压熔断器的高压负荷开关。也就是说,环网柜中的高压开关一般是负荷开关。环网柜用负荷开关操作正常电流,而用熔断器切除短路电流,这两者结合起来取代了断路器。当然这只能局限在一定容量内。 这样的开关柜也完全可以用到非环网结构的配电系统中,于是随着这种开关柜的广泛应用,“环网柜”就跳出了环网配电的范畴而泛指以负荷开关为主开关的高压开关柜了。

配电网电力基础业务知识培训

一、电力系统介绍 1.电力系统的构成 2.配电、用电 配电、低压入户是电力系统中直接与用户相连并向用户分配电能的环节。配电系统由配电变电所(通常是将电网的输电电压降为配电电压)、配电线路(即1 千伏以上电压)、配电变压器、以及相应的控制保护设备组成。 低压入户是由配电变压器次级引出线到用户入户线之间的线路、元件所组成的系统,又称低压配电网络。 配电网络是从变电站出线到配电变压设备之间的网络。电压通常为 6~10千伏,城市多使用 10 千伏配电。随着城市负荷密度加大,已开始采用 20 千伏配电方案。 配电线路按结构有架空线路和地下电缆。农村和中小城市可用架空线路,大城市(特别是市中心区)、旅游区、居民小区等应采用地下电缆。 二、线路建设 1.线路建设的目的 线路建设的目的就是将发电厂的电能通过架空或电缆线路、变电站等组合的系统传递给用电单位。 主网线路的主目的是将发电站的电力输送至变电站,再由变电站进行降压处理。(由110kV、220kV、500kV降至10kV)。 配网线路的主要目的是从变电站将10kV送至居民区、工厂、商业区附近,再由杆上变、变电箱等设备将电压降至380V或220V,最后送至用户使用。

2.电网建设主要参与角色 电网公司、设计院、施工单位、运检单位(电网网公司)。 3.配网线路建设流程 配网线路的主要建设流程如下: ①由国网公司作为甲方发起设计工作的招标。 ②设计院中标后,开始进行线路设计,将设计成果提交给国网公司。 ③国网公司确认设计成果后,发起施工的招标。 ④施工单位中标后,开展建设工作。完成建设后需要由国网公司根据设计进行验收。 ⑤完成建设后,国网公司将线路移交给运检修单位进行维护。 三、设计工作的内容 1.设计流程 整个设计过程分为4个步骤:可行性研究、初步设计、施工图设计、竣工图设计。理论上,上一阶段的设计成果通过审核之后才能够进入下一个设计阶段。但对于配网工程来说,一般没有这么严格的要求。 可研阶段工作主要目标是确定方案的可行性、工作范围,一个比较大的作用是估算投资。工作内容包括:选线&选址、初步勘察、线路路径图、取得协议。 初步阶段是整个设计构思基本形成的阶段,如设计原则确定、最佳路径的选择、杆塔基础形式的选择等。这一阶段需要输出的内容有:线路路径图、平断面图、杆塔明细表。 施工图阶段的工作是将已明确的设计进行细化,相关设计成果将作为施工的依据。对于架空线路,主要工作内容有:杆塔设计、金具设计、基础设计。

关于环网供电技术在地铁供电中的应用研究 陈伟

关于环网供电技术在地铁供电中的应用研究陈伟 发表时间:2018-06-13T15:11:30.750Z 来源:《建筑学研究前沿》2018年第1期作者:陈伟 [导读] 就目前的情况来看,地铁环网供电的接线方式主要有以下几种。 港铁轨道交通(深圳)有限公司广东深圳 518000 摘要:随着城市发展速度加快、城市人口激增,交通堵塞现象越来越严重,而地铁的出现有效地缓解了这一局面。为保证地铁的正常运行,我们使用环网供电这一先进技术来保障地铁供电系统的安全与稳定。 关键词:环网供电技术;地铁供电;应用研究 1环网供电概述 就目前的情况来看,地铁环网供电的接线方式主要有以下几种,即:“手拉手”环网、“网格式”环网、电缆单环网、电缆双环网等。而目前基本上不会使用“手拉手”环网、“网格式”环网。上海地铁一号线牵引网络供电方式是独立式供电,即是采用了电缆单环网。因为消防系统的电源的特殊需求,因此使用电缆单环网供电是不符合要求的,对此现在的地铁网供电也都不使用这种方法。如今在我国地铁交通中比较多的是电缆双环网,即是电缆单环网的组合。电缆双环网主要是利用了二回电缆线路,由两路完全独立的电源供电。这种接线的方式的优势是供电非常灵活,同时也非常的可靠,能够有效的保障用户的安全用电。对于双环网线路如果其中一个电缆线路出现故障或者需要进行检修的时候,母联开关合上能够确保后续的正常用电。 2环网供电的实施原则 在线路的设计过程中需要确保电压等级,同时也要遵循一定的原则,即:1)充分的满足安全可靠的供电要求。2)变电所会存在2个独立的电源。3)关于设备的容量需要满足相关要求。4)符合在分配的时候需要满足相应的要求。5)在电源的接入过程中需要靠近供电分区。5)确保满足相关的经济指标。6)达到相关继电保护要求。7)接线的过程中要简单。8)确保牵引变电所、降压变电所的主接线处于一致的状态。9)对于管理方必须要严格的按照相关要求进行。10)对于设备的选型需要满足相关要求。 3常见的地铁供电方式 就目前的情况来看,地铁供电方式主要有以下几种:1)集中式的供电方式。地铁线长度太长,电容量受到了一定的限制,因此会选择在地铁的内站监理供电站,其主要的作用是承受中压环形电网的供电。对于这个供电站其具有一定的优势,主要是供电的过程中不会受到外界影响,可靠性非常强。同时其有专门的载调压变压器,能够确保供电的质量。在调度的管理过程中自由度非常高,当能够进行很好的调度管理的时候能够在最大程度发挥其性能。对于供电方式的检修过程也非常简单,能够很好的开展该项工作。会需要很大的资金成本,供电系统统筹要求非常高。深圳地铁四号采用的供电方式就是集中式供电。2)分散式的供电方式。地铁沿线所引入的电源多,对于区域内的变电所在地铁车站中主要使用的方式是直接降压,对于这种方式具有很多优点,主要是:成本少,同时能够有效的进行城市电网规划管理。但是在应用的过程中也存在很多问题,主要是会连接很多的城市电网,因此会在很大程度上增加管理难度,在这个过程中如果出现了故障,很难采取有效的措施进行控制。不仅如此,整流机也会在工作的过程中直接影响到城市的电网的运行。3)混合式供电方式。该种方式最大的特点是有效的结合了集中式和分散式,属于一种新的供电方式。目前其有2个表现形式,即:①集中式和分散式是处于并联状态,进行地铁环线供电的时候会分别采用这两种形式,集中式供电和分散式供电。②地铁站的中压环线的供电方式还是主要以地铁站的中压环线为主要,集中供电站会分解为多个取电点,这样也能够形成一个完整的工作体系。 4环网供电技术在地铁供电系统中的应用 地铁作为城市电网的重要用户,属一级负荷。地铁供电系统的主变电所、牵引变电所、降压变电所,都要求获得两路电源。目前,国内地铁均采用双环网形式构成供电系统。环网供电方式安全可靠、投资少,供电设备简洁、高效,操作起来比较容易,变压器性能稳定等等,将这些优势运用到地铁供电系统中,有力的保证了城市地铁的安全运行。 4.1环网接线 电网供电必须满足“N-1安全原则”,通过调整电网接线方式和设备运行率T来达到电网安全准则的标准。应用单环网接线方式出现用电故障时需要很长时间的人工倒闸维修操作才能恢复正常供电,所以供电的稳定性很差,不能很好地满足用户需求。双环网接线方式利用双线双环或者双线单环的供电方法为负荷提供两个独立的电源,用一端进行工作,另一端作为备用电源以防线路出现故障。双线双环的结网方式又被称为“手拉手联络”环网,这种接线方式将原来供电线路的平行树干模式转换成联系比较密切的双线双环网络,利用一个联络开关连接起来自不同变电站或同一变电站的不同母线的两条馈线。供电系统正常时,所有的联络开关都保持打开状态,当一个区域的电网出现故障时,通过合并联络开关将故障线路的负荷转移到相邻的馈线上继续供电作业,符合N-1安全原则。多分段多联络接线方式是利用分段开关将地铁供电线路划分为不同供电片区,同时利用合并联络开关保持各个片区之间的联系。即使线路出现故障,只将故障控制在某一单元内,不影响其他分段区域的正常供电,供电可靠性能提升。N供一备接线方式是从N条线路组成的环形网中抽取其中一条作为空载备用线路,其他线路进行正常的输电作业,输电过程中任何一条线路出现故障,都可将其承载负荷转移到备用线路上维持输电作业,不影响线路维修并保证用户正常用电。这种供电模式非常可靠,而且线路利用率高,适合于用电负荷比较大的城市地铁建设。 4.2地铁中压交流环网系统 城市轨道交通的中压交流环网系统可采用牵引与动力照明相对独立的网络形式,也可以采用牵引与动力照明混合的网络形式。对于牵引与动力照明相对独立的网络,牵引供电网络与动力照明网络的电压等级可以相同,也可以不同。供电系统中的中压网络应按列车运行的远期进行能力设计,对互为备用线路,一路退出运行时,另一路应能承担其一、二级负荷的供电,线路末端电压损失不宜超过5%。一个运行可靠、调度灵活的环网供电系统,一般须满足以下设计原则和技术条件:(1)供电系统应满足经济、可靠、接线简单、运行灵活的要求。(2)供电系统(含牵引供电)容量按远期高峰小时负荷设计,根据路网规划的设计科预留一定裕度。(3)供电系统按一级负荷设计,即平时由两路互为备用的独立电源供电,以实现不间断供电。(4)环网设备容量应满足远期最大高峰小时负荷的要求,并满足当一个主变电所发生故障时(不含中压母线故障),另一个主变电所能承担全线牵引负荷及全线动力照明一、二级负荷的供电。(5)电缆载流量

接触网专业术语

1导线高度:接触网导线高度(简称导高),是指悬挂定位点处接触线距轨面的垂直高度,设计规范规定如下:最高高度:不大于6500mm。最低高度:(1)区间、站场:①一般中间站和区间不小于5700mm。②编组站、区段站及配有调车组的大型中间站,一般情况不小于6200mm。确有困难时可不小于5700mm。(2)隧道内(包括按规定降低高度的隧道口外及跨线建筑物范围内):①正常情况(带电通过5300mm超限货物)不小于5700mm。②困难情况(带电通过5300mm 超限货物)不小于5650mm。③特殊情况不小于5250mm。接触线高度的允许施工偏差为±30mm。 2跨距及拉出值:取决与线路曲线半径、最大风速和经济因素等,我国高速铁路一般在保证跨中导线及定位点在最大风速下均不超过距受电弓中心300mm的条件下,确定跨距长度和拉出值。 3锚段长度:是指接触网相邻的两终端间的距离。 4.绝缘距离:是指接触网的带电部分,与接触网的非带电部分的金属和非金属零件之间的最小直线距离 5吊弦分布及间距:吊弦间距指一跨内两相邻吊弦之间的距离,吊弦间距对接触网的受流性能有一定的影响,改变吊弦的间距可以调整接触网的弹性均匀度,吊弦分布有等距分布、对数分布、正弦分布等几种形式,为了设计施工和维护的方便,一般采用最简单的等距分布,一般掌握在8--12米。 6.接触导线预留驰度:指在接触导线安装时,是接触导线在跨内,保持一定弛度,以减少受电弓在跨中对接触导线的抬升量,改善弓网的震动,对高速接触网,简单链型悬挂设预留弛度,弹性链型悬挂一般不设预留弛度。 锚段关节安装要求:锚段关节是接触网的张力的机械转换关节,是接触网的薄弱环节,其设计和安装质量对受流影响较大,高速接触网一般采用两种形式的锚段关节:①非绝缘锚段关节采用三跨锚段关节②绝缘锚段关节采用,四跨,五跨锚段关节,安装处理上,尽量缩短接触导线工作支和非工作支同时接触受电弓滑板的长度,提高非工作支的坡度,并保证过度平滑,避免出现硬点和刮弓 8.接触导线(承力索)张力:锚段两端的补偿装置,通过坠砣的重力与补偿滑轮的变比后对接触线(承力索)的拉力。京哈线接触线的额定张力为15KN。接触线的张力,驰度符合安装曲线的规定,预留驰度为当量跨距的1‰。

什么环网供电方式-什么是环网开关柜-

什么环网供电方式?什么是环网开关柜? 一、什么环网供电方式 供电网络是用电力导线相互连接起来用于传输电力能源的网络。 环网供电就是用一个闭环的网络结构把取自不同电源点的电力通过供电网络与负荷以开环的形式连接起来。 网络结构形式影响网络的安全稳定性和可靠性。目前供电网络结构主要有三种形式。(1)“手拉手”单环网络形式。 (2)“多备份”连环网络形式 (3)“多联络”开环网络形式 环网供电网络管理的复杂程度。电力系统在运行时,在电源电势激励作用下,电流或功率从电源通过系统各元件流入负荷,分布于电力网络线路的各个负荷点,称为电力潮流方向。用标准模型和参数对照评价线路的优劣性的设计方法。评价目前系统的负荷量、损失、电压降等,重新调整常时开放点的开关位置,以达到电量损失最小化和线路负荷承载率平均化。分布式结构的每一个对等网络管理都有各自的独立功能。可以分别执行多种任务,监管功能也是分布的。 通过供电网络信息系统都能获得所有的网络信息、警报和事件。 二、什么是环网开关柜 环网柜是一组高压开关设备装在钢板金属柜体内或做成拼装间隔式环网供电单元的电气设备,其核心部分采用负荷开关和熔断器,具有结构简单、体积小、价格低、可提高供电参数和性能以及供电安全等优点。 环网柜用于分合负荷电流,开断短路电流及变压器空载电流,一定距离架空线路、电缆线路的充电电流,起控制和保护作用,是环网供电和终端供电的重要开关设备。 传统的电气开关设备制造正在融合物联网、大数据的生产方式,实现信息化技术与工业设备的融合。从而催生出智能环网柜的应用。 (1)、智能装备是将机器、人、控制系统与信息系统有效连接的网络信息系统,一定要具

提高配电网供电能力的方法研究与分析

提高配电网供电能力的方法研究与分析 发表时间:2016-07-19T14:12:58.623Z 来源:《电力设备》2016年第8期作者:于佳鑫[导读] 做好配电网的科学性调度,积极开展线路巡查与管理工作,继而提高配电网的运行质量,以提高电力网路系统的安全系数。于佳鑫(辽宁省电力有限公司辽阳供电公司 111000)摘要:配电网是电力系统运行的基础,其在供电方能力上的稳定可靠对整个电网系统运行的可靠性与安全性形成直接性的影响。因此,打造一个高质量、高安全系数的配电网系统很是关键,以实现供电的可靠性与合理性,以及时满足用户的需求,做好配电网系统的合理化规范。当前,我国电力系统正面临着重要的挑战,所以采取行之有效的措施提高配电网的供电能力意义重大。 关键词:配电网;供电能力;方法研究一、配电网供电能力中存在的问题我国的电力可靠性管理经过了一个较长的发展时期,在学习国外先进管理技术的基础上,在统计管理、规划设计方面己经形成了一个较为完善的管理体系。但是在电力可靠性管理中依然有很多不足:其一,可靠性统计的建设与发挥步调不一致,可靠性数据统计在实际的管理操作中与管理脱节,数据分析不够深入,因此管理作用难以得到有效发挥,影响了设备管理与人员配置等问题的控制管理;其二,对现有的研究成果的重视度不足,将研究成果转化为应用实践的能力较弱;其三,可靠性准则在制定与发展过程中存在差距,可靠性准则发挥的局限性较大,需要针对实际发展情况进行完善;第四,我国的部分供电企业在发展过程中片面重视发展指标的完成,因此忽视了可靠性数据的完整与准确,对企业供电的可靠性造成影响;第五,电力企业的供电可靠性管理的工作具有一定的延迟性,即在供电工作完成后开展统计工作,没有认识到可靠性管理工作应当不仅仅是单纯的统计工作,同时也是与管理工作同步进行。 二、造成配电网供电能力低下的原因分析 1、线路设计。在配电网供电体系中,线路是重要的组成部分,电荷的运输是通过线路从发电厂传输到用户家中,是配电网运行的重要元素。但是,从目前配电网运行的现状来看,线路设计问题还相对突出。首先,配电线路表现为放射性馈线,其环网率相对较低,再加之新的线路不断增设,使得线路网络系统相对混乱,影响供电质量。其次,线路运行中,部分导线被裸露在外部,其会受到自然环境的影响,极易导致导线发生质变。例如,当遭遇高温环境时,导线会发生伸张与胀裂的现象,极易引发短路现象。再者,配电系统的网架系统相对薄弱,线路的绝缘性能较低,其会受到外力的严重破坏,极易引发漏电问题,供电的可靠性受到严重制约。 2、人为或自然灾害。日常生活中,由于人为破坏、自然灾害而导致的电网安全事故不在少数,造成严重的不良影响,对人们的生命安全与财产安全构成严重威胁。在配电网中,部分人员为了获取利益偷取电缆并损坏线路,或是在砍伐树木时不经意间将线路切断,亦或是部分人为了偷电,采取私自接线偷电的行为等等,都可能导致严重的安全事故,使得配电线系统受到严重破坏,还会造成严重的人身伤害。在自然危害方面,主要是自然灾害条件下的恶劣天气所致,如雷害、风害、雪灾等,这些自然灾害天气的产生会发生故障,导致停电,会对电力线路的运行构成威胁。在雷雨天气状态下,若不及时停电,会导致闪络爬弧现象的发生,进而产生跳闸事故,配电网供电的可靠性受到严重威胁。 3、配电网的网络架构。配电网在最初建立时,由于网络架构的设计存在问题,所以配电网线路连接非常混乱,经常出现架空线路的问题。配电网的网络架构存在问题,会导致部分线路的电力负荷比较大,部分电力线路会承载较大的电力容量输送,这会使配电网的供电稳定性受到影响,在发生电力事故时,不容易对电力负荷较大的线路实现转移,导致大面积的电力用户停电。 三、配电网电力工程技术要点 1、监控技术。通过对不同的电力检测点的监控,了解电力运行、工人操作的具体情况。通过对现场情况的及时监测,将监测结果进行整理和分析得到不同情况下的解决方案。监视系统投入到电力系统的检测中,可提高各个监测电站的数字化水平,提高电网运行的安全性,保证电网的正常运行。在具体的工作中,应该严格实施相应的技术指标。为了保证电网安全性能,就需要相关工作人员认真、严格的工作,时常进行电力网络的检查和修复,将相应的安全规范具体落实到相关的工作中,保证电网、工作人员和人民群众的安全。 2、降压技术。在雷雨天气中,避雷针显得尤为重要,将不同等级的避雷针安装在不同的设备上,避免正常的电力工作受到雷雨天气的影响,保证电力工作的安全性。电力的输送是通过不同的电压等级系统不断降压从而到千家万户的,这一过程中会有很多次降压的环节,因此也就会面临不同程度的电力损耗问题,所以我们可以根据不同的用电情况和要求,对于电压等级进行有效的简化,减少电力输送中的损耗量。这样不仅可以减少成本,还可以改善供电条件,更加有利于电网的有效发展。此外,城市的建设不仅需要考虑经济性和可持续发展,也要将美观性考虑在内,所以在供电方面就需要灵活的运用技术指标,发挥工作人员的创新性,保证电力的正常输送和输送过程中的安全性。可以利用电缆供电的方式,避免在高空架线。电缆输电可以抵御各种恶劣天气,提高电缆的使用寿命和输电的安全性。 四、提高配电网供电能力的措施探究 1、注重对配电网的科学性调度。社会的发展与进步,使得各个领域对电量的需求量在逐渐增大,用电过于紧张,当遭遇用电高峰期时,会导致用电紧张、供不应求的情况,制约着日常的生产生活,人们的生活质量下降。为此,应做好配电网的科学性调度,合理对供电资源进行安排与搭配,以缓解电力资源短缺或分布不均的情况。供电部门应提高电力调度意识,开展科学调度,应及时做好错开高峰、避开高峰的用电状态,根据社会各个领域用电需求的情况进行供电调度。为了保证电力系统的合理化调度,应以医院、交通、学校等重要用电站点为基本;然后对用户进行引导,尽量避开用电高峰期,及时控制用电的时间和供电量,以做好用电情况的合理化分配;此外,还应做好用电紧急预警与准备方案,对可能产生的用电紧张情况进行预测,一旦发生用电紧张或突发事件,可提高事件的应对质量和效率。通过一系列的调度与调整,是实现配电网供电可靠性的重要措施。 2、做好配电网管理维护。首先,做好日常的巡检,在日常管理维护中,要结合配网的实际情况以及相关要求,制定科学的日常巡检计划,对配网各个关键点进行定期检查,及时发现配网设备、系统存在的隐患,采取相应的措施进行处理,预防小隐患造成的大故障,最大程度的消除配网故障的可能,充分保障配网供电的可靠。其次,采取带电作业维修,在配网的故障维修中,采取带电作业技术,减少供电线路断电次数,保证用户的正常用电,也是提升配网供电可靠率的一种有效方式。结束语

配电网供电能力研究综述

配电网供电能力研究综述 发表时间:2018-08-21T13:09:40.000Z 来源:《电力设备》2018年第14期作者:王卓君1 陈金星2 [导读] 摘要:伴随着人们生活水平的提高,社会对于电力的需求也在持续增加,电力系统不但完善,覆盖范围也越来越广。本文对配电网供电能力进行了分析探讨,仅供参考。 (1国网福建省电力有限公司霞浦供电公司福建霞浦 355100;2国网福建省电力有限公司宁德供电公司福建宁德 352100) 摘要:伴随着人们生活水平的提高,社会对于电力的需求也在持续增加,电力系统不但完善,覆盖范围也越来越广。本文对配电网供电能力进行了分析探讨,仅供参考。 关键词:配电网;供电;能力 一、配电网供电可靠性的影响因素 1、电压因素 在影响配电网供电可靠性的因素中,铁磁谐振过电压是其中一个十分重要的因素。铁磁谐振过电压出现的原因在于,变压器和配电互感器等原件内部都有铁芯,这些铁芯磁化特征表现为非线性变化,导致回路中电感参数也存在同样的变化。当达到特定的谐振条件下,就会产生铁磁谐振,进而造成配电网供电故障的发生。 2、自然条件因素 电力配电网对其周边环境的敏感性很强,它所处的地理位置雷雨季气候情况都会对其运行产生影响。受线路运行要求及社会客观因素影响,配电网建设的地点基本处于相对偏僻的地方。所以,当地的气候与地理环境出现改变之后,往往会对配电网的故障发生率产生影响,使其趋势有非线性的变化。像线路的“树线”矛盾、恶劣天气、灾害性天气等自然因素都会影响到配电网可靠性。 3、配电网结构因素 电源与用电负荷之间存在的连接关系是配电网结构的主要内容。电力配电网结构具有多样化的形式,包含有环网结构、树干型、复合型辐射型以及网状结构等多种形式。若配电网采用的是单回路树干型回路结构,则属于分支辐射型结构。这种配网结构中有很多复合线存在与同一个回路的馈线中,离回路根部越近的点发生故障,给整个线路造成的影响就会越严重,所以该结构方式的可靠性非常低。 二、配电网供电能力研究综述 1、电网规划 我国电网发展水平不一致,表现为城市电网基础夯实而农村电网结构薄弱的局面。而DG和EV等主动元素因物理条件而在不同地区电网接入,主要表现为农村电网可利用范围广、新建DG输电通道较容易,而城市电网相对成熟,新建DG场站投资昂贵,新建EV充电桩反而更能适应经济更为发达的城市电网需求。对于供电能力研究而言,城市配电网规划应该面向如何充分利用大规模或者分散小容量EV接入,消除供电瓶颈,提高系统正常运行时的供电能力和故障时的转供能力。而农村电网供电能力研究应着重于DG容量外送通道的建立,以及联络通道和网架结构夯实,提高农业用电的供电可靠性。 2、新技术 随着以广域测量系统(WAMS)和相量测量单元(PMU)为代表的高级量测技术和态势感知技术的发展,电力一二次系统信息的融合逐渐成为趋势,电网信息物理系统CPS(CyberPhysicalSystem)的概念也随之提出。电网CPS强调以二次信息系统提高一次物理系统的可观测性,使得电网调度人员对电网运行状态和运行边界有着更为清晰的认识,并通过二次信息系统控制电网的继电保护系统、配电自动化系统、自动发电控制(AGC)系统等,提高电力一次物理系统的可控性。对于供电能力研究,需首先刻画出二次信息系统可靠性对电网观测性的影响,即量化二次信息系统的可靠性能够造成电网调度人员对运行边界和运行状态的误判,进而造成设备开关的误动作和电网运行方式的改变。在此基础上,才能进一步研究信息系统可靠性对供电能力的影响。 3、高压配电网转供能力研究 高压配电网的故障分为主变故障和馈线出口故障,这里馈线出口故障意味着整条馈线所带负荷均会失电,而对中压配电网进行转供能力分析时,馈线出口下游故障并不会引起所有负荷失电。即在对高压配电网进行转供能力分析时,仅需要以馈线出口故障作为馈线故障方式。在高压配电网的转供能力研究中,首先需要对典型110kV配电网接线模式的可靠性、经济性以及转供能力等方面进行论证分析,发现制约主变站间转带的是站间联络通道和负荷均衡要求。其次,则是对网络结构进行简化分析,虽然相较于中压配电网而言高压配电网结构较为简单,但也存在网络规模较大导致算法搜索效率太低的问题。因此,提出以基于公共信息模型(CIM)的拓扑收缩方法简化网络,提高算法的搜索效率。 三、基于N-1安全约束的配电网TSC 1、TSC概念 在第2节介绍的供电能力范畴下实现的负荷分布,很难在故障情况下实现负荷的安全转移,尤其是在配电网安全校验中很重要的N-1校核不一定得到保障。因此在计及静态安全约束的基础上,评估现有网络的供电能力就显得十分重要,TSC的概念应运而生。TSC是指一定供电区域内所有设备均满足N-1安全约束条件下的最大负荷供应能力。TSC的大小取决于变电站的负载能力和网络的转供能力。相关学者对TSC模型的建立和完善、指标簇定义、求解方法等基础理论方面进行了大量的研究工作。其中基于馈线互联关系的TSC模型因其精确性和可操作性得到了广泛的应用,该模型以馈线负荷为控制变量、主变负载率为状态变量,以N-1约束和容量约束作为约束条件,考虑在负荷转移过程中的馈线联络和主变联络、负荷均衡度等因素,最终形成以最大负荷承载能力为目标函数的线性规划问题。 2、TSC模型 虽然TSC在配电网规划和优化运行方面展现了良好的应用前景,但是在应用前应该给出该模型的基础性理论分析,主要包括模型的合理性和最优解的性质等。TSC模型的合理性指的是模型中所考虑的约束是否与实际运行规划符合。该模型最重要的约束就是N-1约束,对所得最优解能否通过N-1安全校验进行了论证分析,并提出负荷未细分到馈线上是出现误差的主要原因。因此,提出基于馈线互联关系的TSC 模型,并与N-1校验进行对比,得出该模型是满足N-1约束的结论。但在基于馈线互联和主变互联的模型中,均没有在短时过载的基础上考虑主变二次转供问题。

环网供电的实现

环网供电的实现 1环网供电的实施原则 把两条线路组成一条手拉手环网,对每条线路进行分段设置控制开关,线路的连接点设置联络开关,利用设备的延时进行停电区间的负荷转换。当供电线路的某一区发生故障时,配电系统具备自动隔离故障区段、自动恢复非故障区段的供电能力,从而达到缩小停电范围和减少用户停电时间、提高对用户供电可靠性的目的。 (1)线路选择和设计首先应当具备互带能力。 (2)通过实施线路分段原则,缩小个别用户或线路故障带来的整体停电,通过合理的线路分段数量和设置合理分段点,使用户享有尽可能高的供电可靠性。 (3)干线的分段原则:①负荷均等原则;②线路长度均等原则;③用户数量均等原则中符合具体应用条件的原则执行。 (4)选择设备具备满足当线路故障时,能自动隔离故障区段、自动恢复非故障区段的供电功能。 (5)选择设备应当满足配电网自动化升级的要求,从而能够实现配电网设备运行工况的远方监视和监测及与系统配合完成网络重构和负荷转带等功能。 (6)负荷较重的分支线路尽量布置分段分支开关,以保证隔离分支故障,保证主干线畅通。 (7)联络开关按合理的位置布置。 2环网供电的技术特点 (1)具备就地保护功能: 从配网技术发展的角度看,随着电网改造逐步实现无油化、绝缘化,一年内线路故障发生的几率相对较少,由此提出了配电自动化设备与系统的配合采用了这样一种设想,即利用设备的智能化功能,就地保护将故障隔离,利用系统的集中管理功能完成负荷转移、优化等高级功能,从而大大提高了设备利用率,并从技术层面避免了10kV复杂配电网络依赖集中保护而带来的供电不可靠,顺应了当今技术发展采用就地保护的趋势。在这里提及的环网供电,即可利用具有智能化故障查寻、就地隔离功能的故障搜查控制器FDR进行就地保护,并隔离故障。其就地保护功能包含了时限顺送/逆送功能:时限投入、时限锁定、瞬时加压锁定、两侧电源锁定。 (2)不依赖于通信来完成事故时的处理: 将故障的快速实时处理功能下放到现场设备就地处理,避免了配电网中因过度依赖通信完成故障处理可能造成的配电网供电大面积停电。

相关文档
相关文档 最新文档