文档库 最新最全的文档下载
当前位置:文档库 › 表面位移十字布点法

表面位移十字布点法

表面位移十字布点法

表面位移观测法

采用“十字布点法”,具体方法如下:

1、在顶、底板及两帮施工Ф42mm(钻孔大小,可根据迎头实际情况确定),深380mm,并垂直围岩表面的钻孔。顶部测点宜布置在巷道中心线上,帮部测点宜布置在便于测量的位置(腰线),基点原则上必须布置在同一断面内,由于煤巷掘进底鼓量大,底板可不设基点,以顶板基点垂线与帮部基点连线下尺寸作为底鼓量。

2、将Ф42mm,L=400mm的木桩打入孔内(木桩大小,可根据钻孔实际大小确定),木桩端部安设环形测钩或平头测钉作为测量基点。顶部测点需悬挂测线,便于测量。

3、布置的基点必须有明显标记,同一巷道的标记需统一样式。

4、观测时,利用钢卷尺或测抢测量,帮部位移必须分中测量,顶板下沉量、底鼓量采用分腰线上下量测。

5、表面位移观测站,必须与离层、载荷等观测点同步施工,施工结束,及时准确测量数据,并记录。

1

十字交叉法解题两个易错点

十字交叉法解题 十字交叉法是化学计算中常用的一种速解巧解方法,适用于二元混合体系所产生的具有平均意义的计算问题。对于等量关系:ma+nb=(m+n)c 整理得:m n= c-b a-c 可写成图式: a c-b ↘↗ c ↗↘ b a-c 其中a、b为分量,c为平均量,一般只写其数值。因图式成十字交叉形,所以叫十字交叉法,多用于计算型的选择题或填空题。一般用起来比较简捷,但任何解题方法都有其局限性,十字交叉法也不例外,有时候不仅不能起简化作用,反而会造成失误。因此应具体问题具体分析,恰当采用。下面就十字交叉法解题最易出错的二元混合物反应的有关计算,通过例题加以分析。

1.十字交叉法比值的含义 例1:镁和铝的混合物10 g,与足量的稀硫酸充分反应,生成1.0 g氢气,混合物中镁和铝的质量比为 解析:用十字交叉法解题,关键是定好基准,找出分量和平均量。该题以失去电子的物质的量1mol作为基准,求出所对应金属的质量。失去单位物质的量电子的金属质量称作该金属的摩尔电子质量,则镁和铝的摩尔电子质量分别为12g/(mol e-)、9g/(mol e-)作为分量,1.0 gH2是H+得到1.0 mol电子所生成的,说明10 g镁和铝的混合物共失去1.0 mol电子,即镁、铝混合物的平均摩尔电子质量为10g/(mol e-),作为平均量,即两个分量值分别为12和9,平均值为10,用十字交叉法图解如下: Mg 12 1 ↘↗ 10 ↗↘ Al 9 2 那么比值1/2的含义是什么?是镁和铝的质量比、物质的量之比,还是镁和铝失去电子的物质的量之比,这就是用十字交叉法解题最易出错的地方。十字交叉法的解题要点是“斜向找差值,横向看结果”,指的是:十字交叉所得的两个差值与它横对的物质成正比例关系,两个差值比的含义取决于分量和平均量单位的分母,即该比值是产生分量的基准物的分配比,并且是基准物所对应的物理量之比,它与两个分量比值的乘积有一定的物理意义。本题所得比值1/2显然是镁和铝失去电子的物质的量之比,原混合物中镁和铝的质量比为:1×12∶2×9=2∶3。 如果本题由十字交叉法所得比值求镁和铝的物质的量之比,据镁和铝失去电子的物质的量之比为1/2,很容易求得:n(Mg):n(Al) =1×1 2 ∶2× 1 3 =3∶4。

化学十字交叉法的原理和应用

化学十字交叉法的原理和应用 孟州一中 王俊强 化学计算是中学化学中的重要组成部分,运用恰当的数学方法和模型解决化学问题,可以培养学生的科学思维能力,提高学生分析问题、解决问题的能力,同时也可以加深学生对化学基本概念和基本原理的理解。“十字交叉法”的应用就是其中的典型。 一、十字交叉法的原理 对于一个具有平均意义的由组分A 、B 形成的二元混合体系,设a 、b (a >b )为组分 A 、 B 单位物理量的分属性,c 为混合物的混合属性即平均值,a,b,c 表示的物理量是一致的(如摩尔质量、相对原子质量、质量分数、焓变、分子式等),X 、Y 两组分单位物理量的数量因子。此时通常可以建立一个二元一次方程组: aX+bY=c X+Y=1 对上边的二元一次方程组进行变式得: X c-b Y a-c 为了方便同学们的记忆,将其变为固定模式: 单位物理量的组分A a c-b c 单位物理量的组分B b a-c 二、十字交叉法的应用 十字交叉法作为一种简单算法,它特别适合于两总量、两关系的混合物的有关计算。具体适用题型如下: (1)有关质量分数的计算(用两种不同浓度溶液的质量分数与混合溶液的质量分数作十字交叉,求两种溶液的质量比) 例1 将50%的盐酸溶液与10%盐酸溶液混合成40%的盐酸溶液,求所取两种溶液的质量比。 解析: (2)有关物质的量浓度的计算(用混合钱的物质量的浓度与混合后的物质量的浓度做十字交叉,求体积比) 13 )%10() %50( HCl m HCl m 100g50% 盐酸 50 30 40 100g10% 盐酸 10 10 例2 现有浓度为 4mol ·L -1 和6mol ·L -1 的两种硫酸溶液,欲配制5 mol/L 的硫酸溶液(混合时体积变化忽略不计)则取两种硫酸溶液的体积比是多少?

十字相乘法因式分解练习题#精选、

因式分解详解——注意中间项的符号!最后的符号同十字相乘列式的符号~ 定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 有()()()b x a x ab x b a x+ + = + + + 2 注意:这里常数项是2,只有1×2。当常数项不是质数时,要通过多次拆分的尝试,直到符合要求为止。通常是拆分常数项,验证一次项 例1 把2x2-7x+3分解因式。 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。 用画十字交叉线方法表示下列四种情况: 1 1 1 3 1 -1 1 -3 2 × 3 2 × 1 2 × -3 2 × -1 1×3+2×1 1×1+2×3 1×(-3)+2×(-1) 1×(-1)+2×(-3) =5 =7 =-5 =-7 经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。 解 2x2-7x+3=(x-3)(2x-1)。 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之 积,即a=a 1a 2 ,常数项c可以分解成两个因数之积,即c=c 1 c 2 ,把a 1 ,a 2 ,c 1 ,c 2 排列如下: a 1 c 1 a 2× c 2 a 1c 2 + a 2 c 1 按斜线交叉相乘,再相加,得到a 1c 2 +a 2 c 1 ,若它正好等于二次三项式ax2+bx+c的一次项系 数b,即a 1c 2 +a 2 c 1 =b,那么二次三项式就可以分解为两个因式a 1 x+c 1 与a 2 x+c 2 之积,即 ax2+bx+c=(a 1x+c 1 )(a 2 x+c 2 )。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 3 × -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用直字相乘法分解因式。 解 6x2-7x-5=(2x+1)(3x-5)。 指出:通过例1和例2可以看到,运用十字相乘法把一个二镒项系数不是1的二次三贡式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。 对于二次项系数是1的二次三贡式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是 1 -3 1 × 5 1×5+1×(-3)=2 所以x2+2x-15=(x-3)(x+5)。 例3把5x2+6xy-8y2分解因式。 分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 5 × -4 1×(-4)+5×2=6 解 5x2+6xy-8y2=(x+2y)(5x-4y)。 指出:原式分解为两个关于x,y的一次式。 例4把(x-y)(2x-2y-3)-2分解因式。 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解。 问:两个乘积的历式有什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。 解(x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 1 -2 =2(x-y)2-3(x-y)-2 2 × +1 =[(x-y)-2][2(x-y)+1] 1×1+2×(-2)=-3 =(x-y-2)(2x-2y+1)。 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。

十字交叉法解析

十字交叉双乘法没有公式,一定要说的话 那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方 1.因式分解 即和差化积,其最后结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果唯一,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的差异,那么f(x)可以唯一的分解为以下形式: f(x)=aP1k1(x)P2k2(x)…Piki(x)*,其中α是f(x)的最高次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。 (*)或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53 初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等 要求为:要分到不能再分为止。 2.方法介绍 2.1提公因式法: 如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。 例15x3+10x2+5x 解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。 解:原式=5x(x2+2x+1) =5x(x+1)2 2.2公式法 即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下: a2-b2=(a+b)(a-b) a2±2ab+b2=(a±b)2 a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2) a3±3a2b+3ab2±b2=(a±b)3 a2+b2+c2+2ab+2bc+2ac=(a+b+c)2 a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2 a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc) an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数) 说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。 例2分解因式:①64x6-y12②1+x+x2+…+x15 解析各小题均可套用公式 解①64x6-y12=(8x3-y6)(8x3+y6) =(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4) ②1+x+x2+ (x15) =(1+x)(1+x2)(1+x4)(1+x8) 注多项式分解时,先构造公式再分解。 2.3分组分解法 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定唯一。 例1分解因式:x15+m12+m9+m6+m3+1 解原式=(x15+m12)+(m9+m6)+(m3+1) =m12(m3+1)+m6(m3+1)+(m3+1) =(m3+1)(m12+m6++1) =(m3+1)[(m6+1)2-m6]

”十字交叉法“的原理和应用要点

化学计算中“十字交叉法”的数学原理和应用 一. “十字交叉法”简介 “十字交叉法”是二元混合物(或组成)计算中的一种特殊方法,若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用“十字交叉法”计算。十字交叉法在化学计算中是一种常用的方法,在很多习题中采用十字交叉法可以简化计算过程,提高计算效率。下面先从一道简单的例题来介绍何为十字交叉法。 例1、50克10%的硫酸溶液和150克30%的硫酸溶液混合后,所得硫酸溶液的质量分数是多少? 采用十字交叉法计算的格式如下: 设混合后溶液的质量分数为x%,则可列出如下十字交叉形式所得的等式: 10%的溶液 10 30 — x X 30%的溶液 30 x — 10 50g(10% 的溶液质量) 150(30%的溶液质量)

由此可得出x = 25,即混合后溶液的质量分数为25%。 以上习题的计算过程中有一个十字交叉的形式,因此通常将这种方法叫做“十字交叉法”。然而怎样的计算习题可以采用这种方法?且在用“十字交叉法”时,会涉及到最后差值的比等于什么的问题,即交叉后所得的差值之比是实际中的质量之比还是物质的量之比?这些问题如果不明确,计算中便会得出错误的结论。 针对以上问题,在以前的教学中,可能往往让学生从具体的习题类型死记差值之比的实际意义。由于十字交叉法常用于: ①核素“丰度”与元素相对原子质量的计算; ②混合气体不同组分体积之比和混合气体平均相对分子质量的计算; ③不同浓度的同种溶液混合后质量分数与组分溶液质量之比的计算等类型的习题中。 因此可以简单记忆为前两种类型中,差值之比为物质的量之比,第三种类型差值之比为质量之比。这种记忆方法束缚了学生的思维,同时也限制了“十字交叉法”的使用范围。实质上“十字交叉法”的运用范围很广,绝不仅仅只能在以上三种类型的习题中才可运用。然而不同情况下,交叉后所得的差值之比的实际意义是什么?该怎样确定其实际意义?是我们应该探讨和明了的问题。要解决此问题,就要明了“十字交叉法”的数学原理,然后再从原理的角度去分析,便能确定差值之比在何时为组分的质量之比,何时为组分的物质的量之比。

十字交叉法原理

“十字交叉法”与“杠杆原理” (162650)内蒙古扎兰屯林业学校孙涛 摘要:化学计算是中学化学重要的一环,只有掌握正确的解决方法,才能得心应手,“十字交叉法”就是一种十分 有效、快捷的计算方法。 关键词:化学计算、十字交叉法 随着中学化学新教改,化学计算很多都可有“十字交叉法”简洁、迅速而准确地求解。理解“十字交叉法”的理论实质,不妨联想一下力学中的“杠杆原理”。 设有两个力f1与f2分别作用在杠杆的a、b两个端点,杠杆支点为c,将杠杆看作有向线段,各点坐标a>b>c. 如图所示 b .c a------ 其平衡条件可表述为:“作用在杠杆两端的两力矩相等,则杠杆平衡即f1(a-c) = f2(c-b) 或表述为:”若作用在杠杆两端的两个力与其力臂长成反比,则杠杆平衡。 亦即f1/f2 = (c-b)/(a-c) 导出“十字交叉法”为 a c-b c b a-c 由此可知,化学计算中的问题若能和“杠杆原理”联系起来,找出两个“力”,两个“力臂”:或找出杠杆上的一个“支点”,两个“端点”以及作用在“端点”的两个“力”,就可求解。 下面谨举几例说明: 1、关于相对原子质量(同位素相对原子质量)的计算 例:氯元素有两种同位素35Cl和37Cl。已知氯元素的原子量为35.5,则35Cl的天然丰度。 分析:本题中氯的两种同位素的原子量可看作杠杆两端的两 第 1 页,共5页

第 2 页,共 5页 个“力”,各自的天然丰度为其“力臂”,而相对原子质量35.5为其“支点”。 35 1.5 35.5 =1 3 36 0.5 可知35Cl 与37Cl 的物质的量之比(即天然丰度之比)为3:1. 所以35Cl 的天然丰度为3 11+×100% =75% 2、 相对分子质量的计算 例2,在标准状况下,11.2LCO 和CO 2混合气体质量为20.4g, 求混合气体中CO 和CO 2的体积比? 分析:混合气体CO 和CO 2的相对质量作两个“力”,各自的体积看作“力臂”,而混合气体的平均相对分子质量作为“支点”。 解:混合气体的平均相对分子质量为 混M =n m = 2 .114.20×22.4=40.8 CO: 28 3.2 40.8 =4 1 CO 2: 44 12.8 即4 12=CO CO V V 3、 关于体积分数的计算 例:在标准状况下,CH 4、CO 和C 2H 2混合气8.96L,完全燃烧生成26.4gCO 2, 则混合气中乙炔体积分数是多少? 解:①求混合气平均1mol 含C 原子数n 混合气=mol 4.04 .2296.8= 共生成CO 2=mol 6.044 4.26= 所以n 5.14 .06.0==

十字交叉法的原理及其在化学计算中的应用

十字交叉法的原理及其在化学计算中的应用 十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义在使用该方法时将没有真正达到简化思路、快速准确求解的目的从而限制了该方法的推广和应用“十字交叉法”是通常中学化学计算必需掌握的一种计算方法因为用此法解题实用性强、速度快学生若能掌握此方法解题将会起到事半功倍的效果以下是笔者几年来对“十字交叉法”理解及体会 . 1 十字交叉法的原理 A×a%+B×b%=(A+B)×c% 整理变形得: A/B=(c-b)/(a-c )① 如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系可得如下十字交叉形式 对比①,②两式不难看出: 十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比 推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系 ,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值,c决定则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c 为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比若c为摩尔质量,则 (c-b)/(a-c) 就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量. 2 .十字交叉法的应用例析: 2.1 用于混合物中质量比的计算 例1:将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少? 解:在标准状况下,求出氢气的质量M=1g以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:

十字交叉法

某机关共有干部职工350人,其中55岁以上共有70人。现拟进行机构改革,总体规模压缩为180人,并规定55岁以上的人裁减比例为70%。请问55岁以下的人裁减比例约是多少?() A.51% B.43% C.40% D.34% 裁人后比例为50%— 55以下 280(4)50%-X 55以上70 (1)50%+20% 十字交叉 4 对应20% 1对应X 即5% 裁人后比例为50%—所以选43% 不是十字相乘应该为十字交叉法不过我研究的时候给他起的名字叫权重法自己起的名字,感觉这个更恰当 十字相乘法用来解决一些比例问题特别方便。但是,如果使用不对,就会犯错。 (一)原理介绍 通过一个例题来说明原理。 某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。求该班男生和女生的比例。 方法一:搞笑(也是高效)的方法。男生一人,女生一人,总分160分,平均分80分。男生和女生的比例是1:1。 方法二:假设男生有A,女生有B。 (A*75+B85)/(A+B)=80 整理后A=B,因此男生和女生的比例是1:1。 方法三: 男生:75 5 80 女生:85 5 男生:女生=1:1。 一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。 AX+B(1-X)=C

X=(C-B)/(A-B) 1-X=(A-C)/A-B 因此:X:(1-X)=(C-B):(A-C) 上面的计算过程可以抽象为: A C-B C B A-C 这就是所谓的十字相乘法。 十字相乘法使用时要注意几点: 第一点:用来解决两者之间的比例关系问题。 第二点:得出的比例关系是基数的比例关系。 第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。 1.(2006年江苏省考)某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是 A.2:5 B.1:3 C.1:4 D.1:5 答案:C 分析: 男教练:90% 2% 82% 男运动员:80% 8% 男教练:男运动员=2%:8%=1:4 2.(2006年江苏省考)某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,

十字交叉法运用原理

一、十字交叉法的原理 (这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改) 首先通过例题来说明原理。 某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。 方法一:搞笑(也是高效)的方法。男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。 月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。 方法二:假设男生有X,女生有Y。有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。 月月讲解:这个就是常用的列方程法 方法二:假设男生有X,女生有Y。 男生:X 75 85-80=5

80 女生:Y 85 80-75=5 男生:女生=X:Y=1:1。 月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。 总结一下, 一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。 AX+B(1-X)=C X=(C-B)/(A-B) 1-X=(A-C)/A-B 因此:X:(1-X)=(C-B):(A-C) 上面的计算过程可以抽象为: A C-B C B A-C 这就是所谓的十字相乘法。

月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。 有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少? 假设A溶液的质量为X,B溶液的浓度为Y,则有: X*x+Y*y=(X+Y)*r 整理有X(x-r)=Y(r-y); 所以有X:Y=(r-y):(x-r) 上面的计算过程就抽象为: X x r-y r Y y x-r 这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。 十字相乘法使用时要注意几点: 第一点:用来解决两者之间的比例关系问题。 第二点:得出的比例关系是基数的比例关系。 月月讲解:这个尤其需要注意,因为在资料分析中运用的时候,好多时候都会忘记得到的值是基期的,而感觉到十字交叉法应用错误,不过十字交叉法在资料分析中的用法,我们会在下面有更加详细的讲解。

十字交叉法快速解数学运算题讲课教案

2011国考冲刺:十字交叉法快速解数学运算题 一、十字交叉法简介 当数学运算题最终可以通过下式解出解出,我们就称这类问题为"加权平均问题"。 二、适用题型 十字交叉法最初在浓度问题上应用广泛,但在实际计算过程中,十字交叉法并没有将浓度问题有所简化,而是在以下几种题型中有更广泛的应用,解题速度也有明显提高。 1.数量分别为A与B的人口,分别增长a与b,总体增长率为r。 2.A个男生平均分为a,B个女生平均分为b,总体平均分为r。 3.农作物种植问题,A亩新品种的产量为a,B亩原来品种的产量为b,平均产量为r。 当然还有其他类似的问题,这类问题本质上都是两个不同浓度的东西混合后形成了一个平均浓度,这类问题都可以运用十字交叉法快速解题。 三、真题解析 【例1】某市现有70万人,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口() A.30万 B.31.2万 C.40万 D.41.6万

【例2】某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是()。A.84分 B.85分 C.86分 D.87分 所以女生平均分为70×1.2=84,答案为A。 加权平均这种方法要经过一定的练习才能熟练掌握,因此华图教育希望大家利用最后的时间加紧练习,迅速提高自己的解题速度,在考场中发挥出最好的水平,祝所有考生马到成功。 【例1】浓度为70%的酒精溶液100克与浓度为20%的酒精溶液400克混合后得到的酒精溶液的浓度是多少? A.30% B.32% C.40% D.45% 【解析】这道题是典型的浓度混合问题,大部分考生在30秒的时间都可以解决。方法就是利用浓度公式求解:设混合后的浓度为x%,根据题意(不管怎么混合,溶质总量不变)则有100*70%+400*20%=(100+400)*x%解得x=30。然而在这里引用这道题,笔者是想想引出关于比例混合问题的一种解题方法——十字交叉法。大家先仔细看看下面的解题板书过程:

十字交叉法巧解小学数学题

十字交叉法巧解小学数学题 奥数教练慧思老师: 十字交叉法是理科中一个应用比较广泛的重要的方法,数学、化学、物理等学科都会用到十字交叉法,但很多人又只是听说过,却不能熟练运用,很好的运用十字交叉法,有助于快速准确的解决数学问题。那么,我们小学数学如何运用到十字交叉法呢? 下面我们一起来看一下慧思老师在小学数学中如何运用十字交叉法巧解数 学问题。 题型一:比较分数的大小 我们知道在分数的比较中,同分母分数,分子大的分数值大;同分子分数,分母小的分数值大;异分母分数则要把分母化为同分母分数才能进行比较。在教学中,我发现让学生记住这几条并不难,可是却非常容易混淆,或者是根本就不会运用。但是如果运用十字交叉相乘法,学生不但都能很快的得出答案,而且不管什么分数间进行比较都能够通用。 例1:比较大小。 3/8()4/9 解析:方法一:常规解法

方法二:十字交叉相乘法 注:所得的积必须写在分数线上方(即作为新分子)。 从上例很明显可以看出,十字交叉法比较两分数的大小的实质上就是通分。不过,却省去了学生对分数进行通分的过程和时间,从而一步到位,更简单更直接,只要会乘法的学生,在比较分数之间的大小时基本上都不费吹灰之力了。 题型二:解比例 很多老师和学生都知道,解比例的依据是比例的基本性质,即在比例中,两个内项的积等于两个外项的积。可当比例变化为a/b=c/d(a≠0,c≠0)这种形式时,有些学生便找不着内外项了,或者有某些学生还要把上式化为a:b=c:d(a ≠0,c≠0)的形式,这就走了弯路,浪费了时间不说而且变换后也很容易出错。 解:3x=5×9 x=45÷3 x=15 可见,利用此方法既直观又便于记忆,而且在较复杂的比例中,更能体现出些法的简便性与适用性,由于篇幅有限,在此就不一一介绍了。

因式分解之十字相乘法专项练习题

十字相乘法进行因式分解 1.二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 2.十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2b x a x ab x b a x ++=+++ 分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =?21,c c c =?21,且b c a c a =+1221, 3.因式分解一般要遵循的步骤 多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,

浓度问题十字交叉法

浓度问题 一个好玩的故事——熊喝豆浆 黑熊领着三个弟弟在森林里游玩了半天,感到又渴又累,正好路过了狐狸开的豆浆店。 只见店门口张贴着广告:“既甜又浓的豆浆每杯0.3元。”黑熊便招呼弟弟们歇脚,一起来喝豆浆。黑熊从狐狸手中接过一杯豆浆,给最小的弟弟喝掉 6 1,加 满水后给老三喝掉了 3 1,再加满水后,又给老二喝了一半,最后自己把剩下的一半喝完。 狐狸开始收钱了,他要求黑熊最小的弟弟付出0.3× 6 1=0.05(元);老三0.3 × 3 1=0.1(元); 老二与黑熊付的一样多,0.3× 2 1=0.15(元)。兄弟一共付了0.45元。 兄弟们很惊讶,不是说,一杯豆浆0.3元,为什么多付0.45-0.3=0.15元?肯定是黑熊再敲诈我们。 不服气的黑熊嚷起来:“多收我们坚决不干。” “不给,休想离开。” 现在,说说为什么会这样呢? 专题简析: 溶质:在溶剂中的物质。 溶剂:溶解溶质的液体或气体。 溶液:包含溶质溶剂的混合物。 在小升初应用题中有一类叫溶液配比问题,即浓度问题。我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。这个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即, 浓度=溶质质量 溶液质量 ×100%= 溶质质量 溶质质量+溶剂质量 ×100% 相关演化公式 溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 解答浓度问题,首先要弄清什么是浓度。在解答浓度问题时,根据题意列方程解答比较容易,在列方程时,要注意寻找题目中数量问题的相等关系。 浓度问题变化多,有些题目难度较大,计算也较复杂。要根据题目的条件和问题逐一分析,也可以分步解答。 例题1有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖? 【思路导航】根据题意,在7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖水的质量也增加了,但水的质量并没有改变。因此,可以先根据原来糖水中的浓度求出水的质量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就是增加的糖的质量。 解:原来糖水中水的质量:600×(1-7%)=558(克) 现在糖水的质量:558÷(1-10%)=620(克) 加入糖的质量:620-600=20(克) 答:需要加入20克糖。 练习1 1、现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克? 2、有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克? 3、有甲、乙两个瓶子,甲瓶里装了200毫升清水,乙瓶里装了200毫升纯酒精。

公务员考试数学运算秒杀技:十字交叉法

公务员考试数学运算秒杀技:十字交叉法 十字交叉法是数学运算及资料分析中经常用到的一种解题方法,熟练运用可以大大提高各位考生在考场上的解题速度。在平时的复习过程中应作为一个专题加以强化练习,以期达到行测考场上的“秒杀”。 十字交叉法最先是从溶液混合问题衍生而来的。若有两种质量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r,则由溶质质量不变可列出下式Aa+Bb=(A+B)r,对上式进行变形可得A/B=r-b/a-r,在解题过程中一般将此式转换成如下形式: 注意在交叉相减时始终是大的值减去小的值,以避免发生错误。 十字交叉法不仅仅可用于溶液混合问题,也可以应用于两部分混合增长率问题、平均分数、平均年龄等问题。只要能符合Aa+Bb=(A+B)r 这个式子的问题均可应用十字交叉法,交叉相减后的比值为对应原式中的A和B的比值。 例1 甲容器中有浓度为4%的盐水150克,乙容器中有某种浓度的盐水若干,从乙中取出450克盐水,放入甲中混合成浓度为8.2%的盐水。问乙容器中盐水的浓度是多少? A.9.6% B.9.8% C.9.9% D.10% 【解析】A。 【例2】某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口( )。 A.30万 B.31.2万 C.40万 D.41.6万 【解析】A。

【例3】(2011国考-76)某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁? A.34 B.36 C.35 D.37 【解析】C。 除了在数学运算中可以用到十字交叉法,在一些资料分析的题目中也可以运用十字交叉法,例如: 【例4】(2011年917联考)2010年1~6月,全国电信业务收入总量累计完成14860.7亿元,比上年同期增长21.4%;电信主营业务收入累计完成4345.5亿元,比上年同期增长5.9%。其中,移动通信收入累计完成2979亿元,比上年同期增长11.2%,比重提升到68.55%,增加了3.24%,固定通信收入累计完成1366.5亿元,比重下降到31.45%. 119. 2010年1~6月,我国固定通信收入比上年同期减少约: A.3% B.11% C.4% D.31% 【解析】C。电信主营业务由移动通信和固定通信两部分组成,2009年1~6月移动通信的收入乘以其增长率加上2009年1~6月固定通信的收入乘以其增长率等于总的电信主营业务收入的增长量,符合Aa+Bb=(A+B)r,故可以运用十字交叉法。2009年1~6月移动通信收入的比重为68.55%-3.24%=65.31%,固定通信收入的比重为31.45%+3.24%=34.69%。

行测十字交叉法(自己总结的)

行测什么时候用十字交叉法 公务员行测考试数学运算这部分, 经常要用到十字交叉法. 虽然很多里书和网页上写了很多关于十字交叉法, 但是目前还很少有人对什么情况下可以用十字交叉法来快速解题作出具体的叙述. 大多数只是针对某些问题给出解题方法. 对于十字交叉法具体的原理还没有做进一步详细的说明, 即使作了描述, 也比较抽象, 比如什么加权平均等. 为了使得对能否用十字交叉法作出迅速的判断, 我们将在本文里面就其中的原理作出简单明了的阐述以及给出判断的表达式, 然后给出具体的例子来说明它的应用以及相关的练习.希望大家看过本文之后不再对十字交叉法感到束手无策!! 我们先给出十字交叉法的原理, 就是什么情况下我们就可以用十字交叉法. 如果题目中给出两个平行的情况A, B, 满足条件a, b ; 然后A 和B 按照某种条件混合在一起形成的情况C, 满足条件c. 而且可以表示成如下的表达式. 那么这个时候就可以用十字交叉法. 判断式: A*a+B*b=(A+B)*c=C*c 用十字交叉法表示 : A a c-b c A/B=(c-b)/(a-c). B b a-c 我们常见利用十字交叉法的情形有: 溶液混合问题, 增长率问题, 收益率问题, 平均数问题等. 【例1】一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐( )克。 A.14.5 B.10 C .12.5 D.15 20% , 200/x= (100%-20%)/(20%-15%)=80/5 x 100% 20%-15%

解出x=12.5克. 【例2】一块试验田,以前这块地所种植的是普通水稻。现在将该试验田的1/3种上超级水稻,收割时发现该试验田水稻总产量是以前总产量的1.5倍。如果普通水稻的产量不变,则超级水稻的平均产量与普通水稻的平均产量之比是()。 A. 5∶2 B. 4∶3 C. 3∶1 D. 2∶1 【解析】假设超级水稻的产量是x, 普通水稻的产量是1; 超级水稻是1/3, 普通水稻是2/3; 产量分别是x, 1; 那么混合就是1,产量是1.5,满足1/3*x+2/3*1=(1/3+2/3)*1.5, 所以可以利用十字交叉法. 1/3 x 1.5-1 1.5 , (1/3)/ (2/3)=(1.5-1)/(x-1.5). 解出x= 2.5, 比是2.5:1=5:2. 2/3 1 x-1.5 【例3】在一次法律知识竞赛中,甲机关20人参加,平均80分,乙机关30人参加,平均70分,问两个机关参加竞赛的人总平均分是多少? A.76 B.75 C.74 D.73 【解析】假设总平均成绩是x, 满足20*80+30*70=(20+30)*x,所以可以用十字交叉法做. 20 80 x-70 x , 20/ 30=( x-70)/ 80-x). 解出x=74分. 30 70 80-x 【例4】某市现有人口70万, 如果5年后城镇人口增加4%, 农村人口增加5.4%, 则全市人口将增加 4.8%, 那么这个市现有城镇人口多少万? A.30万 B.31.2万 C.40万 D.41.6万 【解析】假设现有城镇人口x万, 农村人口70-x万,满足: 4%*x+5.4%*(70-x)=(x+70-x)*4.8% 所以可以用十字交叉法. x 4% 5.4% -4.8% 4.8% , x/ (70-x)=( 5.4% -4.8%)/ (4.8%-4%). 解出x=30.

十字交叉法使用

“十字交叉”法的妙用 化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。 一、适用范围: “十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。 例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。可知其中乙烯的质量分数为( ) A.25.0% B.27.6% C.72.4% D.75.0% 解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。 这样,乙烯的质量分数是: ω(C 2H 4)=32 1283283?+??×100 %=72.4% 答案:C 。 (解毕) 二、十字交叉法的解法探讨: 1.十字交叉法的依据: 对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c (a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。 如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得: b a c a x b a b c x --=---= 1, 即:c a b c x x --=-1 2.十字交叉法的常见形式: 为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为: 3.解法关健和难点所在: c C 2H 4 28 O 2 32 29 3 1 组分1 a c -b 混合物 组分 2 b a -c C

十字相乘法进行因式分解(详案)

十字相乘法进行因式分解 【基础知识精讲】 (1)理解二次三项式的意义; (2)理解十字相乘法的根据; (3)能用十字相乘法分解二次三项式; (4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法. 【重点难点解析】 1.二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2 ++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2 ,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2 b x a x ab x b a x ++=+++ 分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.

“十字交叉法”的原理及应用

“十字交叉法”的原理及应用 摘要:本文分析了学生不易掌握“十字交叉法”的原因。应用平均值概念推导出“十字交叉法”原理,从平均值概念分析“十字交叉法”应用的条件和范围,给出了一种适用解答格式,并从三类二元混合体系和平均值角度对常见题型进行了归纳。 关键词:十字交叉法、平均值 “十字交叉法”是平均值法的技巧方法,即利用平均值求解二元混合体系的混合比的一种图解方法。利用此法求解二元混合体系的混合比具有准确、简便、快速的特点。因此,它是高考化学计算重要方法之一。教学实际中,许多同学对此法掌握得不好。学生出现的问题主要有两种情况:一种情况是遇到可用“十字交叉法”求解的问题,却不知道怎样用“十字交叉法”来求解;第二种情况是虽然知道用“十字交叉法”求解,但却不明确所得到的比值的化学意义,得出错误的计算结果。我们认为主要原因是在教学中没有抓住平均值概念去推导“十字交叉法”原理、分析应用范围和应用条件,没有给出解题的规范格式,也没从二元混合体系及其平均值角度来归纳常见题型。本文应用平均值概念推导“十字交叉法”原理、分析其应用条件和范围、归纳主要应用题型,并给出一种较适用的解题规式。 一、“十字交叉法”原理 1.用平均值概念推导“十字交叉法”原理 以A、B二组分混合物的平均摩尔质量为例推导“十字交叉法”原理。设混合物平均摩尔质量为M,A、B的物质的质量分别为n(A)和n(B),摩尔质量分别为M(A)和M(B) 混合物的总质量为:m(混)= n(A)×M(A) + n(B)×M(B) 混合物的总物质的量为:n(混)= n(A) + n(B) 根据摩尔质量定义可知混合物的平均摩尔质量为:

)() (混混n m M = …… ① 将A 和B 混合物的总物质的量n(混)和总质量m(混)代入①式得: ) B (n )A (n )B (M )B (n )A (M )A (n M +?+?= …… ② 将②式变形得混合物中两种成分的物质的量之比的数学表达式: M )A (M )B (M M )B (n )A (n --= …… ③ 将③式写成直观的图解形式,即“十字交叉法”的形式: A :M(A) |M - M(B)| ╲ ╱ …… ④ ╱ ╲ B :M(B) |M(A) - M | 2.“十字交叉法”的应用条件 从上述二组分混合物平均摩尔质量推导“十字交叉法”原理得出其应用条件为: ⑴n(A)和n(B)具有加合性,即n(混)= n(A) + n(B)。 对比③和④两式,可以看出n(混)= n(A) + n(B)的化学意义和图解形式的特征共同决定了所求比值的化学意义。 ⑵M 、M(A)、M(B)已知或是可求出的。 3.应用“十字交叉法”解题的格式 以往没有约定“十字交叉法”的解题格式,“十字交叉法”主要用于选择型或填空型计算题的解答,解答型计算题一般不用“十字交叉法”来解答,使“十字交叉法”应用受到一定的限制。实际上,只要约定“十字交叉法”求解解答型计算题表达格式,用“十字交叉法”求解解答型计算题会更为简捷。我们认为下列图解格式,是应用“十字交叉法”求解解答型计算题的适用的解答格式。 A :M(A) |M - M(B)| ╲ ╱ n(A) M ——————— = ————

相关文档
相关文档 最新文档