文档库 最新最全的文档下载
当前位置:文档库 › 纳米银对大肠杆菌的抗菌作用及其机制_谢小保

纳米银对大肠杆菌的抗菌作用及其机制_谢小保

纳米银对大肠杆菌的抗菌作用及其机制_谢小保
纳米银对大肠杆菌的抗菌作用及其机制_谢小保

纳米银对大肠杆菌的抗菌作用及其机制

S tudy of A ntimicrobial A ctivity and M echanism of Silver

N anoparticles o n Escherichia coli

谢小保1,2,李文茹1,2,曾海燕1,2,欧阳友生1,2,陈仪本1,2 (1广东省微生物研究所,广州510070;2广东省菌种保藏与应用重点实验室,广州510070)

XIE Xiao-bao1,2,LI Wen-ru1,2,

ZENG H ai-y an1,2,OU YANG You-sheng1,2,CH EN Yi-ben1,2 (1Guangdong Institute o f Microbio logy,Guang zhou510070,China;2G uangdo ng Prov-incial Key Laboratory of M icro bial Culture Co llection and Application,Guang zhou510070,China)

摘要:以大肠杆菌为研究对象,对纳米银的抗菌效果进行了研究,并对其抗菌机制做了初步探讨。纳米银对大肠杆菌的抑制生长曲线的结果表明,20μg/m L的纳米银能够完全抑制106cfu/m L的大肠杆菌细胞生长,纳米银使大肠杆菌的延滞期加长,并且纳米银浓度越高,延滞期越长。采用透射电镜观察了经纳米银粒子处理过的大肠杆菌细胞形态变化过程,结果显示纳米银粒子先在细胞壁上产生小的孔洞,通过这些孔洞进入周质空间,导致细胞膜成分渗漏和破坏细胞膜,进而进入细胞内部。进入细胞内部的纳米银粒子使DN A浓缩呈紧张态,并与破损细菌的细胞质结合积聚,最后引起胞内物质流失。另外,纳米银对大肠杆菌总D NA影响的分析表明,随着纳米银浓度的增高,大肠杆菌总DN A样品降解的程度增大。

关键词:纳米银;大肠杆菌;抗菌作用

中图分类号:R318.08 文献标识码:A 文章编号:1001-4381(2008)10-0106-04

A bstract:The antimicro bial effect of the nanosilve r o n Escherichia coli and the antimicrobial mecha-nism w as studied elementarily.Ex perimental results indicated that the silver nanoparticles of20μg/ mL could inhibit completely the grow th o f106cfu/m L cells in liquid L

B medium.The grow th curv es show ed that silve r nanoparticles pro long ed the lag phase of E.coli,and the higher o f the co ncentra-tion o f silver nanopar ticles,the longer of the lag phase o f E.coli.Transmission electron micro scopy (T EM)w as used to evaluate the cell m orpho logy of bo th the no rmal and the treated E.coli.The ob-servatio n w ith TEM sugg ested that silver nanopa rticles lead to the fo rmatio n of"pits"in cell w all of the bacteria,and silver nanoparticles could enter into pe riplasm through the pits and de stroyed the cell membrane.Then the silver nano particles could enter into the bacterial cell,w hich no t only condensed DNA,but also co mbined and coag ulated with the cy toplasm of damaged bacteria.Finally,silve r nano-particles resulted in the leakage of cy to plasmic component.M oreover,the analysis of agar g el electro-phoresis demo nstrated that silver nano particles co uld increase the decomposability of g enom e DNA. Key words:nanosilver;Escherichia coli;antimicrobial activity

随着抗生素、消毒剂和杀菌剂等化学药物的大量使用,由耐药性引起的微生物变异种群越来越多,由此引发的全球性微生物灾害事件频频发生。为了防止微生物灾害事件的发生,研发和应用新型抗菌材料是一种行之有效的方法。无机抗菌材料具有安全性高,耐热性和持久性良好,且不易产生抗药性等优点,自20世纪80年代以来获得了陆续的开发与应用[1,2]。其中,载银无机抗菌材料因其毒性低、抗菌活性高、抗菌谱广,已成为目前应用最广泛的无机抗菌材料[3,4]。 纳米银作为无机抗菌材料,由于其原子排列表现为介于固体和分子之间的“介态”,表现出量子效应、小尺寸效应和极大的比表面积,具有其他载银无机抗菌材料无法比拟的抗菌活性,可以有效地杀灭细菌、真菌、支原体等致病微生物[5,6]。但是,在纳米银抗菌材料得以发展和应用的同时,相关基础研究明显滞后,纳米银对细菌的作用机理尚未认识清楚,这将影响纳米银抗菌材料的进一步发展和更为广泛的应用。

本工作以大肠杆菌(Escherichia coli)为模式菌,

研究了纳米银对大肠杆菌的抗菌作用,并对其抗菌机

制做了初步的探讨,为纳米银抗菌材料的广泛应用奠定科学基础。

1 材料与方法

1.1 实验材料

纳米银溶液,浓度为1000μg /m L ,纳米银粒径≤15nm ,上海沪正纳米科技有限公司提供;大肠杆菌(Escherichia coli )A TCC8739购自美国菌种保藏中心,由本实验室保存;M H (M uellerH into n )肉汤和琼脂培养基由本实验室配制。1.2 实验方法

1.2.1 纳米银的抗菌琼脂培养实验

配制纳米银浓度分别为0,2.5,5,10,15μg /mL 和20μg /mL 的M H 琼脂,每个浓度各倒3个平皿,待琼脂凝固,用多点接种器吸取2μL 制备好的107cfu /mL 大肠杆菌稀释液接种到琼脂表面,每点菌数约为104

cfu /mL ,置于(37±2)℃恒温培养48h ,观察结果。1.2.2 纳米银的抗菌肉汤培养实验 将6个50mL 三角瓶中分别加入20m L 灭菌的

LB 肉汤培养基、纳米银溶液和大肠杆菌,使纳米银浓度分别为0,2.5,5,10,15μg /mL 和20μg /m L ,大肠杆菌浓度为106cfu /m L ,放入(37±2)℃培养箱中恒温振荡培养。每隔一段时间取样,用分光光度计(DU640,BECKMAN 公司)测定OD 600,以培养时间为横坐标,OD 600为纵坐标,绘制生长曲线。1.2.3 纳米银对细菌细胞形态和结构的影响 将10μg /m L 纳米银处理的大肠杆菌和未经处理的对照组大肠杆菌培养12h 进行切片,用透射电镜(日本日历H -600)观察处理组的细菌形态变化。1.2.4 纳米银对细菌总DNA 的影响 经10,20μg /m L 纳米银处理和未经处理的大肠杆菌在(37±1)℃培养箱中恒温振荡培养12h 后取样,提取总DNA [7],然后进行琼脂糖DNA 凝胶电泳。

2 结果

2.1 纳米银对大肠杆菌的抑菌效果

纳米银抗菌琼脂培养实验结果如表1所示,从表

1可以看出纳米银对大肠杆菌的最低抑菌浓度为10μg /mL 。

表1 纳米银最低抑制浓度实验

T able 1 M inimum inhibito ry co ncentration of nano silv er

C on cen tration of nan osilver /(μg ·mL -1)

02.55101520Grow th of E .coli

Grow th

Grow th

Grow th

No grow th

No grow th

No grow th

由纳米银抗菌肉汤培养实验结果绘制了纳米银对大肠杆菌的抑制生长曲线,如图1所示。从图1可以看出,对照组(0μg /m L )以及2.5,5,10,15μg /m L 纳米

银处理组的大肠杆菌样品的生长都呈现典型的生长曲线,包括生长延滞期、指数期、稳定期和衰亡期几个典型阶段。将处理组与对照组相比较,可以看出纳米银能够延长大肠杆菌的延滞期,纳米银浓度越高延滞期越长。由于OD 600测得的是活菌和死菌的总数,所以衰亡期不明显。当纳米银浓度达到20μg /m L 时完全抑制大肠杆菌的生长,液体培养至48h 后取样进行平皿培养48h ,没有长出菌落。2.2 抗菌作用机制

采用透射电镜观察了经纳米银粒子处理过的大肠杆菌细胞的形态变化过程,结果如图2所示。2a ,b 是培养12h 的对照组大肠杆菌细胞,2c ,d ,e 和2f 是经纳米银处理12h 的大肠杆菌细胞的内部结构。从2a ,b 可以看出,对照组大肠杆菌细胞的电子密度一致,是

没有受到任何环境因素干扰的大肠杆菌细胞的典型形

图1 纳米银对大肠杆菌的抑制生长曲线Fig .1 Grow th curves of E .coli in different

con cen trations of nanosilver

态特征。细胞中的电子明亮物质是DNA 分子,它们随机分布在大肠杆菌细胞的核区。而处理组大肠杆菌细胞的内部构造出现很大的变化,如图2c ,d 所示,细胞的中心有一个很明显的电子明亮区域,区域的中心

有浓缩很紧密的物质,呈线性状态,明亮区域的周围也有很多电子致密的颗粒。这可能是纳米银使大肠杆菌

的细胞壁与细胞膜脱离,使DN A分子浓缩呈紧张态。大肠杆菌电子明亮区域周围的电子致密颗粒可能是纳米银粒子;而在电子明亮区域内部却没有电子致密颗粒,显然是电子明亮区域阻止了纳米银粒子的进入。图2f是图2e中的大肠杆菌细胞的局部放大电镜照片,这个细胞非常特殊,细胞内布满了电子致密的颗粒,而没有电子明亮的区域,这是经纳米银处理的大肠杆菌细胞晚期的典型形态特征,此时细胞没有

图2 透射电镜下大肠杆菌形态结构

(a)未经纳米银处理的大肠杆菌放大20000倍,箭头所指为随机分布在细胞内的电子明亮物质;

(b)未经纳米银处理的大肠杆菌放大40000倍,箭头所指为随机分布在细胞内的电子明亮物质;

(c)经纳米银处理的大肠杆菌放大15000倍,箭头所指为电子明亮区域;(d)经纳米银处理的大肠杆菌放大

40000倍,箭头所指为在电子明亮区域浓缩呈线性的DNA;(e)经纳米银处理的大肠杆菌晚期细胞放大

40000倍,箭头所指为破损的细胞壁;(f)经纳米银处理的大肠杆菌晚期细胞放大100000倍,是细胞壁破损的细胞

Fig.2 M orph ology and structure of E.coli cells under transmission electron microscope

(a)normal E.coli cells,the electron lig ht materials(arrow)distributed randomly in cells(20000);(b)normal E.coli cells,

the electron ligh t materials(arrow)distributed randomly in cells(40000);(c)E.co li cells treated by nanosilver,the electron

light region(arrow)in the center of cells(15000);(d)E.coli cells treated by nanosilver,condensed form of DNA(arrow) in the electron light region(40000);(e)the terminal E.coli cells treated by nanosilver,dam aged cell w all(arrow)

(40000);(f)the terminal E.coli cells treated by nan os ilver,the cell w all was damaged(100000)

明显的核区,细胞壁已经破损。

图3为纳米银对大肠杆菌总DNA的影响。可以

看出,对照组与两个处理组(经过浓度分别为10μg/

mL和20μg/m L的纳米银处理)的大肠杆菌培养12h

后的总DNA呈现相同的条带,但处理组的DNA量减

少。条带下方的明亮区域是降解的DNA。与对照组

相比,处理组的DNA样品有更大程度的降解,且随着

纳米银浓度的增高,大肠杆菌总DNA样品降解的程

度增大。

3 讨论

目前,关于纳米银的抗菌机制还没有系统的认识。

虽然文献报道认为[9,10]是带负电荷的细菌细胞和带正

电荷的纳米银粒子之间的静电相互作用引起的。但

是,纳米银与细菌接触后对细菌细胞的损害过程、以及

对细菌总DNA的影响等方面,系统的研究报道较少。

从本工作对经纳米银处理过的大肠杆菌细胞形态

影响的电镜结果可以看出,经纳米银粒子处理过的大

肠杆菌细胞形态变化过程是循序渐进的,纳米银粒子

先在细胞壁上产生小的孔洞,通过这些孔洞进入周质

空间,导致细胞膜成分渗漏和破坏细胞膜,进而进入细

胞内部。进入细胞内部的纳米银粒子使DNA浓缩呈

紧张态,并与破损细菌的细胞质结合积聚,最后引起胞

内物质流失。So ndi等[8]通过扫描电镜也观察到纳米

银粒子处理过的大肠杆菌细胞出现了较大的损伤,细

图3 纳米银对大肠杆菌总DNA的影响

(a)对照组的大肠杆菌总DNA;(b)10μg/mL的纳米银处理的大肠

杆菌总DNA;(c)20μg/mL的纳米银处理的大肠杆菌总DNA Fig.3 Effect of n anosilver on genome DNA of E.coli

(a)genome DNA of normal E.coli cells;(b)genome DNA of

E.coli cells treated w ith10μg/m L nanosilver;(c)genom e

DNA of E.coli treated w ith20μg/m L nanosilver

胞壁上有很多的孔洞,并观察到纳米银粒子和死亡的细胞形成了聚集体;X射线能谱(EDAX)分析也表明,大肠杆菌细胞膜中有很多纳米银粒子[8]。Am ro等[12]在研究大肠杆菌细胞渗透性的结构基础时,也发现细胞膜上出现孔洞是由于细胞膜成分的流失,主要是脂多糖和膜蛋白。

此外,本工作采用透射电镜观察的纳米银对大肠杆菌细胞形态影响的实验结果和采用琼脂糖凝胶电泳观察的纳米银对大肠杆菌总DNA的影响实验结果都表明,纳米银也可能通过作用于细胞DNA而抑制大肠杆菌的生长。DN A是细胞中最重要的基因信息, DNA的任何损伤都会引起生物体的变异或死亡。DNA分子在松弛状态下才能有效地进行复制,呈紧张状态的DNA分子失去复制的能力。因此,纳米银粒子也可能通过浓缩DN A使之失去复制能力和引起DNA降解来抑制细菌的生长繁殖。本工作通过电镜观察到经纳米银粒子处理过的大肠杆菌细胞,DNA不再随机分布在细胞的核区,而是在核区浓缩呈紧张态的现象,还有研究工作者有同样的发现。Feng等[11]在研究硝酸银对大肠杆菌的抑菌作用时,发现经硝酸银处理过的大肠杆菌细胞与本工作用纳米银处理过的大肠杆菌细胞具有同样的特征:细胞中心有一个电子明亮的区域,其中心是浓缩的DN A分子。

4 结论

(1)纳米银使大肠杆菌的生长延滞期加长,并且纳米银浓度越高,生长延滞期越长。

(2)经纳米银粒子处理过的大肠杆菌细胞形态变化过程是循序渐进的,纳米银粒子先在细胞壁上产生小的孔洞,通过这些孔洞进入周质空间,导致细胞膜成分渗漏和破坏细胞膜,进而进入细胞内部。进入细胞内部的纳米银粒子使DNA浓缩呈紧张态,并与破损细菌的细胞质结合积聚,最后引起胞内物质流失。

(3)纳米银使大肠杆菌DNA不再随机分布在细胞的核区,而是在核区浓缩呈紧张态,且能够增加大肠杆菌总DNA样品的降解程度,故纳米银通过浓缩DNA使之失去复制能力和引起DNA降解可能是其抑制细菌生长繁殖的作用机制之一。

参考文献

[1] 夏金兰,王春,刘新星.抗菌剂及其抗菌机理[J].中南大学学报,

2004,35(1):31-38.

[2] 刘康时,江显异,赵英.银系无机抗菌剂作用机理的研究进展[J].

佛山陶瓷,2001,11(56):1-5.

[3] BE RGER TJ,SPADA RO JA,CH APIN SE,et al.Electrically

generated silver ions:quantitative effects on bacterial and m am-

malian cells[J].Anti M icrob Agents,1976,9(2):357-358. [4] ZHAO GJ,S TEVENS S E.M ultiple param eters for comprehen-

sive evaluation of the susceptibility of Escherichia coli to the sil-

ver ion[J].Bio M etals,1998,11:27-32.

[5] 林爱红,秦彦珉,饶健,等.纳米抗菌剂抑菌杀菌性能研究[J].实

用预防医学,2003,10(2):168-170.

[6] 杨玉旺,刘敬利.纳米银研究和应用新进展[J].工业催化,2003,

11(12):7-12.

[7] S AM BROOK J,FRI TSCH E F,M ANIST IS T.M olecu lar clo-

nin g:a laboratory manual[M].3rd ed,New York:Cold Sp rin g

Harbor Labo ratory Press,2001.

[8] S ONDI I,SA LOPEKAl-SONDI B.Silver nanoparticles as an timi-

crobial agent:a case s tudy on E.coli as a model for Gram-nega-

tive bacteria[J].Jou rnal of Colloid and Interface S cience,2004,

275:177-182.

[9] HAM OUDA T,BAKER J R.Antimicrobial mechanism of action

of s urfactant lipid p reparations in enteric gram-negative bacilli[J].

J ournal of Applied M icrobiology,2000,89:397-403.

[10] S TOIM ENOV PK,K LINGER RL,M ARC HIN GL,et al.

M etal oxide nanoparticles as bactericidal agents[J].Langmuir,

2002,18:6679-6686.

[11] FENG QL,W U J,CHEN GQ,et al.A mechanistic study of the

antibacterial effect of silver ions on Es cherichia coli and Staphylo-

c occus aureus[J].J Biome

d M ater Res,2000,52:662-668.

[12] AM RO NA,KOT RA LP,W ADU-M ES TH RIGE K,et al.

High-resolu tion atomic force micros copy stu dies of the esche-

richia coli outer m emb rane:s tru ctural basis for permeability

[J].Langmuir,2000,16:2789-2796.

基金项目:广东省自然科学基金资助项目(A06104481)

收稿日期:2008-06-11;修订日期:2008-08-24

作者简介:谢小保(1966—),男,硕士,副研究员,主要从事抗菌材料的抗菌作用机理及微生物耐药机理研究,联系地址:广州市先烈中路100号大院广东省微生物研究所(510070)。E-mail:xxiaob ao@https://www.wendangku.net/doc/0516472789.html,

纳米银及其抗菌应用技术

纳米银及其抗菌应用技术 资讯与基础常识 厦门博正科技有限公司(制) 2009年10月29日

目录 第1章认识纳米银 (3) 第2章纳米银杀菌知多少? (3) 2.1广谱抗菌 (3) 2.2强效杀菌 (4) 2.3渗透性强 (4) 2.4修复再生 (4) 2.5抗菌持久 (5) 2.6安全无毒 (5) 2.7无耐药性 (5) 第3章纳米银和其它抗菌产品的区别 (5) 第4章纳米银的抗菌应用技术 (6) 第5章纳米银在鞋袜上的应用效果 (7) 第6章国内产业应用纳米银抗菌技术的现状 (7) 第7章哪些产品需要应用纳米银抗菌技术? (8) 第8章纳米银抗菌为什么这么烦人? (9) 8.1鞋业对纳米银抗菌的烦恼: (9) 8.2鞋业对纳米银抗菌认识的误区: (9) 第9章 TINAPH博正研发中心最新鞋业纳米银应用成果 (9) 第10章了解鞋业[QB/T2881标准] (10) 第11章记住我们的工作程序 (12) 第12章我们的使命 (13) 第13章我们的工作很光荣 (13)

第1章认识纳米银 纳米(nm)是继微米之后的目前最小的一种计量单位,1纳米为百万分之一毫米,即毫微米,也就是十亿分之一米。 纳米银就是将粒径做到纳米级的金属银单质。纳米银粒经大多在25纳米左右,对大肠杆菌、淋球菌、沙眼衣原体等数十种致病细菌微生物都有强烈的抑制和杀灭作用,而且不会产生耐物性。动物试验表明,这种纳米银抗菌微粉,即使用量达到标准剂用量的几千倍,受试动物也无中毒表现。同时,它对受损上皮细胞还具有促进修复作用。值得一提的是,纳米银遇水抗菌效果愈发增强,更利于疾病的治疗。第2章纳米银杀菌知多少? 纳米银,是利用前沿纳米技术将银纳米化。纳米技术的出现,使银在纳米状态下的杀菌能力产生了质的飞跃。极少的纳米银可产生强大的杀菌作用。可在数分钟内杀死650多种细菌。纳米银广谱杀菌且无任何的耐药性,能够促进伤口的愈合、细胞的生长及受损细胞的修复,无任何毒性反应,对皮肤也无任何刺激反应。这给广泛应用纳米银来抗菌开辟了广阔的前景,是当今世界最新一代的天然抗菌剂。神奇的纳米银有七大特点: 2.1广谱抗菌 纳米银颗粒直接进入菌体与氧代谢酶(-SH)结合,使菌体窒息而死的独特作用机制,可杀死与其接触的大多数细菌、真菌、霉菌、孢子等微生物。经国内八大权威机构研究发现:其对耐药病原菌如耐

纳米银抗菌水凝胶作用

纳米银抗菌凝胶作用 一、银是一种消毒剂银在医学上的使用可追溯到公元前。古人知道银有加速创口愈合、防治感染、净化水质和保鲜防腐的作用。用银器存放食物,能防止细菌生长,延长食物储存期。我国明代医学家李时珍在《本草纲目》中记述:银屑有安五脏、定心神、止惊悸、除邪气等作用;久服能轻身延年,生银味辛寒、无毒;中医用银诊治有关疾病,西医用银治疡的记载也有100余年。1884年,德国产科医生Crede将浓度1%的硝酸银溶液滴入新生儿眼中,预防新生儿结膜炎,使婴儿的失明率从10%降至0.2%。直到今天为止,许多国家仍在使用Crede预防法,我国也不例外。1893年,试验发现:银对细菌等微生物有杀灭作用。因此,银成为一种消毒剂。 二、纳米银比银更强——杀菌作用今天,银在医学上有了更广泛的作用。0.5%的硝酸银是医治烧伤和创伤的标准溶液;10~20%硝酸银涂抹可治疗子宫糜烂。哥伦比亚大学Fox教授将银与磺胺嘧啶化合,产生磺胺嘧啶银,其活性比单独的磺胺至少强50倍。纳米银的出现,突破了普通银制剂杀菌力比抗菌素弱的瓶颈。科学家们发现,银在纳米状态下具有极强的杀菌作用,是普通银的数百倍。 三、纳米银的抗菌机理:纳米银颗粒直接进入菌体与氧代谢酶(-SH)结合,使菌体窒息而死;能和细菌细胞壁上暴露的肽聚糖反应,产生可塑性化合物,阻止病菌活动,杀死病菌;银可以和病原体的DNA结合,导致细菌DNA结构变异,抑制了DNA 复制,导致病菌失去了活力。这种独特的作用机制,可杀死与其接触的大多数细菌、霉菌、孢子等微生物。经国内八大权威机构研究发现:纳米银对耐药病原菌,如:耐药大肠杆菌、耐药金葡萄球菌、耐药绿脓杆菌、化脓链球菌、耐药肠球菌、厌氧菌等均有较强的抗菌活性;对烧烫伤及创伤表面常见的细菌,如:金黄色葡萄球菌、大肠杆菌、绿脓杆菌、白色念珠菌及其它G+、G-致病菌等均有杀菌作用;对沙眼衣原体、性传播疾病的淋球菌也有强大的杀菌作用。 四、纳米银的抗菌特点:①强效杀菌:研究发现,Ag可在数分钟内杀死650多种细菌。纳米银颗粒与病原菌的细胞壁/膜结合后,能直接进入菌体、迅速与氧代谢酶的巯基(-SH)结合,使酶失活,阻断呼吸代谢使其窒息而死。②快速杀菌:独特的杀菌机理,使纳米银颗粒在低浓度时就可迅速杀死致病菌。③抗菌持久:纳米银颗粒(专利技术生产)外有一层保护膜,在人体内能逐渐释放,所以抗菌效果持久。④渗透性强:纳米银颗粒具有超强的渗透性,可迅速渗入皮下2mm杀菌,对普通细菌、顽固细菌、耐药细菌以及真菌引起的较深处的组织感染均有良好的杀菌作用。⑤促进愈合:改善创伤周围组织的微循环,有效地激活并促进组织细胞的生长,加速伤口的愈合,减少疤痕的生成。⑥安全性高:经试验发现:小鼠在口服最大耐受量925mg/kg,即相当于临床使用剂量的4625倍时,无任何毒性反应;在兔的皮肤刺激试验中,也未发现任何刺激反应。⑦无耐药性:10nm大小的纳米银颗粒可迅速直接杀死细菌,使其丧失繁殖能力。因此,无法生产耐药性的下一代。 嫒佳凝胶功效

纳米银

纳米银(Nano Silver) 就是将粒径做到纳米级的金属银单质。纳米银粒径大多在25纳米左右,对大肠杆菌、淋球菌、沙眼衣原体等数十种致病微生物都有强烈的抑制和杀灭作用,而且不会产生耐药性。动物试验表明,这种纳米银抗菌微粉即使用量达到标准剂量的几千倍,受试动物也无中毒表现。同时,它对受损上皮细胞还具有促进修复作用。值得一提的是,该产品遇水抗菌效果愈发增强,更利于疾病的治疗。专家认为,这种纳米银抗菌微粉还可广泛应用于环境保护、纺织服饰、水果保鲜、食品卫生等领域. 应用领域: 纤维(织物、成品),信息产业、信息产业、生态环境,日常生活用品。 细节应用: 棉、麻、丝、涤纶、晴纶、氨纶、粘胶纤维、蛋白纤维、成品布料、服装、床上用品、日用纺织品、玩具等、二极管、三极管集成电路的焊接,电子浆料、水产养殖、园艺设施、土壤改良、建筑材料、装饰材料、洗涤用品、玻璃器皿、包装类纸制品、特殊行业用纸、除臭剂、医药外用抗菌凝胶、塑料制品。 产品特点:永久性抗菌洗涤不影响其功能;具有天然色彩,可调配颜色,应用后不影响染色、可完全替代铅系、锡系焊接、无毒害,无污染、永久性除菌,不伤害人体。 神奇的纳米银-----七大抗菌特点 纳米(nm)是继微米之后的目前最小的一种计量单位,1纳米为百万分之一毫米,即毫微米,也就是十亿分之一米。纳米银,是利用前沿纳米技术将银纳米化,纳米技术出现,使银在纳米状态下的杀菌能力产生了质的飞跃,极少的纳米银可产生强大的杀菌作用,可在数分钟内杀死650多种细菌,广谱杀菌且无任何的耐药性,能够促进伤口的愈合、细胞的生长及受损细胞的修复,无任何毒性反应,对皮肤也未发现任何刺激反应,这给广泛应用纳米银来抗菌开辟了广阔的前景,是最新一代的天然抗菌剂,纳米银杀菌具有以下特点: 1.广谱抗菌 纳米银颗粒直接进入菌体与氧代谢酶(-SH)结合,使菌体窒息而死的独特作用机制,可杀死与其接触的大多数细菌、真菌、霉菌、孢子等微生物。经国内八大权威机构研究发现:其对耐药病原菌如耐药大肠杆菌、耐药金葡萄球菌、耐药绿脓杆菌、化脓链球菌、耐药肠球菌,厌氧菌等有全面的抗菌活性;对烧烫伤及创伤表面常见的细菌如金黄色葡萄球菌、大肠杆菌、绿脓杆菌、白色念珠菌及其它G+、G-性致病菌都有杀菌作用;对沙眼衣原体、引起性传播性疾病的淋球菌也有强大的杀菌作用。 一种抗生素能杀灭大约6种病原体,而纳米银可杀灭数百种致病微生物。杀灭细菌、真菌、滴虫、支/衣原体、淋球菌,杀菌作用强,对抗菌素耐药菌有同样杀灭作用! 2.强效杀菌 据研究发现,A g可在数分钟内杀死650多种细菌。纳米银颗粒与病原菌的细胞壁/膜结合后,能直接进入菌体、迅速与氧代谢酶的巯基(-SH)结合,使酶失活,阻断呼吸代谢使其窒息而死。独特的杀菌机理,使得纳米银颗粒在低浓度就可迅速杀死致病菌。 3.渗透性强 纳米银颗粒具有超强的渗透性,可迅速渗入皮下2mm杀菌,对普通细菌、顽固细菌、耐药细菌以及真菌引起的较深处的组织感染均有良好的杀菌作用。

大肠杆菌病的常用药物

- - . 禽大肠杆菌病是由埃希氏大肠杆菌的某些致病性菌株引起的多种疾病总称,包括大肠杆菌性败血症、肠炎、脐带炎、肝周炎、心包炎、腹膜炎、全眼球炎、卵黄性腹膜炎、输卵管炎、滑膜炎、关节炎、肉芽肿等,并能导致胚胎和幼雏死亡。由于大肠杆菌血清型复杂,给免疫防治带来一定的困难,药物防治仍是控制禽大肠杆菌病的主要手段。yz.ag365yz.ag365 本文就防治禽大肠杆菌病的常用药物作一简述。- - 考试资料

- - . yz.ag365yz.ag365 一、β-内酰胺类抗生素yz.ag365yz.ag365 β-内酰胺类抗生素为化学结构中含有β-内酰胺环一类抗生素,主要包括青霉素类、头孢菌素类、β-内酰胺酶抑制剂。抗病作用机理均为抑制细胞壁的合成。yz.ag365yz.ag365 1、青霉素类。防治禽大肠杆菌病的青霉素类抗生素主- - 考试资料

- - . 要为半合成广谱抗生素氨苄西林、阿莫西林。氨苄西林、阿莫西林均耐酸、不耐酶,内服或肌注易吸收。阿莫西林耐酸较氨苄西林强,该药抗菌谱广,杀菌力强,作用迅速,阿莫西林的血清浓度比氨苄西林高1.5-3倍。阿莫西林对大肠杆菌有较强的抗菌作用,其体外抗菌谱等同于氨苄西林,但体内效果则增强2-3倍。yz.ag365yz.ag365 用法与用量:⑴氨苄西林:内服一次量为每千克体重10毫升或肌注为一次量每千克体重10毫升,1日2-3次。- - 考试资 料

- - . ⑵阿莫西林:内服一次量为每千克体重10-15毫升,1日2次。yz.ag365yz.ag365 2、头孢菌素类。为广谱半合成抗生素,具杀菌力强、抗菌谱广、毒性小、对酸和β-内酰胺酶比青霉素类稳定等优点,第三、四代头孢菌素对大肠杆菌具有较强的抗菌作用,因较贵而多用于宠物、种畜禽及贵重动物。临床上应用的有头孢噻呋、头孢噻肟、头孢唑肟、头孢曲松、头孢哌酮、头孢他啶、头孢吡肟。yz.ag365yz.ag365 - - 考试资料

纳米银的抗菌性研究

纳米银的抗菌性研究及其在医疗中的应用 摘要:作为一种新型无机抗菌材料,纳米银不仅具备超强的抗菌效果,且对人体更为安全。本文主要介绍了纳米银抗菌材料的抗菌原理,并介绍了其在医疗方面的应用。 关键字:纳米银、抗菌机理、医疗应用 纯银是一种美丽的银白色的金属,它具有很好的延展性,其导电性和传热性在所有的金属中都是最高的,主要用于制合金、焊药、银箔、银盐、化学仪器等,并用于制银币和底银等方面。自古以来,银就被用于加速伤口愈合、治疗感染、净化水和保存饮料,用银器存放食物,可防止细菌生长,但银离子在溶液中的不稳定性限制了其推广应用。[1] 图1、银(左)和纳米银(右) 随着纳米技术的发展及其理论的成熟,一系列的纳米材料先后被制备出来,并展现出不同于常规材料的优良物理化学性能。其中,金属银的纳米化使银具有了更加诱人的前景,引起了广泛的关注(图1)。 纳米银是以纳米技术为基础研制而成的新型产品,近年来的研究与发展表明,纳米银材料具有很稳定的物理化学性能,在电学、光学和催化等众多方面具有比普通银更优异的性能,现已广泛应用于陶瓷材料、环保材料和涂料等许多领域。由于纳米银粒具有优异的抗菌活性,所以在医学上也得到了广泛应用,一般来说,天然抗菌材料具有安全性高的优点,然而其普遍寿命较短、耐热性差、不易进行再加工;有机合成抗菌材料具有抗菌范围广、杀菌速度快等优点,但是一般来说其毒副作用相对较大、易水解、使用寿命短,与传统无机抗菌剂相比,其优点主要有广谱抗菌、强效杀菌、渗透性强、修复再生、抗菌持久、安全无毒、无耐药性等。[2] 抗菌机理 银离子具有很强的抗菌特性,溶液中微量的银离子即可杀灭细菌,且覆银表面与水接触后可源源不断地释放银离子,这就是银杀菌性能维持时间较长的原因。纳米状态的银还具有极大的比表面积,这种结构给各种反应提供了众多的接触作用位点,容易与外来原子相结合,更容易释放银离子。例如,1g球状银表面积为10.6cm2,而1克直径为10nm的银纳米粒子的表面直径达到6×105cm2,明显增加了持续释放银离子所需的表面积。 除了纳米银的结构特性,还有多种机制参与纳米银杀菌过程:A、缓释接触反应说,即含银抗菌材料中的纳米银粒子因化学性质活泼而保持相当高的活性并可从无机物载体中缓慢释放、游离至基体材料的表面,当与细菌接触时,即与细菌体内带负电的活性酶产生库仑引力而强烈吸附,并与酶蛋白中的活性基团一SH、一NH:等发生作用,使蛋白质凝固,

银抗菌的安全性

银抗菌的安全性 邢彦军1 ,2 , 宋阳3 , 吉友美1 , 戴瑾瑾1 (1) 东华大学化学与化工学院,上海201620 ; (2) 东华大学教育部生态纺织重点实验室,上海201620 ;(3) 东华大学,国家染整工程技术研究中心,上海201620 抗菌纺织品的研究与应用与人类健康密切相关,因而越来越受到人们的重视。抗菌纺织品可以明显地提高产品的附加值,满足人们对健康环保的需求,因此市场潜力很大。 纺织品的抗菌整理多采用主动抗菌,即通过一定方式将特殊的抗菌物质引入纺织材料,以达到抗菌的目的。目前多采用双胍类、异噻唑啉酮类、有机硅季铵盐类和酚类等溶出型有机抗菌剂。但是,长期使用这些抗菌剂很容易产生耐药性菌种,大大影响了抗菌效果。相反,无机抗菌杀菌剂具有抑菌持久性、广谱性、高度安全性等优点,因而其应用领域不断扩展。金属离子抗菌剂是一类重要的无机抗菌剂,其中银离子的抗菌能力远远强于其他抗菌金属离子,故银系无机抗菌剂在抗菌纺织品上的应用越来越广泛。本文对银抗菌剂的安全性、抗菌性能、抗菌机制、银系抗菌纤维和纺织品制备方法、国内外抗菌纺织品测试方法以及目前尚存的问题进行了评述。 1 银的抗菌性 微量的、相对无毒的金属具有杀灭病原体和防止它们增殖的“微量作用效应”。在所有金属中,银最具微量生物活性。银的使用最早可以追溯到18世纪使用硝酸银治疗胃溃疡[1]。19世纪第1次确定了银离子的抗菌活性,到了20世纪20年代,胶体银由于可以有效地处理伤口而被美国食品药品署(FDA)认可[2-3]。与其他抗菌剂相比,银系抗菌剂具有抗菌性能高(见表1) ,不易产生抗药性的特点,具有很高的安全性。在温暖潮湿的环境里,银离子具有非常高的生物抗菌活性。同时,银系抗菌剂还具有很多优点,如对皮肤没有刺激性,不影响纺织品的服用性能,因此银系抗菌剂适合于抗菌功能纺织品的制备[4-5]。 表1 用于纺织品的不同抗菌剂性能比较 注: + 表示有效; + + + 表示高效; - 表示无效。测定方法不同,不同抗菌剂间无法进行比较。

乳酸菌抗菌机理

乳酸菌抗菌机理 乳酸菌的抗菌机理涉及其产生的各种代谢产物,包括酸性物质、乳酸菌素、二氧化碳和过氧化氢等。其中酸性物质可以消耗大量细胞能量并影响细胞膜的稳定性;乳酸菌素可作用于细胞膜,造成膜内物质和能量的泄漏。 乳酸菌是一类可发酵碳水化合物产生大量乳酸的细菌的通称,在自然界和食物中广泛存在。乳酸菌是最早被人类用于食品储藏加工的微生物之一,早在公元前6000年,人们就懂得利用乳酸菌发酵食物。他们发现食物经过一定的处理和储存就可改善风味、延长储存期和增加食物的安全性。迄今人们已明确了许多乳酸菌在生产安全优质食品中所起重要作用的生物学机理[1~2]:乳酸菌可以发酵食物中碳水化合物,分泌乳酸菌素,产生有机酸、酒精和二氧化碳等,来抑制一些腐败菌或致病菌的生长及改善食品的品质和风味,同时经过发酵,乳酸菌可以增加食品的可消化性并产生一些维生素、抗氧化剂。近几年,乳酸菌抑制食品中一些腐败菌和致病菌的作用引起人们的极大关注。虽然现代生物技术和安全体系(如HACCP)已被普遍的引入食品加工行业,但食品的安全问题仍然威胁着人类,每年都有许多关于食物中毒和食源性疾病散发或爆发的报道,同时,人们正力图追求不含化学防腐剂及各种添加剂的天然的安全食品。解决这问题需要发展新的食品保鲜技术来控制食品中腐败菌和致病菌的生长。国内外学者对之开展了大量的研究并建立了许多方法,其中最引人注目的就是利用乳酸菌来加强食品安全性和延长储存期。

1乳酸菌产生的酸性物质及其抑菌作用 1.1乳酸菌产生的酸性物质乳酸菌可产生对食品中微生物具有抑制作用的酸性物质,主要是乳酸菌的代谢终产物及中间产物,包括乳酸、乙酸、乙醇等。 1.2酸性物质对食品微生物的抑制作用一般细菌生长的最适pH 值为6~7,若低于该值,细菌的生长速率将大大降低或不生长甚至死亡,这在腐败性微生物上尤为可见。乳酸菌产生的酸性物质对食品中微生物的抑制作用已在许多实验中得到证实,这种抑菌作用取决于3个相互影响的因素:1.介质的pH值; 2.酸的离解程度; 3.酸的种类。 从20世纪70~80年代,国内外学者就开始建立pH值对食品中各种腐败菌和致病菌抑制作用的预测模型。但在这些模型中都是用无机酸如盐酸、磷酸来降低pH值,而乳酸菌产生的多是一些含羧基的弱有机酸。只有未离解的弱有机酸进入细菌细胞才能有效的发挥抑菌作用。这些有机酸的离解度取决于其pKa和pH值,可以用Henderson-Hasselbach公式计算:pH=pKa+log([A-] / [HA])。从中不难看出介质的pH值影响酸的离解,若在pH值固定条件下酸的pKa决定了其离解度。因此乳酸菌产生的弱酸的抗菌能力取决于介质的pH值及酸的种类(pKa)。由于胞质的pH值相对较高,当非离解的酸通过细胞膜进入胞质,就发生离解使细胞质酸化并释放酸性阴离子。这就给微生物带来两种后果:首先,若微生物要维持其胞内的pH值,就得动用ATP酶来清除质子,这将消耗大量细胞能量,加重细胞的代谢负担;其次,细胞内阴性酸离子的积聚可影响细胞膜的稳定性并抑制其传递

浅谈抗菌剂

抗菌剂是一类具有抑菌和杀菌性能的新型助剂。能够在一定时间内,使某些微生物(细菌、真菌、酵母菌、藻类及病毒等)的生长或繁殖保持在必要水平以下的化学物质。抗菌剂20世纪80年代中期发展起来的,具有耐热、持久、连续、安全等优点。下面我们一起来了解一下抗菌剂: 一、抗菌剂概念 消毒:杀灭或清除传播媒介上的病原微生物,使其达到无害化的处理。 抗菌:准确的说应该叫“抗微生物”功能。抑菌和杀菌作用的总和为抗菌。 杀菌:杀死微生物营养体和繁殖体的作用(在我们一般生活环境下条件下,一般不需要灭菌)。抑菌:抑制微生物生长繁殖的作用。 防霉:就是抵抗真菌的功效,主要针对霉菌而言。 二、抗菌剂种类 1、有机抗菌剂 有机抗菌剂又可以分成两种一种是合成型抗菌剂(如:季铵盐、双胍类等),另一种是天然有机抗菌剂(如:甲壳素)。 2、无机抗菌剂 无机抗菌剂主要可分为三种:合成金属离子的抗菌剂(如含:AG,CU,ZN等);TIO2光催化又称光触媒抗菌剂;金属氧化物抗菌剂(如:磺酸银) 3、复合抗菌剂 4、益生菌整理剂 三、抗菌剂抗菌机理 抗菌剂的抗菌作用主要作用于干扰细胞壁的合成、损伤细菌细胞膜、抑制细菌蛋白质的合成和干扰DNA的合成,从而使细菌无法繁殖。 四、抗菌剂分类 抗菌剂主要可分为有机和无机两大类: 1、有机抗菌剂 有机抗菌剂主要是以乙醇、酰基苯胺类、咪唑类、噻唑类、异噻唑酮衍生物、季铵盐类、双呱类、酚类等为主的抗菌化合物。有机抗菌剂具有种类繁多、即效性和抗菌活性高等特点,当然抗菌活性根据菌种的不同而不同,但其耐热性相对其他抗菌剂会差一点。 2、无机抗菌剂 无机抗菌剂又可分为合成金属离子抗菌剂和光触媒抗菌剂。 金属离子抗菌剂:是利用银、锌等金属通过物理吸附离子交换等方法,将金属固定在多孔载体上面(如硅酸盐、磷酸锆)制成的抗菌剂,然后将其加入到相应的制品中便可获得具有抗菌能力的材料。目前银离子抗菌剂还是在无机抗菌剂中占主要地位,其主要因素是银具有较高的催化能力,高氧化态银的还原势极高,足以使周围空间产生原子氧,原子氧具有强

精油抑菌机理综述

·茶树油在果蔬保鲜中的应用及其对采后病原真菌的抑菌机理 (宁波大学海洋学院,宁波315211) 摘要:茶树油具有广谱的抑菌性能,在果蔬采后病原真菌控制上起到了重要的作用。关于茶树油在果蔬保鲜上的应用研究至今较为缺乏,令其在商业上的应用前景受到限制。同时,本文综述了茶树油的抗真菌机理,目前的研究主要集中在细胞膜和呼吸代谢方面。认为仍需进一步结合茶树油的组分之间的相互作用及其在亚细胞水平上的抑菌作用机理进行系统性的研究,为茶树油开发成果蔬保鲜剂提供基础。 关键词:茶树油;果蔬;真菌;机理 Research on Tea tree oil in Fruits and V egetables Preservation and Its Antifungal Mechanism on Postharvest pathogenic fungi Abstract: Tea Tree Oil (TTO), the volatile essential oil derived mainly from the Australian native plant Melaleuca alternifolia. Employed largely for its antimicrobial properties, TTO plays an important role in controlling postharvest pathogenic fungi .Few applied research on tea tree oil in fresh fruits and vegetables has been reported, making it limited in commercial application. Meanwhile, the antifungal mechanism of TTO was reviewed, the current research focused on cell membrane and respiratory metabolism. The interaction between the components of TTO and its effect on subcellular level need to be studied systematically, providing a basis to develop it into fruit and vegetable preservative. Keywords: Tea Tree Oil; fruits and vegetables; fungi; Mechanism 1茶树油概述 植物精油,属于植物体内的次生代谢物质,是一类可随水蒸气蒸馏,具有一定芳香气味且能在常温下挥发的油状物质的总称。植物学上称为精油(essential oil),商业上称芳香油(aromatic oil),化学和医药学上称挥发油(volatile oil)[1]。植物精油按化学成分和含量多少可将植物精油分为四大类,即萜烯类衍生物,芳香族化合物,脂肪族化合物,含氮、含硫类化合物。许多研究表明植物精油具有抑制细菌、抑制真菌、抗病毒、杀寄生虫、杀虫的作用而引起了人们极大的兴趣[2]。最早植物精油是在日化产品中使用,近年来由于其较强的抑菌活性和低毒、环境友好等特点,也开始被应用到农产品特别是果蔬病虫害防治和保鲜防腐上[3],可作为天然防腐剂的重要来源之一,在食品保鲜中具较好的应用前景。 茶树油为桃金娘科(Myrtaceae)白千层属(Melaleuc)植物互叶白千层(Melaleuca alternifolia)的叶和枝条末梢经水蒸气蒸馏而得的无色至淡黄色精油[7]。它是迄今为止发现的活性最强的天然抗菌剂, 也是极具应用价值和发展潜力的纯天然植物精油之一。目前,全世界茶树油每年产量500多吨,因其能高效、无毒、无刺激地杀死真菌和细菌而被广泛应用于医疗、化工等领域[6]。气相色谱-质谱联用仪( GC/MS) 对茶树油的成分进行分析发现,茶树油是由百种以上的物质所组成,其主要成分有萜品烯-4-醇( 1-terpined-4-ol)、γ-萜品烯( gamma-terpinence)、α-松油烯(alpha-terinence)、1,8-桉叶素( 1, 8-cineole)等,其主要抑菌活性成分是萜品烯-4-醇[8]。其中,萜品烯-4-醇和γ-萜品烯占整个茶树油比例的50 % 以上。为提高茶树油质量和防止掺假,ISO/ TC54制订了茶树油的国际标准(ISO4730- 1996),该标准规定了茶树油的两种特征性成分含量的上下限。其中,1,8-桉叶素(-,15%),萜品烯-4-醇(30%,-)。

纳米银抗菌处理剂,纳米银抗菌剂,纳米银抗菌整理剂,纳米银抗菌粉,银离子无机抗菌剂,面料抗菌整理剂

纳米粉体的分散及对棉织物的抗菌整理研究 滕志强1朱平2张建波王炳(青岛大学化工学院) 1滕志强(1978- )男,青岛大学在读级研究生,主要从事纳米材料功能整理研究。 2 联系人:朱平(1957-),男,青岛大学教授、博导,主要从事功能助剂和功能纺织品研究。 原载:六届论文集;299-303(lq060) 摘要:本文主要研究讨论了四种不同类型的分散剂在不同pH值下的分散效果,以及最佳分散剂用量,结果表明:2%(o.w.f.)的聚丙烯酸钠在pH值等于9时对3%(o.w.f.)的纳米粉 用于棉织物的抗体具有良好的分散性。另外,还研究了不同配比的复合纳米微粒ZnO/TiO 2 菌整理,结果发现复合纳米粉体的抗菌效果要比单一纳米粉体的抗菌效果好,证明了纳米协同效应的存在。 抗菌整理协同效应关键词:低聚丙烯酸钠分散性纳米ZnO/TiO 2 1. 1.前言 近年来,随着科学技术的进步和人民生活水平的提高,人们对材料的认识与使用已经向多功能化方面发展,纺织业亦是如此。在功能性、环保型纺织品已经成为当今世界纺织品市场主流的今天,功能性纺织品的开发研究己扩展到众多领域,其中纳米材料的应用便是其中的一种。天然纤维织物因其服用的舒适性等而深受消费者欢迎,但是棉织物本身存在一些缺点,如在适宜的条件下,一些病原菌如金黄色葡萄球菌、大肠杆菌和白色念珠球菌等在棉织物上存在时间延长,尤其是一些内衣、内裤的穿着环境易滋生细菌,并以人体的新陈代谢产物为营养物质迅速繁殖,释放出令人恶心的臭味。另外,它们还会使棉制品变色、发霉,诱发各种皮肤疾病,危害人体健康。由于某些无机材料做成纳米级后有优越的抗菌功能,同时纳米功能材料耐热、无毒、稳定性强,因此纳米材料便作为新型的抗菌整理剂首先被选用,来代替对人体有毒性和刺激性的抗菌剂,成为开发绿色功能纺织品的一个重要方向[1]。 目前,国内外正在研究和应用的将纳米微粒施加到纺织品上的方法主要有三种[2]:(a)共混纺丝法 (b)后整理法:吸尽法、涂层法和浸轧法 (c)接枝法。然而,时至今日,纳米粉体在纺织品中的应用仍然是一项发展中的技术,这是因为纳米微粒表面活性很大,易发生团聚,且不易与纤维材料结合固着,因而,如何使纳米粒子均匀地分散在纺织品上,且实现纳米粒子与纤维的牢固结合,是纳米功能纺织品开发和应用的关键技术。 和ZnO施加到棉织物上,并对它们的分散性、抗菌性以本文借助于粘合剂把纳米粉体TiO 2 及它们复合物的协同效应进行了研究。 2. 2.实验部分 2.1实验材料和仪器 2.1.1原料及试剂 (江苏河海纳米科技股份有限公司);十二烷基苯磺酸钠、六偏磷酸钠纳米ZnO和纳米TiO 2 和硅酸钠(天津市化学试剂六厂);低聚丙烯酸钠(上海长风化工厂);染色用粘合剂和渗透剂JFS(烟台三和化学试剂有限公司) 2.1.2织物规格 经过前处理的纯棉织物:规格40*40,支数133*72 2.1.3实验仪器 超声波清洗器SK5200H(上海科导超声仪器有限公司);85-2恒温磁力搅拌器(常州国华电器有限公司);HH数显恒温水浴锅(江苏省金坛市宏华仪器厂);EL-400立式气动小轧车(上海朗高纺织设备有限公司);电子天平(北京赛多利斯天平有限公司);pHs-25型酸度计(上海虹益仪器厂)。 2.2纳米粉体的分散性实验[3][4] 2.2.1最佳分散剂和pH值的选择 将0.10g等量分散剂(聚丙烯酸钠、六偏磷酸钠、十二烷基苯磺酸钠、硅酸钠)分别加入到盛有100mL蒸馏水的烧杯中,每种分散剂分别配六份溶液,搅匀后准确调节pH值,使含相同

姜厚朴水提物对大肠杆菌和金黄色葡萄球菌的抑菌机理研究

姜厚朴水提物对大肠杆菌和金黄色葡萄球菌的 抑菌机理研究 李婷,杨舒然,陈敏,宋丽雅,何聪芬 (北京工商大学,北京市植物资源研究开发重点实验室,中国化妆品协同创新中心,北京 100048) 摘要:为了探讨姜厚朴水提物(GMB)对大肠杆菌和金黄色葡萄球菌的抑菌机理,试验对GMB作用下菌体形态结构、膜系统上离子通道的酶活力和能量代谢等方面进行了研究。结果表明,GMB对大肠杆菌和金黄色葡萄球菌的MIC分别为6.25、12.5 mg/mL。大肠杆菌胞外AKP酶和β-半乳糖苷酶吸光度值分别增加1.78和4.24倍,GMB作用4 h后电导率显著上升,膜上Na+K+-A TP酶活性从0.42增加到1.74 mg prot/mL,且为阴性对照的1.7倍;金黄色葡萄球菌体表出现囊泡状、不规则的突起结构,SDH酶活性、总A TP 酶活性和胞内蛋白质含量分别降低40%、23.4%和17.9%,且AKP酶活和电导率均有所增加。由此推测出GMB主要是通过破坏大肠杆菌细胞壁、膜结构,增加其渗透性和通透性,造成胞内物质外流和蛋白质合成量下降等现象,进而抑制菌体生长。而GMB抑制金黄色葡萄球菌的作用机制是增加细胞壁的通透性、降低能量代谢相关酶的活性,干扰其正常的代谢活动。 关键词:姜厚朴;大肠杆菌;金黄色葡萄球菌;抑菌机理 文章篇号:1673-9078(2016)2-84-92 DOI: 10.13982/j.mfst.1673-9078.2016.2.014 Antibacterial Mechanism of Ginger Mix-fried Magnolia Bark Extract against Escherichia coli and Staphylococcus aureus LI Ting, Y ANG Shu-ran, CHEN Min, SONG Li-ya, HE Cong-feng (Science College of Beijing Technology and Business University, Beijing Key Laboratory of Plant Resources Research and Development, Chinese Cosmetics Collaborative Innovation Center, Beijing 100048, China) Abstract: To determine the antibacterial mechanism of ginger mix-fried magnolia bark (GMB) against Escherichia coli and Staphylococcus aureus, the morphological structure of the bacterial cells, enzyme activity in the ion channels of cell membrane, and energy mechanism after treatment with GMB were studied. The results showed that the minimum inhibitory concentrations (MICs) of GMB against E. coli and S. aureus were 6.25 and 12.5 mg/mL, respectively. The absorbance values for extracellular alkaline phosphatase (AKP) and β-galactosidase in E. coli increased 1.78-fold and 4.24-fold, respectively. Four hours after GMB treatment, the conductivity of the culture medium changed significantly, and membrane Na+K+-A TPase activity increased from 0.42 to 1.74 mg prot/mL, which was 1.7 times higher than that of the negative control. There were vesicular or irregular projections on the cell surface of S. aureus, and the sorbitol dehydrogenase (SDH) activity, total adenosine triphosphate (A TP) activity, and soluble protein content decreased by 40%, 23.4%, and 17.9%, respectively, whereas AKP enzymatic activity and conductivity increased. These results suggested that GMB increased E. coli cell permeability by disrupting the cell wall and damaging membrane structure, which resulted in an outflow of intracellular material and a decreased amount of synthesized proteins, thereby inhibiting bacterial growth. GMB appeared to inhibit S. aureus by enhancing the cell wall permeability, reducing the activity of enzymes related to energy metabolism, and interfering with the normal metabolic activities. Key words: ginger mix-fried magnolia bark; Escherichia coli; Staphylococcus aureus; antibacterial mechanism 当前,细菌污染所引起的食源性疾病是影响人类公共健康和食品安全的最大因素之一,其中引起食源收稿日期:2015-05-11 基金项目:北京市优秀人才培养资助D项目(2012D005003000006) 作者简介:李婷(1991-),女,在读研究生,研究方向为天然植物抑菌剂 通讯作者:宋丽雅(1974-),女,博士,副教授,研究方向为微生物与酶工程 性疾病的主要病原菌有沙门菌、金黄色葡萄球菌和大肠杆菌[1]。细菌污染食品后分解食物中的蛋白质、糖、脂肪、维生素等营养物质,从而进行自身繁殖,最终导致食品的营养价值和品质下降,严重时造成食品腐败变质,呈现出一定的令人难以接受的感官性状,如刺激性气味、组织腐烂等。此外,有些细菌污染食品后会产生毒素,如肉毒毒素、金黄色葡萄球菌肠毒素 84

纳米银抗菌剂概要

纳米银抗菌剂G-AG Nano silver antibacterial finishing agent 【产品说明】 纳米银抗菌剂,属无机类抗菌剂,无机抗菌剂的组成,主要包括载体与抗菌成份,其中载体不是抗菌成份,而是保证活性组份稳定,同时具有缓释性。在几种金属中的抗菌性最好最安全属银。纳米银就是将粒径做到纳米级的金属银单质。纳米银粒径大多在小于25纳米左右,对大肠杆菌、淋球菌、沙眼衣原体等650多种致病微生物都有强烈的抑制和杀灭作用,而且不会产生耐药性。动物试验表明,这种纳米银抗菌微粉修复作用。值得一提的是,该产品遇水抗菌效果愈发增强,更利于疾病的治疗。 由于纳米银抗菌剂在使用上,首要考虑是安全性与稳定性。 1、99%的有害菌为单细胞体,寄生在人体内;而有益菌是多细胞体,以菌群的形式在人体 内存活;纳米银专杀单细胞体; 2、单细胞体用蛋白酶呼吸,多细胞体有专门的呼吸系统组织,纳米银抗菌原理就是纳米银 颗粒与蛋白酶结合,产生物理、化学反应,分解蛋白酶,使细菌失去活性,从根本上消灭有害菌; 3、目前纳米银抗菌主要应用于体外,而在体外保持无菌状态对人体是有益的; 银是人体组织内的微量元素之一,微量的银对人体是无害的。此产品通过毒理性检测,本人体是安全无害。本公司的采用高科技手段,把采用络合态银,安全性,稳定性,更好,且为无色透明。并在纳米银材料表面采用偶联剂改性,使之遇水分散性好,不团聚,杀菌,抑菌彻底,持久。通过技术改良,也改变原纳米银本身不防霉菌,真菌缺点。使之在原来的基本上,广谱杀菌650种,防霉,防螨,除臭。 本公司纳米银抗菌剂采用粒径2-5nm的无色透明纳米银溶液为主要抗菌原料,经科学组方精制而成的高效织物抗菌整理剂,广泛用于纯棉、混纺、化纤、无纺布、皮革等各类织物的耐洗长效抗菌后整理处理中,在织物的手感、颜色、状态等不变的情况下,洗涤100次抗菌效果仍然能够保持99%以上。此类抗菌剂性溶出型抗菌剂,与细菌充分接触,杀死细菌,所以抗菌性更加彻底。 【产品特性】

中草药对大肠杆菌体外抑菌试验

中草药对大肠杆菌体外抑菌试验* 路振香时维静杨用光 (安徽技术师范学院,安徽凤阳,233100) 选用27种不同的中草药制剂(煎剂、挥发油、蒸馏液,以平板稀释法和纸片法对一株肉鸡源的大肠杆菌进行体外抑菌试验。结果表明,有14种中药对此株大肠杆菌有不同程度的抑制作用。试验还表明中药制剂的配方工艺不同,其抑菌的效果亦有不同。 关键词:中药;大肠杆菌; 抑菌作用 中兽医学有着悠久的历史和丰富的应用经验,在抗生素使用以前,对保障家畜健康起着重要作用。随着科学技术的不断发展,西药以其方便快捷的优势逐渐在临床应用中占据主导地位,但由于西药抗生素类的广泛使用,使得病原菌的抗药性日趋增强[1],中草药作为替代抗生素解决抗药性和药残的重要方案,越来越受到重视[2-3],尤其是近年来肉食品中的抗生素残留问题已经被提到了一定的高度,而大肠杆菌又属于多血清型和变异型强的细菌,极易产生抗药性,笔者用不同种类和浓度的中药制剂分别用平板稀释法和纸片法对大肠杆菌进行体外抑菌试验,以期筛选出具有临床应用价值的中药制剂,为畜牧业生产服务。 1材料方法 1.1材料 1.1.1试验菌株 肉鸡源大肠杆菌(安徽技术师范学院动科系预防兽医教研室提供)。 1.1.2 培养基 普通营养琼脂、麦康凯琼脂。按常规方法配制。 1.1.3 单味中药 银花、防风、板兰根、白芷、连翘、杏仁、射干、辛夷、贯众、羌活、荆芥、藿香,每ml相当于1g生药量。中草药的煎制与蒸馏由安徽技术师范学院中药实验室完成。 1.1.4 复方中药 银射煎液、麻杏射防煎液、羌藿连防煎液、辛芷荆煎液、辛芷荆蒸馏液、银射蒸馏液、羌藿连防蒸馏液、麻杏射防蒸馏液,每ml相当于1g生药量。 1.2 方法 1.2.1大肠杆菌对中药(单味、复方)敏感性的体外试验——平板稀释法[4]。 1.2.1.1取1ml原药液为第一支试管;在第二只试管中分别加入0.5ml原药液和0.5ml生理盐水以倍比稀释法稀释至第四支试管;第五支试管为无药对照,每支试管中均含有1ml不同浓度的药液。先把药液倒入无菌的平皿中,然后倒入60℃左右的无菌的普通营养琼脂或麦康凯琼脂,并迅速混合均匀,制成平板。然后以无菌的涂布棒蘸取细菌均匀涂布于平板表面,置37℃培养箱内培养24h后观察结果。 1.2.1.2 在第一支试管加入8ml原药液,第二支试管加入4ml原药液,第三支试管加入2ml 原药液,第四支试管加入1ml原药液,第五支试管为无药对照,在第二支试管至第五支试管中分别加入4ml、6ml、7ml及8ml生理盐水;按照1.2.1.1的方法制成平板,涂布细菌后 *项目基金:安徽技术师范学院稳定人才基金资助(批准号:YRC200316)

纳米银抗菌剂,纳米银抗菌处理剂,银离子无机抗菌剂,纳米银抗菌

纳米银在织物后整理中的应用 徐国荣i李从举2? 1北京服装学院材料科学与工程学院,100029,北京;2北京市服装材料研究开发与评价?点实验室,100029,北京: 【摘要】介绍了纳米银在织物后整理中的应用,主要是在织物抗菌性方面的应用。简要介绍了纳米银的抗菌作用机理。介绍了近几年国内在研究纳米银抗菌性方面的主要成果。并结合其它纳米材料的研究进展方向和国内外研究纳米银的方向对纳米银往后的发展做了一些展 【关键词】纳米银抗菌性后整理 银的杀菌作用很早就己经被人们了解并应用了。而进入21世纪后,纳米技术的发展更是便银离子的杀菌性能得到了更广泛的应用。纳米银,是利用前沿纳米技术将银纳米化,纳米技术出现,使银在纳米状态下的杀菌能力产生了质的飞跃,极少的纳米银町产生强人的杀繭作用,可在数分钟内杀死650多种细菌,广谱杀繭且无任何的时药性,能够促进伤II的愈合、细胞的生长及受损细胞的修a,无任何毒性反应.对皮肤也未发现任何刺激反应,这给广泛应用纳米银來抗菌开辟了广阔的前景。纳米银已经广泛应用于材料、电子、化工等多个产业。纳米银在E卩染后整理中的应用近年也得到了非常广发的研究和进展。各种纳米银后整理剂也纷纷进入市场。 1纳米银的抗菌作用机理: 目前研究发现,纳米银的抗菌作用主要通过以下机制来发挥3: (1)纳米银通过抑制多种细胞膜上酶的活性,并与供电子体反应,尤其是能和含有毓基的供电子体反应。转运Na+的还原型辅酶(NADH)即氧化还原型辅酶Q被认为是纳米银最主要的靶蛋白,低浓度的纳米银就可抑制嗜緘性杆菌膜泡中能量依赖的氧化还原形辅酶Q(NQR) 转运离子的活性,同时还能阻碍溶鴻弧菌纯化氧化还桑型辅酶Q的能力。从而提示,纳米银能与氧化还原型辅酶Q特异性的结合是低浓度纳米银杀菌作用的主要机理。 基金项目:教育部新世纪优秀人才支持计划资助(NCET-05-0204);国家自然科学基金项目(50503001);北京市市属市管髙等学校人才强校计划项目资助

壳聚糖的抑菌机理及抑菌特性研究进展

壳聚糖的抑菌机理及抑菌特性研究进展 吴小勇 曾庆孝 阮征 张立彦 (华南理工大学轻工与食品学院,广州510640) 摘 要:本文介绍了壳聚糖的抑菌作用及其在食品防腐保鲜方面的应用,还对壳聚糖的抑菌机理及其影响因素进行了较为全面的讨论。 关键词:甲壳素,壳聚糖,抑菌,防腐保鲜 Progress in the Study of Antimicrobial Activities of Chitosan Xiaoyong Wu,Q ingxiao Z eng,Zhen Ruan,Liyan Zhang (College of Light Industry&Food Science,South China Univ.of Tech.,Guangzhou510640) Abstract:The antimicrobial activities of chitosan and its a pplication in food preservation were introduced in this article. Moreover,the antimicrobial mechanisms and the effect factors of chitosan were com pletely discussed. K ey w ords:Chitin,Chitosan,Antimicrobial activities,Preservation 0 简介 甲壳素是可以再生的生物大分子物质,在自然界中广泛存在,是自然界中存在的数量仅次于纤维素的第二大有机物,估计每年的生物合成量达100亿吨[1]。甲壳素的脱乙酰产物%%壳聚糖,由于存在自由氨基,其溶解性和化学反应活性大大改善,表现出比甲壳素更广泛的应用前景。壳聚糖在食品工业的应用主要有:食品防腐保鲜、酒类除浊和果汁的澄清、功能性食品添加剂、水净化等。Fereidoon Shahidi 等综述了甲壳素和壳聚糖在这方面的应用[2],宋清华等也有类似的介绍[3]。近年来,随着消费者对化学防腐剂的安全性的担忧和对天然防腐剂的喜好,关于壳聚糖在食品防腐保鲜方面的应用的研究也越来越多;但是在壳聚糖的抑菌机理和抑菌特性方面,不同的研究者得出的结论不同,有的结论一致,有的结论不一致,甚至相反;因此,对这些研究成果进行回顾,从中找出一些基本正确的,有规律性的结论是很有必要的。本文将努力在这方面做一些工作,并介绍部分关于壳聚糖的抑菌机理及应用研究方面的最新成果,供读者参考。 1 壳聚糖的抑菌机理 抗微生物的物质,其作用方式主要有以下几种[4]:损伤细胞壁、改变细胞的透性、改变蛋白质和核酸分子、抑制酶的作用、作为抗代谢物、抑制核酸的合成。关于壳聚糖及其衍生物的抑菌机理,从目前的研究结果来看,主要有以下几种可能:(1)分子量小于5000kDa的壳聚糖可以透过细胞膜[5],小分子壳聚糖进入微生物细胞内,与细胞内带负电的物质(主要是蛋白质和核酸)结合,使细胞的正常生理功能(例如DNA的复制和蛋白质的合成等)受到影响,导致微生物死亡[6]。(2)大分子的壳聚糖吸附在微生物细胞表面,形成一层高分子膜,阻止了营养物质向细胞内运输,从而起到杀菌和抑菌作用[5,6]。(3)壳聚糖的正电荷与微生物细胞膜表面的负电荷之间的相互作用,改变了微生物细胞膜的通透性,引起微生物细胞死亡[7]。(4)壳聚糖作为一种螯合剂,选择性地螯合对微生物生长起关键作用的金属离子,从而抑制微生物的生长和产毒; 64

相关文档