文档库 最新最全的文档下载
当前位置:文档库 › 调速器故障分析

调速器故障分析

调速器故障分析
调速器故障分析

第一节水轮机调速器的组成和作用

水轮机调节系统是由调节控制器、液压随动系统和调节对象组成的闭环控制系统。通常我们把调节控制器和液压随动系统统称为水轮机调速器

水轮机调速器作用是保证水轮发电机的频率稳定、维持电力系统负荷平衡,并根据操作控制命令完成各种自动化操作,是水电站的重要基础控制设备。

1、调速器的基本作用是:

(l) 能自动调节水轮发电机组的转速,使其保持在额定转速允许偏差内运转,以满足电网对频率质量的要求。

(2) 能使水轮发电机组自动或手动快速启动,适应电网负荷的增减,正常停机或紧急停机的需要。

(3) 当水轮发电机组在电力系统中并列运行时,调速器能自动承担预定的负荷分配,使各机组能实现经济运行。

(4) 能满足转桨式、冲击式水轮机双重协联调节的需要。

2、分类;

水轮机调速器的分类方法较多,按调节规律可分为PI和PID调速器;按系统构成分为机械式调速器(机械飞摆式)、电液式调速器及微机调速器;

实际应用中常用是以下几种区分方式:

1、按我国水轮机调速器国家型谱以及调速器行业规范,调速器分为:中、小型调速器;冲击式调速器;大型调速器等。中、小型调速器以

调速功大小来区分,冲击式调速器以喷针及折向器数目来区分,大型调速器以主配压阀名义直径来区分。

调速器分类表

2、微机调速器依据调节器(电气部分)及机械液压系统(机械部分)的不同形式,有以下区分:

2.1按调节器的硬件构成有单片机、工控机、可编程控制器三大类调节器。其中单片机、单版机构成的调节器由于可靠性差、故障率高等多方面原因,已趋于淘汰。目前可编程控制器以其高度的可靠性成为调节器构成首选。

2.2机械液压系统依据电液转换电液转换方式分为:电液转换器类、电机类、比例伺服阀类、数字阀类。其中电液转换器类已基本为市场淘汰,其他几种均有不同厂家生产。

3、按照调速器的适用机组类型分为:冲击式调速器、单调、双调。冲击式调速器适用于冲击式水轮发电机组;单调适用于无轮叶调节的混流式、轴流定桨式等水轮发电机组;双调适用于有轮叶调节的轴流转桨式、灯泡贯流式水轮发电机组。

第二节调速器的操作

一、调速器的基本参数

1、调速器型号;DFWSF-100-6.3-STARS

2、主配压阀直径;100mm

3、额定工作油压;6.3 Mpa

4、外部电源;交流50Hz,220V±10%

直流220V±10%

二、调速器特性

调速器的转速死区≤0.03%,轮叶接力器随动系统不准确度不超过

1.5%,空载自动运行频率摆动值小于±0.15%。

三、电气部分操作

1、上电先合上交流,后合上直流电源开关,“DC220V”、“AC220V”灯亮,若不正常,应清除相应部分故障。

2、开机

先检查调速器是否切到“远方控制”,导、桨叶是否在自动位。

调速器在接到开机令时,导叶开至“启动开度1”,经一段时间(小于60秒)后开始检测机频,当机频≥45Hz,导叶关至“启动开度2”,调速器进入空载工况并投入PID调节,机组转速跟踪系统频率(或50Hz);当导叶开度开至“启动开度1”后经过60秒机频仍然小于45 Hz,则调速器自动关机。此时,“开机”令若仍然存在则调速器再次开机;若无“开机”令,则调速器保持停机状态不变。3、并网

频率调节是在并网前使用,并网后可为功率调节或开度调节

开度调节:导叶开度为给定的开度,负荷随水头变化而变化。

功率调节:负荷为给定负荷,导叶开度随水头变化而变化,保证机组负荷为给定负荷,一般情况下功率调节时导叶动作比较频繁。

4、停机

当机组运行在空载工况时,调速器接到停机令后,导叶全关,随

后桨叶开至预开度,工作在频率模式。当机组运行在负载工况时,调速器接到停机令,导叶关至第二开机开度(防止进相运行)。待机组出口开关分离后,导叶全关,随后桨叶开至预开度,调速器回到停机等待状态,工作于频率模式。

第三节微机调速器调试中的故障分析

微机调速器由于采用高可靠性的可编程控制器等作为调节器,并设计了少量的合理外围电路,电气部分故障率比较低,偶尔出现的异常现象,大部分是由于接触不良和设置有误造成,所以调试中出现问题后,应先检查相应的电源和信号电缆是否连接正确,端子、插座是否牢固连接,测量信号是否正确等。具体可能遇到的故障主要有如下情况:

一、机频显示为零,调速器机频测量故障

对这种故障首先应根据具体测频方式进行故障排查:

1、对于采用可编程高速输入口及软件测频的微机调。应检查输入信号灯是否闪烁,如无闪烁,说明无测频信号输入,这时需检查接口功能板上的整形及分频电路的输出,以及其输入接口,以判断是信号连线未连接好,还是元件损坏所至。

2、对新安装的机组或大修机组因长时间停机,发电机剩磁消失,可能致使机端电压低于0.2V,造成测频单元整形电路不能正常工作,故人机界面上机频显示为零,且出现机频故障报警信号。对此,应适当给发电机充磁。

3、还可能是机组电压互感器(PT)断线或机频测频隔离变压器断

线等造成没有机组频率信号。这种情况可通过测量测频输入端有无信号、再逐步排查。

二、给上电源后电气故障灯亮

这种故障可能的原因有:

1、可编程控制器的运行开关未置于“RUN”位置,因而发生电气故障灯亮。此时可观察可编程“运行”(RUN)灯是否亮。如果“RUN”灯未亮,说明可编程没有投入运行,出现电气故障灯亮是可能的,只要把运行开关切到“运行”即可。

2、可编程控制器故障,此时可编程故障灯亮,导致这种故障的还有多种原因,其中主要的有可编程各模块故障,程序运行超时,状态RAM故障,时钟故障等。此时一般应先切手动,暂停运行,过一会儿再重新启动,如果不是常驻性故障,可能是瞬时受异常干扰所致,通常重启后恢复正常。如果是常驻性故障,应检查相关模块运行指示灯是否正常,对不正常的模块应进行更换。

3、也可能是“电气故障”继电器接点粘连或继电器损坏。此时可检查可编程控制器“电气故障”端子是否有“电气故障”的信号输出(即可观察对应可编程输出端口指示灯是否亮)即可判断是否继电器的问题。

4、也可能是测频故障导致“电气故障”灯亮,不过这种情况多半伴有“测频故障”信号报警。

三、自动开机接力器不能开启

这种故障可能有如下几种原因:

1、对于自动/手动控制需要由手/自动切换开关控制的微机调速器,是否手/自动切换开关未切换到自动位。

2、是否因事故(或模拟事故)导致紧急停机电磁阀动作,而开机前,没有复位紧急停机电磁阀,因而自动开机接力器不能开启。

3、开机信号未送至调速器。对此应检查调速器开机令输入端是否有开机信号(即可编程控制器开机令输入端口指示灯是否亮)即可判断。若指示灯亮未亮,应检查其连接电缆是否未接牢或者断线。

4、检查引导阀是否卡住。4号机组开机是经常会遇到因为导叶配压阀的引导阀卡阻而造成无法开机,如果是因为引导阀卡阻造成的,可先将调速器上导叶手/自动转换开关切换到手动位置,手动用操作手柄轻轻往关方向带动,使引导阀恢复正常,在切到自动位。

四、调速器不能紧急停机

调试中模拟机组事故或运行中机组事故,但调速器不能紧急停机。这种事故的主要原因可能有:

1、紧急停机令没有送到微机调速器的相应输入端。这可能是信号连线不正确或接线松动所致,可观察可编程控制器对应输入端指示灯是否亮即可判断。

2、可编程控制器紧急停机信号未送达紧急停机电磁阀线圈。这中间有可能是紧急停机继电器故障(如触点粘合、继电器损坏)或继电器输出至紧急停机电磁阀的连线故障(断线或接线不牢),此时测量紧急停机电磁阀线圈插头应不带电。

3、紧急停机电磁阀故障或损坏。当测量紧急停机电磁阀线圈插头有电,而接力器不关机,则多半原因是紧急停机电磁阀故障,有可

能是线圈断线(可检测线圈电阻加以判断)或者是电磁阀芯卡阻。电磁阀阀芯卡阻通常是由于油质太脏或者运行中长期没有发生事故紧急停机,运行人员又没有在机组停机时定期操作紧急停机电磁阀导致的。对此应解体、清洗后重新组装。

五、导叶反馈故障及处理

调速器出现导叶反馈故障在微机调也有多种原因,其中主要的有:

1、导叶反馈断线(2号机组已经出现过因为导叶反馈信号中断事故停机,原因就是导叶反馈信号的一个接头脱落);

2、导叶反馈传感器供电电源故障或电源线掉线;

3、导叶反馈信号线屏蔽不好,受到强电磁干扰;

4、对导叶反馈进可编程控制器的微机调,也可能是A/D转换模块故障或信号连线未接牢。

对原因(1)和(2)只要检查反馈信号线和电源线就可确定;对于原因(3)应检查屏蔽线是否单端接地,接地是否接牢;对原因(4)可检查A/D转换器的输入及微机调导叶开度的指示值是否一致就可判定。

第四节调速器运行中的故障分析及处理

水轮机调速器虽然在出厂前进行了厂内调试,到电站安装后又进行了电站现场调试,应该说大多都能安全稳定运行。但是由于水轮机调节系统是一个由调速器和被控对象组成的一个时变、非线性和含非最小相位的系统,因而还可能发生这样或那样的故障,下面就运行可

能发生的一些主要故障作进一步的分析。

一、自动空载时机组频率和接力器发生摆动

机组转速和接力器发生非周期性摆动

1、调速器反馈系统存在非线性,或反馈传感器在某区域接触不良

反馈系统存在的非线性,相当于反馈信号强弱随着接力器行程不是线性变化;而反馈传感器在某区域接触不良,可能导致反馈信号时有时无。这些都将导致产生不正常的调节信号,如果这种情况恰好在空载开度范围内,则将引起空载接力器和机组频率的非周期摆动。

处理对策是:重新进行整机静态特性测试,检查非线性和反馈传感器工作情况,找出具体原因,加以解决。

2、调速器伺服系统油路(尤其是主配至接力器油管路)中存在空

由于伺服系统油路中存在空气,使调节中空气受压缩,而调节结束时,受压缩的空气膨胀,导致压力下降,致使接力器活塞两腔压力不平衡,引起接力器摆动。

对此,可在机组停机和主阀关闭的情况下将调速器切为手动控制,然后手动操作使接力器活塞来回移动几次,以排除油路中残存的空气。

二、机组自动开机后,转速达不到额定值

机组自动开机后,转速达不到额定转速,对不同调速器,可能有不同的原因:

1、水头监测值不正确或水头人工设定值不准确

当水头监测值或水头人工设定值高于实际水头值时,将导致自动按水头整定的空载开度比实际的空载开度小,致使机组开机后,转速达不到额定值(对微机调)。

对此主要是要改进水头监测的准确性;对人工设定水头值,应根据实际水头正确整定。

2、进水口拦污栅严重堵塞

进水口拦污栅严重堵塞,造成水轮机实际工作水头下降,导致整定的空载开度比实际空载开度小,造成机组开机后转速达不到额定值。

对此,在当时运行中可适当增大空载开度,以保证机组达到额定转速。但要根本上解决问题,还要及时清污以防止拦污栅堵塞。同时要随时根据实际水头,重新设定空载开度。

三、机组并网运行发生自动溜负荷

所谓溜负荷是指在系统频率稳定,也没有操作减负荷的情况下,机组原先所带的负荷全部或部分自行卸掉。这种情况可能的原因有:

1、电液转换元件卡阻于偏关侧

当电液转换元件卡阻于偏关侧时,此时平衡表通常有开的调节信号,而接力器却一直往关的方向运动,导致机组所带的负荷全部卸掉(对电调和微机调)。

这种情况应当先切至机械手动,再检查并排除电液转换元件卡阻现象(如对电液伺服阀解体清洗,组装调试),同时还应切换并清洗滤油器。

2、综合放大器开启方向功率放大器损坏

当微机调或电调的综合放大器开启方向功率放大三极管损坏时,将造成调速器不能开,但只能关。这种情况遇到干扰或系统频率稍微升高一点时,调速器则自行关小导叶,使机组卸掉部分负荷。但当系统频率稍低一点时,它又不能开大导叶,增加负荷。

对此情况,可以人为增减功率给定,检查接力器开度能否增大减少,就可判别是否综合放大器功率放大三极管损坏。对损坏的功率放大三极管应在停机或切机械手动运行时进行更换。

3、导叶反馈传感器移位

运行中当导叶反馈传感器因锁紧定位螺钉松动导致传感器移位,致使传感器输出的反馈值比实际导叶开度大,此时,并网运行机组将自行卸掉部分负荷。

对此,应检查反馈传感器输出电平与导叶接力器实际行程。若二者不一致,且实际接力器行程小,则先将调速器切机械手动,再调整反馈传感器,使其输出反馈电平与接力器相一致,再锁紧定位螺钉(最好在停机时进行调整)。

四、调速器常见故障及分析

五、机组并网运行时,接力器和出力摆动

机组并网运行时,出现接力器和出力摆动,大多数情况下主要是机组、过水系统或电力系统的原因。关于过水系统的原因有:

1、水轮机发生气蚀,引起接力器和出力的偶然性摆动

水轮机发生气蚀,尤其是发生于转轮出口和尾水管的空腔气蚀,造成尾水管中压力脉动增大,引起机组振动、接力器和出力的摆动。

对于气蚀引起的接力器与出力的摆动,通常可通过尾水管补气来消除和减弱气蚀,改善运行稳定性。对于严重气蚀,一般应停机进行补焊修复。

2、机组效率降低、运行中振动偏大

(1)调速器协联关系不正常;由于人工设定的水头值和实际水头值相差较大,使协联关系不正确,应人工设定正确水头值。

(2)机组运行于气蚀区;这时候应调节调速器避开气蚀区运行。

3、电力系统发生频率和负荷的周期性摆动

当电力系统发生频率和负荷的周期性摆动时,则并网机组频率、出力、接力器也将发生周期性的摆动。如果波动不很强烈,经过一段时间的调节会趋于稳定。

但若系统发生电磁震荡,导致系统频率和负荷大范围波动。这种情况,运行职守人员可手动适当减少机组出力,使机组恢复同期。如果无法消除振荡,可将本机先解列。

第五节水轮机调速器的日常运行维护

水轮机调速器性能的优劣,除了与设计、制造和安装有关外,还与其运行维护有密切关系。调速器的维护,应包括调速器运行条件的保障、调速器质量的检验、运行状态的监察和故障分析,以及定期维护等。

一、保证调速器有良好的工作条件

为了保证调速器正常运行,除了按有关标准对其制造、安装质量进行严格检查验收以外,还应使其具有良好的工作环境和工作条件。

1、水轮发电机组运行正常。在手动空载工况时,机组转速摆动的相对值,对大型调速器应不大于±0.2%;对中型调速器应不大于±0.3%;对小型调速器应不大于±0.4%。

4、调速器安装前的贮存库房气温为-5~+40℃,相对湿度<90%。并且室内无酸、碱、盐及腐蚀性、爆炸性气体,不受灰尘、雨雪的侵害。

5、调速系统用油的油质必须符合国标GB11120中46号汽轮机油或黏度相近的同类型油的规定,使用油温范围为10~50℃。

6、调速器油压装置正常工作油压变化范围不得超过名义工作油压的±5%。在调节过程中油压变化值不得超过名义工作油压的±10%(通流式调速器不超过±15%)。

二、日常运行中的检查与维护

电液调速器日常运行中的维护主要包括运行中的检查与维护。(一)日常运行中的检查

日常运行中的检查主要包括如下内容:

1、保持环境清洁,锁好调速器柜门,防止灰尘进入调速器液压管道,污染液压油。

2、注意防水防潮,如果液压油水份含量较高不但会腐蚀设备,而且在调速器暗管中高速流动时,产生大量气泡,导致调速器油回流不畅,甚至四处外溢。

3、注意观查引导阀活塞是否运动灵活,如有卡阻现象,应尽早拆开,用油石或者金相砂纸处理。

4、观察机组在停机或稳定运行时步进电机是否频繁动作,步进电机和驱动器温度较高。如果是,须重新调整位移传感器零点值。

5、检查各部件工作位置、各表计或人机界面指示是否正确;油压、油位是否正常,应无漏油现象。

6、检查反馈装置及传动机构是否完好,反馈钢丝绳应无断股或松脱现象。

7、检查各调节参数是否在整定位置;功率给定指示是否与负荷相适应;人机界面各显示画面的相关内容是否与机组运行状态相一致。

8、对微机调要注意人机界面上是否有故障报警信息,巡视人员应特别注意故障报警及应急处理。出现故障时,应特别注意观察机频、网频、导叶开度、微机调节器的输出等。

(二)日常运行中的维护

运行中的维护主要是调速器用油及电气部分检查,其主要内容包括:

1、调速器用油应每年更换或处理一次,新安装或大修后两个月内应更换或处理1 2次。滤油器应每周清扫一次。当滤油器前后压差超过0.2MPa时,应立即进行切换清扫。

2、工作油泵与备用油泵应每周倒换一次,若无自动控制倒换装置,倒换应在油泵处于停止状态下进行,倒换后应监视新的工作油泵启、停情况。油泵停止时应无反转现象。

3、定期检测电气部分有关单元输出数据,与厂内试验数据比较,以便判断其工作是否正常或者是否隐含故障,以便及时处理防止故障发生。

4、每月定期检查一次事故停机电磁阀动作情况,防止因长期不用而动作失灵。

三、调速器检修内容及技术要求

除了调速器发生故障时需要进行处理或检修外,为了预防故障发生和延长设备的寿命,还须定期进行计划性检查和维修。

电液(微机)调速器检修的主要内容和技术要求如表8-1所示。

表8-1 电液(微机)调速器检修的主要内容和技术要求

发电厂调速器试验规程讲解

EXC9100励磁系统说明书 第 8 章 试验规程 中国电器科学研究院有限公司广州擎天实业有限公司

目录 8-1.概述 (3) 8-2.安全条件 (3) 8-3.对调试人员的要求 (4) 8-4.紧急事件的说明 (5) 8-5.试验环境 (5) 8-6.适用标准及规范 (6) 8-7.调试大纲 (6) 附录一、EXC9100励磁系统出厂试验大纲 (7) 一、调试的必要条件 (7) 二、机组及励磁系统参数 (8) 三、电源回路检查 (8) 四、校准试验 (10) 五、操作回路及信号回路检查 (11) 六、开环试验 (14) 七、空载闭环试验 (17) 八、负载闭环试验 (21) 九、大电流试验 (24) 十、出厂设定参数 (27) 十一、整组试验后检查 (31) 十二、绝缘及耐压试验 (31) 附录二、EXC9100励磁系统现场试验大纲 (32) 一、调试的必要条件 (32) 二、操作回路及信号回路检查 (33) 三、开环试验 (37) 四、发电机短路试验 (40) 五、发电机它励空载升压试验 (47) 六、空载闭环试验 (48) 七、负载闭环试验 (53) 八、电力系统稳定器(PSS)投运试验 (58) 九、投运参数 (64)

8-1.概述 本试验规程详细介绍了EXC9100型励磁系统的出厂调试和现场调试方法及调试步骤以及相关的安全指南。该试验规程主要面向电站设备维护人员,要求维护人员具备较好的电气工程方面的知识和与励磁系统密切相关的专业知识。 8-2.安全条件

励磁系统要在一个受保护的环境中运行,操作人员必须严格遵循国家制定的有关安全规则。不遵循安全规则将引起下列后果: 如果不遵循安全规则,将会引起人身的伤害和设备的损坏。 如果调试工作没有按要求去做,或者是部分的按要求做了,都可能引起损坏,而这种损坏带来的维修成本是很高的。若整流器积满灰尘和污垢,则可能产生很高的放电电压,这是非常危险的。 8-3.对调试人员的要求 ?调试人员必须熟悉励磁系统用户手册和“各种功能” ?必须熟悉本文 ?必须熟悉励磁系统的控制元件、运行和报警显示,还要熟悉励磁装置就地操作和主控室远控操作(见用户手册)。 ?必须熟悉运行、调试、维护和维修的程序。 ?必须清楚:励磁系统的电源接线、构成和原理等方面的各种指令;紧急情况下的停机措施和如何切断事故设备的电压。 ?必须熟悉如何预防工作现场事故的发生、必须经过培训并能在第一时间处理紧急事件和清楚怎样灭火。

变频调速的基本原理

变频器多段速度控制 1.变频调速的原理 异步电机的转速n可以表示为 式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。可见,改变电源频率就可以改变同步转速和电机转速。 频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热。显然这是不允许的。为此,要在降频的同时还要降压。这就要求频率与电压协调控制。此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维持磁通不变,这亦由频率和电压协调控制来实现,故称为可变频率可变电压调速(VVVF),简称变频调速。 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近似正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 2.电机调速的分类 按变换的环节分类 (1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。

(2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器 按直流电源性质分类 (1)电压型变频器 电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。 (2)电流型变频器 电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。常选用于负载电流变化较大的场合。 按主电路工作方法 电压型变频器、电流型变频器 按照工作原理分类 可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等 按照开关方式分类 可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器 按照用途分类 可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。 按变频器调压方法 PAM变频器是一种通过改变电压源Ud 或电流源Id的幅值进行输出控制的。 PWM变频器方式是在变频器输出波形的一个周期产生个脉冲波个脉冲,其等值电压为正弦波,波形较平滑。

变频器的调速原理)

变频器调速基本原理 变频器调速基本原理 1、变频器概述。 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控 制装置。它的主电路都采用交—直—交电路。JP6C-T9/J9 系列低压通用变频器工作电压为:380~690V,功率为0.75~800kW,工作频率为0~400Hz; JP6C-YZ 系列中压通用变频器工作电压为:1140~2300V,功率为37~1000kW,工作频率为0~400Hz;JCS 系列高压变频器工作电压为:3KV / 6KV / 10KV,功率为280~20000kW,工作频率为0~60Hz; 2、变频原理。 从理论上我们可知,电机的转速N 与供电频率f 有以下关系: )1(*60sP fN 其中: p ——电机极数 S——转差率 由式(1)可知,转速n 与频率f 成正比,如果不改变电动机的极数,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 3、节能调速原理 一般使用的风机、水泵类它们额定风量、水量都超过实际需要,又因工艺的需要,往往运行中要改变风量、水量,而目前多数采用档板或阀门来调节的,虽然方法简单,但实质是人为增加阻力的办法。因此浪费大量电能,属不经济的调节方式。从流体力学原理可知,风机的风量、水泵的流量与电机转速及电机功率的关系如下:当风机转速下降时,电动机的功率迅速降低,例风量下降到80%,转速亦下降到80%时,则轴功率下降到额定的51%,若风量下降到50%,轴功率将下降到额定的13%,其节电潜力非常大,并有下述曲线、阴影部分表示采用变频器调速方式的节电效果,其节电可达30-40%效果十分明显。对不同使用频率时的节电率N%可查表。 上述原理也基本适用水泵,可见采用变频调速控制实现节电是有效的、惟一的途径。变频调速特点是效率高,无附加转差损耗,调速范围大、精度高、无级的。容易实现协调控制和闭环控制,可利用原有异步电动机对旧设备进行技术改造,它既保留了原有电动机,具有改造简单,可靠、耐用,维护方便的优点,即能达到节电的显著效果,又能恒压力的工艺需求,还能减小机械磨损。因此,可理论上认为风机、水泵采用交流调速来实现较大幅度的节能(可达20-50%)是种较

欧陆590直流调速器调试步骤

欧陆590直流调速器调试步骤 目录 型号说明 (2) 操作面板的使用 (3) 接线 (4) 1、主回路接线 (4) 2、控制端子接线 (5) 3、查看控制端子配置 (7) 默认控制端子基本接线 (8) 必要的修改参数 (10) 浏览内部设置 (11) 系统菜单目录 (13) 通电运行 (15) 中英文对照报警说明 (16) 附录参数表 (24)

一、型号说明

二、操作面板的使用。 面板示意图

三、接线 1、主回路接线 (1)L、N(辅助电流输入。作为控制器控制电源输入)端子接AC220V 为控制电路供电。 (2)L1、L2、L3(三相主电源输入)接AC380V为主电路供电。 (3)A+、A-(电枢输出,A+正极,A-负极)接电枢端口。 (4)F+、F- (励磁输出。F-为负,F+为正。)接励磁端口。 上述端子一般分布图 2、控制端子接线。

(1)、模拟端子 A1 零伏电位,与 B1、C1 同电位,与地线隔离。 A2 模拟输入 1。默认功能为速度输入,可修改。 A3 模拟输入 2。默认功能为辅助速度或电流输入,在默认功能下,由 C8 来切换其输入功能。C8 低态时为速度输入量,C8 高态时为电流量(电流控制方式),不可修改。 A4 模拟输入 3。默认功能为斜坡速度输入,可修改。 A5 模拟输入 4。默认功能为辅助(负)电流箝位,默认功能下由 C6 确定其是否使用。C6 为低态时不使用此功能,C6 为高态时使用其功能来对负电流进行箝位。可修改。 A6 模拟输入 5。默认功能为主电流箝位或辅助(正)电流箝位,默认功能下由 C6 切换其输入功能,C6 为低态时为主电流箝位,同时作用于正负电流的箝位,可修改。 A7 模拟输出 1。默认功能为速度反馈输出,可修改。 A8 模拟输出 2。默认功能为速度给定输出,可修改。 A9 模拟输出 3。默认功能为电流反馈输出,不可修改。 (2)数字端子 B5 数字输出 1,默认功能为电机零速检测,当电机零速时为高态(+24V 输出),当电机运转时为低态(0V 输出)可修改。 B6 数字输出 2,默认功能为控制器正常状态检测,当控制器正常,没有报警或报警复位时为高态(24V 输出),出现报警时为低态(0V 输出)可修改。 B7 数字输出 3,默认功能为控制器准备就绪状态检测,当控制器准备就绪,主电源合闸时为高态(24V 输出),当控制器分闸、停止、出现报警或主电源分闸时为低态(0V 输出),可修改。 C6 数字输入 1 默认功能为电流箝位选择,C6 为低态时为(A6)主电流箝位,C6 为高态时为(A5、A6)双极电流箝位,此时 A5 为负电流箝位,A6 为正电流箝位。可修改。 C7 数字输入 2,默认功能为斜坡保持,当 C7 为高态时,斜坡输出保持在斜坡输入的最后值,此时不管斜坡输入值为多少,输出都一直保持为这个值,当 C7 为低态时,斜坡输出跟踪斜坡输入值。可修改。

dcm-直流调速器快速调试汇编

SINAMICS DCM 简明调试指南 SINAMICS DCM Commissioning Guide User Guide Edition (2012年6 月) 摘要 本文介绍了SINAMICS DCM 的选型,基本调试步骤。 关键词 SINMICS DCM, 6RA80,选型,调试 Key Words SINMICS DCM, 6RA80,Selection, Commissioning 目录 1 DCM 介绍 1.1 DCM介绍 1.2 SINAMICS DCM选型和接线 2 调试 2.1 BOP20 调试 2.2 Starter 配置和调试 3 DCM 功能介绍

3.1 优化 3.2 数据组 3.3 参数复位和存储 3.4 第二块CUD 3.5 自由功能块和DCC 1 DCM 介绍 1.1 DCM介绍 SINAMICS DCM 是 SINAMICS家族中的直流驱动装置,包含直流驱动装置和控制模块两种产品。直流驱动装置功率范围从15-3000A,超过3000A可以用装置并联实现。 控制模块主要用来替代原来的SIMOREG CM系列产品,实现设备的改造。 其型谱如图1: 图1 SINAMICS DCM 型谱

1.2 SINAMICS DCM选型和接线 1.2.1 控制单元选件 ?标配的DCM包含以下部分: ?控制单元电子板CUD ?标准面板BOP20 ?三相晶闸管全控桥(2Q和4Q); ?单相励磁模块 ?风扇(125A及以下装置自冷) DCM上有两个控制单元电子板插槽(左槽和右槽)。左槽为整个驱动装置发出控制指令,右槽的CUD的主要功能可以扩展端子数量,增加计算能力(如DCC 的编程),增加选件插槽(如CBE20)等功能。 控制单元CUD分成两类: Standard CUD 和 Advanced CUD (选件G00),其接线如图1-2所示:

调速器试验指导书DOC

调速器试验指导书 目录 1概述1 2依据标准1 3调速系统模型及基本参数2 4测试仪器3 5试验准备3 6试验内容及方法4 6.1静态试验4 6.1.1试验条件 (4) 6.1.2控制方式切换试验 (4) 6.1.3机频断线模拟试验 (5) 6.1.4静特性试验 (5) 6.1.5永态转差系数bp校验 (6) 6.1.6人工频率死区校验 (8) 6.1.7PID调节参数(bt、Td)的校验 (9) 6.1.8PID调节参数(Tn)的校验 (10) 6.1.9接力器最短关闭与开启时间测定 (11) 6.1.10接力器反应时间常数Ty测定 (12) 6.2空载试验13 6.3负载试验14 6.3.1试验条件 (14) 6.3.2一次调频响应时间测试 (14) 6.3.3一次调频动作死区测试 (15) 6.3.4跟踪网频试验 (16) 6.3.5甩负荷试验 (17) 7试验组织与分工17 8试验安全措施及安全注意事项18 9试验计划时间及参加人员19

1概述 为保证电网及发电机组安全运行,使并网运行机组随时适应电网负荷和频率的变化,提高电能质量及电网频率的控制水平,就必须充分发挥发电机组一次调频能力,依照《南方区域电厂并网运行管理若干指导意见》和《****发电机组一次调频运行管理规定(试行)》(以下简称为《规定》)的要求,并根据《DL/T496-2001水轮机电液调节系统及装置调整试验导则》等相关标准,通过对****1号机组进行一次调频试验,检验机组一次调频功能,并在确保机组安全稳定运行的前提下,优化一次调频运行参数,以满足系统对其一次调频性能的要求,同时进行参数辨识研究试验,建立与实际调节系统相吻合的仿真模型,满足电力系统稳定计算的要求。 通过现场试验达到《规定》中所要求的一次调频试验机组应该达到的技术指标如下:1)机组一次调频的频率死区控制在±0.034Hz以内; 2)机组的永态转差率一般为3%~4%; 3)水电机组参与一次调频的负荷调整幅度不应加以限制; 4)AGC与一次调频能够协调工作,不相矛盾; 5)机组调速器转速死区小于0.04%; 6)响应行为: ①本电站属于额定水头在50米及以上的水电机组,按规定其一次调频负荷响应滞后时间应小于3s; ②当电网频率变化超过机组一次调频死区时,机组一次调频的负荷调整幅度应在45s 内达到一次调频的最大负荷调整幅度的70%; ③在电网频率变化超过机组一次调频死区时开始的60秒内,机组实际出力与机组响应目标偏差的平均值应在理论计算的调整幅度±3%以内。 2依据标准 2.1《水轮机电液调节系统及装置调整试验导则》(DL/T496-2001) 2.2《水轮机电液调节系统及装置技术规程》(DL/T563-2004) 2.3《水轮机调速器与油压装置技术条件》(GB/T 9652.1-2007) 2.4《水轮机调速器与油压装置试验验收规程》(GB/T 9652.2-2007) 2.5《中国南方电网同步发电机原动机及调节系统参数测试与建模导则》(Q/CSG 11402-2009) 3调速系统模型及基本参数 1)PID调节器 图1 PID调节器仿真模型 2)机械液压系统模型

无刷电机电子调速器使用说明书

__________________________________________________________________________________ 感谢您购买了EASYCO无刷电机电子调速器。这款产品是专为遥控航模所设计的。因为大功率输出的遥控模型的危险性,我们强力建议您在使用这款产品前一定仔细的阅读产品说明。 安全建议! 1.所有的EASYCO遥控模型产品仅适于成年人使用。 2.在您连接电池线之前,确保其它的连接线正确连接。 3.EASYCO TECHNOLOGY不承担任何由使用本产品而引起的直接或间接的损害、伤害的赔偿责 任。 4.当模型和动力系统相连时必须和操控者及其它人保持足够的安全距离。 5.在远离人群的地方飞行。 6.了解当地对于遥控模型飞行的相关法律条例。 产品特点: 1.进角自动调整,无需设置。 2.极其轻微的启动过程。最低到3%的动力输出就可以平滑启动。平滑启动并保持足够的扭矩。 3.最好的油门曲线和最大的油门行程范围。 4.周全细致的保护功能:包括低电压保护\过热保护\油门信号丢失保护\安全上电保护\缺相保护\堵 转保护。 ●启动快慢完全由油门控制。在运转过程中只有堵转、缺相才会立即保护停机。停机后,油 门需回位才可重起。 ●较好的低电压保护模式。逐步降低动力输出以尽量维持电压在保护设定值之上。当降到30% 功率时,将停机。 ●当温度超过保护值时,降低功率,降低速率由温升速率决定。 ●信号丢失在3秒内降到20%功率后停机。 ●安全上电保护。接通电源时无乱遥控杆在何位置皆可保证电机不会启动,确保安全。 5.较为简单的参数设定。 产品规格: 型号持续电流输入电压BEC形式BEC输出重量(g)尺寸(mm) 4568X30X10.5 FS-7070A2-6LiPo开关5V、6V可 调/3A FS-6060A2-6LiPo开关5V、6V可 4168X30X10.5 调/3A 3764X30X10.5 FS-4545A2-6LiPo开关5V、6V可 调/3A FS_3560A2-6LiPo开关5V、6V可 3159X30X10.5 调/3A 3352X29X9 F-4545A2-4LiPo线性5V、6V可 调/3A F-3535A2-4LiPo线性5V、6V可 3252X29X9 调/2A F-3030A2-4LiPo线性5V/2A2548X25X11注意:电调自带BEC不支持四节和四节以上锂电(或其他相当电压的电池)

微机调速器技术说明书

SDT200水轮机微机调速器 说明书 编写:李书明陈军 审核:史恒 批准:郭效军 国电南京自动化股份有限公司 一九九九年二月

目录 1 概述 (1) 2 硬件配置 (3) 3软件结构 (3) 4操作说明 (4) 5 机械结构形式 (7) 6 电柜原理图和端子布置图 (7)

一.概述 SDT200水轮机调速器是以可编程控制器(PLC)为调节控制核心的新型水轮机微机调速装置,配以现代控制理论为核心的软件,与水轮机的电液执行机构组成水轮机调速系统。该种型号的调速器适用于各种不同容量的混流式水轮发电机组和轴流转桨式水轮发电机组的调节控制。与其它类型调速器相比,具有可靠性高,可维护性好,性能价格比高的优点。 1.规格和主要技术指标 型号:SDT200 系统结构:微机调节+电液随动系统 调节规律:变结构、变参数并联PID控制 微机型式:PLC(PLC形式可选GE系列、MODICON系列、三菱系列) 测频方式:数字测频,2-100 Hz 测频分辨率:0.00125 Hz/1LSB 比例增益:Kp= 0-10 积分增益:Ki= 0-5 微分增益:Kd= 0-10 永态转差系数:bp=0-10% 人工转速死区:0-10% 模数与数模转换分辨率:12 位 电柜输出:电压±10 V,电流±0.2 A 供电电源:交流 220 V 和直流 220 V 并联供电 电液转换器:环喷式、双锥式或其他型式电液伺服阀 主接力器反馈:线位移传感器电气反馈 转速死区:〈=0.03% 接力器不动时间: <=0.2 s 2.主要功能 2.1 自动调节和控制功能 1.以最佳过程起动水轮发电机组,启动过程可使机组频率跟踪电网频率;也可以按给定频率启动。 2.保证水轮发电机组稳定运行于下列工况: 单机空载运行; 与大电网或地区电网并列运行; 调相运行; 手动运行; 3.最佳过程使机组停机,根据需要可实现分段关闭过程。 4.能够根据机组运行工况、水头、导叶开度等因素实现变结构、变参数适应式PID自动调节。 5.可以在线修改调节参数,不会引起机组负荷冲击。 6.对于转桨式水轮机,可以实现轮叶转角与净水头及导叶开度之间的协联关系,提高机组发电效率。 7.装置可实现导叶或功率的成组调节。 8.自动按工况修正调速系统的动态灵敏度,以适应各种工况对灵敏度的不同要求。 9.可接受监控系统操作指令实现远程操作,也可现地由面板操作。 10.具有报警功能。 11.能完成手、自动平滑切换。 2.2 容错功能 1.测频断线容错:机频的容错必须在下列运行工况下得到保证(1)空载运行;(2)

调速器现场电气试验指导(完整资料).doc

【最新整理,下载后即可编辑】 调速器现场调试指导 编写: 校核: 审定: 武汉三联水电控制设备有限责任公司 2004年10月10日 一.试验内容 (一).无水试验 1.静态特性试验 A.试验目的:检验调速器的转速死区和非线性度 方法一、 ①置调速器处于空载状态,或负载状态频率调节模式(模拟发电机

断路器合),置永态转差系数bp=6%,PID参数取最小值bt=3%、td=3s、tn=0s,频率给定值=50Hz。不跟踪指示灯亮。 ②把电气开限L开至全开,增加开度给定将导叶接力器开至50%左 右的行程。 ③用稳定的频率信号源输入频率信号,升高或降低频率使接力器全 开或全关:调整信号值(变化值0.3Hz),使之按一个方向单调升高或降低,在导叶接力器行程每次变化稳定后,记录本次信号频率值及相应的接力器行程值,分别绘制频率升高和降低时的调速器静态特性曲线。将频给和相应的接力器行程值记入表内。 方法二、 ①断开机组PT和母线PT与调速器的连线,将机频和网频输入信号 端子与工频信号(调速器自带AC 5V)相联,置调速器于负载状态频率调节模式(模拟发电机断路器合),置永态转差系数bp=6%,负 =0.00Hz,载PID参数取最小值bt=3%、td=2s、tn=0s,频率死区E f 置静特性标。(本方法适用于数码管显示PLC微机调速器) ②置频率给定Fs=50Hz,开度给定Ys=0.00%,电气开限L=99.99%,此 时接力器将关至0%。 ③将频给从50Hz开始每0.3Hz变化一次,使力器行程单调上升或 下降,在导叶接力器行程每次变化稳定后,记录本次信号频率给定值及相应的接力器行程值,分别绘制频给升高和降低时的调速器静态特性曲线。将频给和相应的接力器行程值记入试验报告中相应的表格。 每条曲线在接力器行程的5%-95%之间,测点不少于8个,如测点有1/4不在线上,则本次实验无效。两条曲线间的最大间距就是转速死区。 B. 国家标准: GB/T 9652.1-1997《水轮机调速器与油压装置技术条件》4.3.2规定:对于大型调速器转速死区ix≤0.04%,中小型调速转速死区ix≤0.1%;最大非线性度ε≤5%。 2.手自动切换试验 A.试验目的:检验调节系统在工作方式切换时的响应过程。 B.试验方法:将调速器自的5V工频信作为模拟机频和网频送入调器的机频网频输入端,将接力器开至任意开度,模拟机组断路器合处于并

变频器调速工作原理

变频器调速工作原理 目前交流调速电气传动已经上升为电气调速传动的主流,在电气传动领域内,由直流电动机占统治地位的局面已经受到了猛烈的冲击。 现在人们所说的交流调速传动,主要是指采用电子式电力变换器对交流电动机的变频调速传动,除变频以外的另外一些简单的调速方案,例如变极调速、定子调压调速、转差离合器调速等,由于其性能较差,终将会被变频调速所取代。交流调速传动控制技术之所以发展的如此迅速,和如下一些关键性技术的突破性进展有关,它们是电力电子器件(包括半控型和全控型器件)的制造技术、基于电力电子电路的电力变换技术、交流电动机的矢量变换控制技术、直接转矩控制技术、PWM(Pulse Width Modulation)技术以及以微型计算机和大规模集成电路为基础的全数字化控制技术等。 1变频器的发展 近二十年来,以功率晶体管GTR为逆变器功率元件、8位微处理器为控制核心、按压频比U/f控制原理实现异步机调速的变频器,在性能和品种上出现了巨大的技术进步。其一,是所用的电力电子器件GTR以基本上为绝缘栅双极晶体管IGBT所替代,进而广泛采用性能更为完善的智能功率模块IPM,使得变频器的容量和电压等级不断地扩大和提高。其二,是8位微处理器基本上为16位微处理器所替代,进而有采用功能更强的32位微处理器或双CPU,使得变频器的功能

从单一的变频调速功能发展为含有逻辑和智能控制的综合功能。其三,是在改善压频比控制性能的同时,推出能实现矢量控制和转矩直接控制的变频器,使得变频器不仅能实现调速,还可进行伺服控制。其发展情况可粗略地由以下几方面来说明。 1.容量不断扩大80年代采用BJT的PWM变频器实现了 通用化。到了90年代初BJT通用变频器的容量达到600KV A,400KV A 以下的已经系列化。前几年主开关器件开始采用IGBT,仅三四年的时间,IGBT变频器的单机容量已达1800KV A,随着IGBT容量的扩大,通用变频器的容量将随之扩大。 2.结构的小型化变频器主电路中功率电路的模块化、控 制电路采用大规模集成电路(LSI)和全数字控制技术、结构设计上采用“平面安装技术”等一系列措施,促进了变频电源装置的小型化。 3.多功能化和高性能化电力电子器件和控制技术的不断 进步,使变频器向多功能化和高性能化方向发展。特别是微机的应用,以其简练的硬件结构和丰富的软件功能,为变频器多功能化和高性能化提供了可靠的保证。由于全数字控制技术的实现,并且运算速度不断提高,使得通用变频器的性能不断提高,功能不断增强。 4.应用领域不断扩大通用变频器经历了模拟控制、数模 混合控制直到全数字控制的演变,逐步地实现了多功能化和高性能化,进而使之对各类生产机械、各类生产工艺的适应性不断增强。目前其应用领域得到了相当的扩展。如搬运机械,从反抗性负载的搬运车辆,带式运输机到位能负载的起重机、提升机、立体仓库、立体停

BWT-1B调速器调试手册

重庆水轮机厂水电控制设备分公司BWT-1B调速器调试手册BWT-1B微机调速控制器 调试手册 重庆水轮机厂水电控制设备分公司 2010.9

1 安装运行调试操作 1.1 接线检查 按随机提供的操作系统图及端子图接线,电源同时输入AC220V及DC220V两组,输出操作电源DC24V一组,传感器专用电源DC±24V一组。接线完毕后均应仔细检查,确认无误。 1.2 通电检查 用万用表测量AC220V输入端,两端子间电阻约5欧姆。投入AC220V电源,控制器应工作正常,然后关掉AC220V电源,投入DC220V电源,控制器应工作正常,再投入AC220V电源,使控制器为双电源并馈供电。当关掉AC220V电源时,控制器无干扰切换到DC220V电源供电。 1.3 静态调试 (1)位移传感器:将导叶的传感器固定后(注意:固定位移传感器的位置必须保证导叶 全开全关都在传感器有效行程内),打开油阀, PLC;再将导叶手动至全开,按上面同样操作将“全 PLC;记录完毕后切记要将“全行程” PLC,至此导叶的行程校定才算结束。 (2)事故停机:检查事故停机回路,在机旁或中控室操作按键,调速器应迅速全关,同时点亮事故停机指示灯。 (3)开关机时间:根据调保计算要求,调整开机和关机时间。 (4)参数设置:发电机组在开机前需要设置的参数有,给定频率,启动开度,空载开度,PID参数,行程设定(前面已经介绍)

例如: 数字键5000,再触摸,如果输入错误,触摸键 其他参数的设置输入也都同样操作。按下开机键或给“开机”令,控制器自动转入开 f>49.5HZ时,自动转入 f=50HZ时,导叶开度为设定的空载开度。在手动状态下假合油开 在上述调试过程中,如果此时条件不满足复位,开机,空载,发电,调相,停机等状态,就 转入无状态运行 1.4 动态调试 (1)手动开机:机组冲水后,选择纯手动运行方式,手动开机,机组转动后,频率逐渐上升,使其稳定于50HZ,记录此开度为空载开度(KZ=a0)。 给定频率:50.00 空载开度:a0 永态转差:6 比例:40 积分:14 微分:0 模式:0 跟网:0 死区:0 面,切换到自动运行状态,频率应在50±0.25HZ内稳定运行。 (2)空扰实验:调速器空载稳定运行后,可作空扰实验。参考“参数设定”一节,直接进入“空扰试验”画面,修改参数中的给定频率(Fr=50到Fr=52)和(Fr=50到Fr=48),

YCT电机调速器说明书

JD1、JD2系列控制器是机械工业部全国联合设计的最新产品,已通过部级鉴定,用作JZT,YCT系列电磁调速电机的控制设备,操作控制器面板上的旋钮,可实现电机宽范围无级调速,当负载为风机和泵类时,节电效果显著,可达20~30%,是我国目前推广的节能产品之一。 一、品种和主要技术数据 手操普通型(JD1A为指针式,JD2A为数显式): 二、使用环境 最高环境温度不超过40℃,海拨不超过1000米,相对湿度不超过90%,适用于少灰尘、无腐蚀性、爆炸性气体的场合。 三、工作原理 JD1、JD2系列电磁调速电动机控制器是由速度调节器、移相触发器、可控硅整流电路及负反馈等环节所组成。 JD1A与JD2A原理相同,速度指令信号电压和速度负反馈信号电压比较后,其差值信号被送入速度调节器进行放大。放大后的信号电压与锯齿波叠加,控制了晶体管GB1的导通时刻,随着差值信号电压改变移动脉冲,从而控制了可控硅的开放角,使滑差离合器的激磁电流随着变化,即滑差离合器的转速随着激磁电流的改变而改变。 四、结构与按装接线

JD1A、JD2A系列电磁调速电动机控制器的结构为塑壳密封结构,具有IP5X的防尘等级,可用于面板嵌入式或墙挂式安装,底部进线。其外型尺寸、安装方式和和联并接线如图 五、调整与试运行 1、JD1A、JD2A按(图1)接线,输出端(3)、(4)接入离合器线圈或接入100W 的照明灯泡做摸拟负载,并在输出端接入100V以上的直流电压表。 2、接通电源,指示灯亮,当转动速度指令电位器W1时,输出端应有0~90V的突跳电压(因测速负反馈未加入时的开环放大倍数很大,则认为开环时工作基本正常)。 3、起动交流异步电动机,使系统闭环工作。 a、转速表的校正(适用于JD1A,JD2A跳过此项操作):由于每台测速发电机的电压都不同,故转速表上的指示值必须要根据实际转速进行校正。当离合器运转在某一转速时,用轴测式转速表或数字转速表测量其实际转速,当出现转速表的指示值与测得的实际转速不一致时,调节“转速表校准”电位器,使之一致。 b、最高转速整定;此整定方法就是对速度反馈量的调节,将速度指令电位器顺时针方向调节至最大,并调节“反馈量调节”电位器,使之转速达到滑差电机的最高额定转速(小容量为1250转/分,大容量为1320转/分)。 4、运行中,当加入负载后发现转速有周期性的摆动,可将输出端(3)、(4)交换连接。 电气参数: ?调速范围125-1320转/分 ?控制电机功率0.55-40KW ?转速变化率≤3% ?稳速精度≤1% ?电源电压AC220V

变频器的六大调速方法

电动机知识 变频器的六大调速方法 1.变极对数调速方法 这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。本方法适用于要求精度高、调速性能较好场合。变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。 2.串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装臵,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装

臵容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装臵故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。变频器调速原理及调速方法 3.绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 4.定子调压调速方法 当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。调压调速的主要装臵是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点:调压调速线路简单,易实现自动控制;调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。调压调速一般适用于100KW以下的生产机械。 5.电磁调速电动机调速方法 电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由

YWT液压微机调速器(说明书)

YWT液压微机调速器 (说明书) 长沙市立川水电控制设备有限公司 5 1、型号说明

YWT系列数字式水轮机调速器是新型水轮机调速器,它采用了可编程技术、现代液压技术和数字化 技术最新成果。 该调速器不仅技术指标先进,功能齐全,而且较常规油压的水轮机调速器结构更为简洁,机械液压 部分由标准的工业液压件组成,运行可靠性高,维护简单。由于这种采用标准液 压件构成的调速器技术已经成熟,正在取代常规油压的中小型水轮机调速器。 YWT系列数字式水轮机调速器的规格型号详见下表: 不同操作功(牛·米)对应的型号 5000030000180001000060003000 YWT-50000-16YWT-30000-16YWT-18000-16YWT-10000-16YWT-6000-16YWT-3000-16 YWT的意义是: Y代表组合式-油压装置与执行部件在一起; W代表可编程调节器; T代表调速器。 型号的第二部分代表操作功。型号的第三部分代表高油压。见(图 A-1) YWT-18000-16 油压等级 操作功(N. M) 调速器 微机或可编程 组合式 2、调速器组成 a、YWT系列可编程调节器:主要功能是测量机组和电网的频率;按PID规律对 频差进行运算, 产生具有PID规律的调节信号,实现频率、开度和功率多种调节模式,实现开停机操作和电 气开限等功能。 b、液压随动系统:其功能是将微机调节器的输出电气信号,通过数字阀及油 缸成比例地转换机械

可编程调节器 位移信号;推动水轮机导水叶机构运动,控制进入水轮机水量,实现对 转速和负载的调节,是 调速器的执行机构。 该调速器由三大部分组成,其系统框图如图所示: YWT 系列数字式高油压水轮机调速器系统框图 3、主要技术指标及参数 整机主要技术性能及主要参数: a 、技术性能 本调速器技术性能符合国家“水轮机调速器及油压装置技术条件”GB/T9652.1—1997的要求, 主要性能指标如下: 转速死区i x <0.08% 导叶静态特性曲线非线性度<3% 甩25%负荷时,导叶接力器不动时间tq <0.2秒 机组自动空载频率摆动值Δf <±0.25% 备用电源切换、手自动切换时导水叶开度变化<±1% 机组带稳定负荷运行时,导叶波动<±1% 调速器无故障运行时间MTBT ≮18000小时 调速器抗油污能力:滤油精度<80μm b 、调节参数: (1)永态转差系数bp :通过触摸式图形操作终端修改,可调范围为0~10%。 (2)暂态转差系数bt :通过触摸式图形操作终端修改,可调范围为5~150% (3)缓冲时间常数Td :通过触摸式图形操作终端修改,可调范围为1~20秒。 (4)加速时间常数Tn :通过触摸式图形操作终端修改,可调范围为0~2.0秒。 (5)水头H :通过触摸式图形操作终端修改。 可编程 PID 调节 YPID YFB PWM A/D 皮囊式蓄能器 泵组 压力油源 数字阀 油缸 警急停机电磁阀 机组频率 电网频率 操作指令 位移传感器 液压随动系统

jda-40电磁调速电机控制器说明书

JD1A-40电磁调速电机控制器 产 品 使 用 说 明 书 江苏省泰州市耐特调速电机有限公司

JDIA-40型电磁调速电动机控制器是原机械工业部全国联合统一设计产品,用于电磁调速电动机(滑差电机)的调速控制。实现恒转矩无级调速,当负载为风机和泵类时,节电效果显著,可达10%~30%,是我国目前推广的节能产品之一。 1、型号含义: 2、使用条件: 2.1、海拔不超过1000m 。 2.2、周围环境温度;-5℃-+40℃。 2.3、相对湿度不超过90%(20℃以下时)。 2.4、振动频率10-15OHz 时,其最大振动加速度应不超过0.5g 。 2.5、电网电压幅位波动±10%额定值时、保证额定使用。 2.6、周围介质没有导电尘埃和能腐蚀金属和破坏绝缘的气体。 3、主要技术数据: 3.1调速范围: 电源为50Hz 时:1250~125转/分60Hz 时:1500~150转/分 3.2转速变化率(机械特性硬度)≤2.5% 100%100%%10X 额定最高速度负载下是转速—负载下的转速转速变化率= 3.3稳速精度:≤1% 3.4最大输出:直流90V 3.5控制电机功率:0.55~40KW 3.6测速发动机三相2V ≤3.5V/100r .p.m 。 4.基本工作原理:

JD1A—40电磁调速电动机控制装置是由速度调节器、移相触发器、可控硅整流电路及速度负反馈等环节所组成。 图1为装置原理方框图。图2为装置的电气原理图。图3为装置的移相触发各点波形图。从图1-图4可知,二种线路的工作原理都是相同的。速度指令信号电压和调速负反馈信号电压比较后,其差值信号被送入速度调节器(或前置放大器)进行放大,放大后的信号电压与锯齿波叠加,控制了晶体管的导通时刻,产生了随着差值信号电压改变而移动的脉冲,从而控制了可控硅的开放角,使滑差离合器的激磁电流得到了控制,即滑差离合器的转速随着激磁电流的改变而改变。由于速度负反馈的作用,使电磁调速电动机实现恒转矩无极调速。 从图2-图3可知,JD1A—40型的速度指令信号电压是由装在控制箱面板上的速度操作电位器产生的。 5.结构、安装接线说明与注意事项: 5,1控制器的结构为塑料密封结构。具有IP5X的防尘等级,可用于面板嵌入式或墙挂式安装,底部进线,接线如图5,其外形尺寸安装方法如图4图6所示。 5.2安装使用前,须用500伏兆欧表检查控制器绝缘电阻,其阻值不应低于1兆欧,如达不到要求须进行干燥,干燥温度不应超过45℃,以免损坏元件。 5.3在拖动电机未起动情况下,不要单独操作控制器,以免控制器或烧毁调速电动机激磁线圈。 6.调整与试运行: 6.1检查熔断丝规格及转速表指针是否在零位。接线是否正确。 6.2接通电动机电源、检查旋转方向是否与被托动机械一致 6.3试车时。先起动异步电动机,再接通控制器电源,指示灯亮,旋动调速旋钮,此时转速表上读数逐渐上升,根据需要可将转速调至某一数值稳定下来。6.4转速表指示值校正,按顺时针方向转动给定电位器W1与任意位置,用机械转速表或其他仪表检查调速电机的实际转速与转速表指示值,不一样时调校表电位器W3。 6.5按顺时针方向转动给定电位器W2至最大时,调节反馈电位器W2使转速表符合表1的规定。

变频调速器的常见故障分析和预防措施

变频调速器的常见故障分析和预防措施 近年来,随着微电子技术及 IGBT 功率期间的迅速发展,作为交流电机主要调速方式的变频调速技术也获得了前所未有的发展。尤其是矢量控制变频器,以其优异的控制性能在调速领域独树一帜,在港口机械、冶金、造纸、电梯等多个领域得到迅速推广。 日本,欧美等变频技术发达国家,均承认以进入 AC (交流)时代。我国港口机械设备中的场桥( RTG )、门座式起重机、装卸桥( C/C )也广泛使用了变频调速器,从 37kW 到 440kW 均有应用实例。随着使用数量的不断增加,也遇到了故障维修问题。我公司于 1997 年对 4 台门机的变幅及旋转机构进行了变频调速改造,经过一年多的实际运行,下面就变频器的常见故障及预防措施进行分析及探讨 1. 变频器的主要故障原因及预防措施 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果,为防患于未然,事先对故障原因进行认真分析显得尤为重要。图 1 所示为变频器硬件回路框图。 近年来,随着微电子技术及 IGBT 功率期间的迅速发展,作为交流电机主要调速方式的变频调速技术也获得了前所未有的发展。尤其是矢量控制变频器,以其优异的控制性能在调速领域独树一帜,在港口机械、冶金、造纸、电梯等多个领域得到迅速推广。日本,欧美等变频技术发达国家,均承认以进入 AC (交流)时代。我

国港口机械设备中的场桥( RTG )、门座式起重机、装卸桥( C/C )也广泛使用了变频调速器,从 37kW 到 440kW 均有应用实例。随着使用数量的不断增加,也遇到了故障维修问题。我公司于 1997 年对 4 台门机的变幅及旋转机构进行了变频调速改造,经过一年多的实际运行,下面就变频器的常见故障及预防措施进行分析及探讨 1. 变频器的主要故障原因及预防措施 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果,为防患于未然,事先对故障原因进行认真分析显得尤为重要。图 1 所示为变频器硬件回路框图。 1.1 外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理,更必要。以下几项措施是对噪声干扰实行“三不”原则的具体方法。 ( 1 )变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如 RC 吸收器。 ( 2 )尽量缩短控制回路的配线距离,并使其与主线路分离。 ( 3 )指定采用屏蔽线的回路,必须按规定进行,若线路较长,应采用合理的中继方式。 ( 4 )变频器接地端子应按规定进行,不能同电焊,动力接地混用。 ( 5 )变频器输入端安装噪声滤波器,避免由电源进线引入干扰。 以上即为不输出干扰、不传送干扰、不接受干扰的“三不”原则。 1.2 安装环境 变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施。 ( 1 )振动是对电子器件造成机械损伤的主要原因。对于振动冲击较大的场合,应采用橡胶等避振措施。 ( 2 )潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路。作为防范措施,应对控制板进行防腐防尘处理,并进量采用封闭式结构。 ( 3 )温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,若结温超过规定值将立刻造成器件损坏,因此应根据装置要求的环境条件安装空调或避免日光直射。 除上述 3 点外,定期检查变频器的空气滤请器及冷却风扇也是非常必要的。 对于特殊的高寒场合,为防止微处理器因温度过低而不能正常工作,应采取设置空间加热器等必要措施。 1.3 电源异常

相关文档