文档库 最新最全的文档下载
当前位置:文档库 › 数据处理 杨氏弹性模量

数据处理 杨氏弹性模量

数据处理  杨氏弹性模量
数据处理  杨氏弹性模量

数据处理 杨氏弹性模量

表1

表3:钢丝直径数据处理 千分尺零点误差0d = mm

(cm)50D =?上丝读数-下丝读数50=?

=

2

8DFL

E d bN

π=

=数据代入= d S =

=数据代入=

=B U =?仪 d U ==

N S =

= =B U =?仪

N U ==

=E r U E E E

=?==数据代入结果

E E E U =±= (2

N

m )

杨氏弹性模量的测量

金属丝拉伸变形 图3.1.1 杨氏弹性模量的测量 【实验目的】 (1)用拉伸法测量金属丝的杨氏弹性模量。 (2)掌握用光杠杆测量微小长度的原理及方法。 (3)学会用逐差法处理实验数据和不确定度的计算。 【实验原理】 物体在外力的作用下发生形变,若撤走外力后形变消失,即物体恢复原状,这种形变叫做弹性形变,当外力超过某一限度,撤除外力后,物体不能恢复原状而留下剩余形变称为塑性形变,产生塑性形变的最小限度叫弹性极限;当外力 进一步增大到某一点时,物体会突然发生很大的形变,则该 点称为屈服点,超过屈服点后,该物体就会发生断裂。在物 体的弹性范围内,产生一定的形变所需应力与应变(相对形变)之比称为弹性模量。如果物体是柱形或条形,则(由拉力或压力所导致)沿纵向的弹性模量叫杨氏弹性模量。 如图3.1.1所示,设一粗细均匀的金属丝长度为L ,横截面面积为S ,将其上端固定,下端悬挂砝码,金属丝受砝码重力F 的作用而发生形变,伸长量为 L ,F /S 是金属丝截面上单位面积所受的作用力,叫做应力,而L /L 是金属丝单位长度的相对形变,叫做应变,由胡克定律得:在弹性形变范围内,物体所受的应力F/S 与应变△L/L 成正比,即 F L E S L ?= (3.1.1) 其比例系数 //F S E L L =?

杨氏模量测量仪 图3.1.2 (3.1.2) 称为杨氏弹性模量,简称杨氏模量。式中各量的单位均用SI 单位时,E 的单位为帕斯卡(即Pa ,1 Pa =1 N/m 2)。杨氏模量是表征物体(材料)性质的一个参量,与物体的几何尺寸以及外力大小无关,对一定材料而言,E 是一个常数,它仅取决于材料的性质。杨氏模量的大小标志了材料的刚性。 【实验仪器简介】 1. 杨氏模量仪 杨氏模量仪如图3.1.2所示。三脚底座上装有两个 立柱和三个调整螺丝(调节调整螺丝可使钢丝铅直), 立柱的上端装有横梁,横梁中间小孔中有个上夹头A , 用来夹紧金属丝L 的上端。立柱的中部有一个可以沿立 柱上下移动的平台C ,用来承托光杠杆M 。平台上有一 个圆孔和一条横槽,圆孔中有一个可以上下滑动的小圆 柱形的下夹头B ,用来夹紧金属丝的下端,小夹头下面 挂一砝码托盘,用于承托使金属丝拉长的砝码。 2. 镜尺组 镜尺组包括一个支架上安装的望远镜R 和标尺S 。望远镜水平安装,标尺贴近望远镜且竖直安装,与被测长度变化方向相平行。 3. 光杠杆 如图3.1.3所示,光杠杆是将一小圆形平面反射镜M 固定在下面有三 个足尖f 1、f 2和f 3的“T ”形三脚支架上,f 1、f 2、f 3 三点构成一个等腰三角形。 图3.1.3

动态悬挂法测杨氏模量数据处理参考范例

动态悬挂法测杨氏模量数据处理参考范例 1. 数据记录 表1 各测量量测量值 样品 () L m m () m L m m ? ()m g ()m m g ? () 1f H z ()1 m f H z ? 黄铜 0.05 0.01 0.1 不锈钢 0.05 0.01 1 表2 样品直径测量值 次数 黄铜直径 () d m m () m d m m ? 不锈钢直径 () d m m () m d m m ? 1 0.005 0.005 2 3 4 5 6 2. 数据处理 (1)黄铜: L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f :0.10.058B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.998d m m = 1.110.0170.019A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.020u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001037.9310 701.0 1.6067 1.6067 5.99810 L m f Y d ---????==? ? 10 2 9.47710 N m = ?Y E = =

1.3%= 则101029.47710 1.3%0.1310Y Y u Y E N m =?=??=? (2)不锈钢 L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f : 10.58B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.945d m m = 1.110.0210.024A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.025u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001034.4310 1014 1.6067 1.6067 5.94510L m f Y d ---????==? ? 11 2 1.86510 N m =?Y E = = 1.7%= 则11 11 2 1.86510 1.7%0.03210 Y Y u Y E N m =?=??=? 3. 实验结果 (1)室温下测得黄铜样品的杨氏模量为: ()10 2 9.50.210Y N m =±? () 0.683p = 1.3% Y E = (2)室温下测得不锈钢样品的杨氏模量为: ()11 2 1.860.0410Y N m =±? () 0.683p = 1.7% Y E = 备注:不确定度u 在计算过程中保留两位有效数字,在最后计算结果中保留一位有效数字。

杨氏模量

杨氏模量 杨氏模量是描述固体材料抵抗形变能力的物理量。当一条长度为L、截面积为S的金属丝在力F 作用下伸长ΔL时,F/S叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量。应力与应变的比叫弹性模量。ΔL是微小变化量。杨氏模量(Young's modulus),又称拉伸模量(tensile modulus)是弹性模量(elastic modulus or modulus of elasticity)中最常见的一种。杨氏模量衡量的是一个各向同性弹性体的刚度(stiffness),定义为在胡克定律适用的范围内,单轴应力和单轴形变之间的比。与弹性模量是包含关系,除了杨氏模量以外,弹性模量还包括体积模量(bulk modulus)和剪切模量(shear modulus)等。Young's modulus E, shear modulus G, bulk modulus K, 和Poisson's ratio ν 之间可以进行换算,公式为: E=2G(1+v)=3K(1-2v). 表达式E = σ / ε 定义: 杨氏模量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨(ThomasYoung,1773-1829)所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 杨氏弹性模量是选定机械零件材料的依据之一,是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。 定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。 意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小 说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为N/m2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。 拉伸试验中得到的屈服极限бS和强度极限бb,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料塑型变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单位应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:EA0 式中A0为零件的横截面积。 由上式可见,要想提高零件的刚度EA0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此, 构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。

杨氏模量数据表格及数据处理要求

杨氏模量测定(横梁弯曲法) 一、实验目的 1.学会用横梁弯曲法测定金属材料的杨氏模量; 2.学会读数显微镜的使用方法,掌握测量微小长度变化的方法; 二、实验仪器及用具 FD-YZ-MT杨氏模量测试仪1套JC—10读数显微镜米尺游标卡尺千分尺待测矩形金属条 三、实验原理 这部分内容请同学们按照实验报告写作要求来写 四、实验步骤(供参考) (1)将矩形待测材料安放在仪器的刀口上,套上铜刀口(下端挂一砝码盘)并使其刀刃恰 好在仪器两刀口的中间。 (2)调节显微镜的目镜,看清楚镜简内的叉丝.松开显微镜的底座并使镜筒轴线正对着铜 刀上的基线,前后移动底座,直到从镜中看清楚铜刀基线,锁定底座和升降杆;转动读数显微镜的镜筒使得目镜中看到直尺方向与竖直方向一致,读数显微镜的手轮朝上,锁紧读数显微镜镜筒,转动手轮移动十字叉丝与基线像完全重合,记下读数.(3)在砝码盘上顺序地加法码.共加7次,每次砝码的质量为10 g,同时,每次转动显微 镜的手轮,使得十字叉丝水平线与目镜中基线像重合,记下相应读数. (4)由梁上每取下一片砝码,仿照步骤(3)记下相应的读数. (5)测出仪器两刀口间的距离l,测量1—3次,再测出待测样品的厚度h和宽度a,各测 量6次,记录下相应的测量结果. (6)实验完毕整理好实验仪器 (7)利用逐差法求出对应10g的弛垂度λ ?,代入表达式(1)计算杨氏模量并求出其测量不确定度。 注意事项: 1.从初始读数到增加每一片砝码,转动读数显微镜的手轮使得叉丝与基线像重合过 程中叉丝移动方向要保持一致 2.整个测量过程确保读数显微镜或者铜刀口位置不发生移动,因此调节好读数显微 镜一定锁紧相应部位以免测量产生转动,增加砝码或减少砝码时要谨慎切莫碰动 铜刀口的位置。倘若发生了它们的位置有一个发生了变化,就必须从头开始测量。 3.使用千分尺和游标卡尺之前先记下相应的零点读数;再则,使用千分尺测量样品 厚度时应注意测量杆与固定砧别卡得太紧以免样品发生形变,使用游标卡尺测量 样品宽度时内量爪也别卡得太紧。 五、数据表格 表1 待测样品及支架两刀口距离测量 支架两刀口距离d度为:cm 千分尺零点读数:mm

传统的杨氏弹性模量实验报告

传统的杨氏弹性模量实验报告

————————————————————————————————作者: ————————————————————————————————日期:

杨氏弹性模量的测定 实验人: 杨氏弹性模量是材料弹性性质的一个主要特征量.本实验通过对钢丝杨氏弹性模量的测量,学习一种测量长度微小变化的方法:光杠杆镜尺法. [目的] 1.测定金属丝的杨氏弹性模量. 2.掌握光杠杆镜尺法测定长度微小变化的原理,学会具体的测量方法. 3.学习处理实验数据的两种方法:图解法和逐差法. [原理] 1.金属丝受外拉力作用,会有伸长,且遵从虎克定律,有L L S mg Y ?= 其中,Y:杨氏弹性模量 mg:外力 S :金属丝横截面积 L:金属丝长度 △L:金属丝伸长量 2.光杠杆镜尺法测微原理 如图1,该系统利用镜子放大微小变化,从而达到测微效果.结合虎克定律及光杠杆镜尺法,可得杨氏弹性模量为 图1. 拉伸法测量杨氏弹性模量原理图 标尺 l m sk LDg Y ??= 2

其中,L:金属丝原长 D:镜面到标尺的垂直距离 S:金属丝截面积 K:光杠杆前足到两后足连线的垂直距离 m ?:单个砝码质量 l ?:加/减单个砝码时,标尺读数变化量 LDg SK 均为常量,l m ??/由图解法和逐差法求出 [仪器] 杨氏模量测定仪(如图M-4-3),调节方法如下: 1.调节光杠杆与望远镜在同一高度,光杠杆镜面尽可能铅直. 2.在望远镜外侧寻找光杠杆镜面上标尺的象(如看不到,应调节镜面方位和移动测定仪的位置) 3.移动望远镜,使其缺口与准星大致对准标尺的像. 4.调节望远镜目镜,使观察到的十字叉丝清晰. 5.调节望远镜调焦手轮,先观察到镜子,再观察到标尺,使观察到的标尺读数与十字叉丝均清晰而无视差. [实验步骤] 1.调节测定仪,使支架铅直. 2.在金属丝下端先挂一负载(如2千克),使金属丝完全拉直,此负载为初始负载,不计入作用力内. 3.用带有卡具的米尺量出金属丝长度L. 4.在不同位置,用螺旋测微计测10次金属丝直径d,取平均值. 5.安装光杠杆,调节望远镜,记录望远镜读数x 0,逐渐增加砝码到9×0.500kg,每次增加0.500kg ,记录望远镜读数x i ’,再逐渐减少砝码,记录望远镜读数,则x i =0.5(x i’+ x i ’’) 6.用钢皮尺测量光杠杆镜面到标尺的距离D 7.用游标卡尺测量光杠杆前足到后两足连线的垂直长度K . [注意事项]

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方 法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: 故:)2(D b l L = ?,即是)2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口 (3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高 度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

动态法测量杨氏弹性模量

动态法测量杨氏弹性模量 郑新飞 杨氏模量是固体材料在弹性形变范围内正应力与相应正应变(当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S 叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量)的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。杨氏模量的测量是物理学基本测量之一,属于力学的范围。根据不同的测量对象,测量杨式模量有很多种方法,可分为静态法、动态法、波传播法三类。 一、实验目的 1、理解动态法测量杨氏模量的基本原理。 2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。 4、培养综合运用知识和使用常用实验仪器的能力。 二、实验仪器 1、传感器I(激振):把电信号转变成机械振动。 2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。

3、传感器II (拾振):机械振动又转变成电信号。 4、示波器:观察传感器II 转化的电信号大小。 三、实验原理 理论上可以得出用动态悬挂法测定金属材料的杨氏模量,为 2436067.1f d m l E (1) 式中l 为棒长,d 为棒的直径,m 为棒的质量。如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。 四、实验内容 1、测定试样的长度l 、直径d 和质量m 。每个物理量各测六次,列表记录。

2、在室温下不锈钢和铜的杨氏模量分别为211102m N ?和 211102.1m N ?,先由公式(1)估算出共振频率f ,以便寻找共振点。 3、把试样棒用细钢丝挂在测试台上,试样棒的位置约距离端面l 224.0和l 776.0处,悬挂时尽量避开这两个位置。 4、把2-YM 型信号发生器的输出与2-YM 型测试台的输入相连,测试台的输出与放大器的输入相接,放大器的输出与示波器的1CH (或2CH )的输入相接。 5、把示波器触发信号选择开关置于“内置”,1CH 增益置于最小档,极性置于“AC ”,X-Y 旋钮弹起。 6、打开示波器,把2-YM 型信号发生器的频率调至估算得出的频率附近,调节示波器触发电平旋钮,直至示波屏上出现稳定的正弦波形。 7、因试样共振状态的建立需要有一个过程,且共振峰十分尖锐,在共振点附近调节信号频率时,必须十分缓慢地进行,直至示波器示波屏上出现最大的信号。 8、记下室温下的共振频率f ,求出材料的杨氏模量E 。 9、本实验用铜棒和钢棒各做一次。 注意事项: (1)千万不能用力拉悬丝,否则会损坏膜片或换能器。挂试样或移动悬丝位置时,应轻放轻动,以免对悬丝施加冲击力。 (2)换能器由厚度为为0.1~0.3mm 的电压晶片用胶粘在0.1mm 左右的黄铜片上构成,故极其脆弱。测定时一定要轻拿轻放,不能用力,也不能敲打。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

2 用拉伸法测金属丝的杨氏弹性模量 一、 实验目的 1. 学会用光杠杆法测量杨氏弹性模量; 2. 掌握光杠杆法测量微小伸长量的原理; 3. 学会用逐差法处理实验数据; 4. 学会不确定的计算方法,结果的正确表达; 5. 学会实验报告的正确书写。 二、 实验仪器 杨氏弹性模量测量仪 ( 型号见仪器上 )(包括望远镜、测量架、光杠杆、标尺、砝 码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、 实验原理 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。 本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体 能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度 方向施力F 后,物体的伸长 L ,则在金属丝的弹性限度内,有: L 我们把E 称为杨氏弹性模量。 如上图: E = S L L x n tg L = 2x D n n = n - n )

4 四、 实验内容 < 一> 仪器调整 1. 杨氏弹性模量测定仪底座调节水平; 2. 平面镜镜面放置与测定仪平面垂直; 3. 将望远镜放置在平面镜正前方 1.5-2.0m 左右位置上; 4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、 准 星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜, 然后继续调节物镜焦距并能看到尺子清晰的像; 6. n 0 一般要求调节到零刻度。 <二>测量 7. 计下无挂物时刻度尺的读数n 0 ; 8. 依次挂上1kg 的砝码,七次,计下n 1,n 2,n 3,n 4,n 5,n 6,n 7 ; 9. 依次取下1kg 的砝码,七次,计下 n 1',n 2',n 3',n 4',n 5 ,n 6',n 7'; 10. 用米尺测量出金属丝的长度 L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处 理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是 不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: (n 4-n 0)+(n 5-n 1)+(n 6-n 2)+(n 7 -n 3) 五、 实验数据记录处理 4 8 FLD x d 2 x n 2D 3. 注:上式中的 n 为增重4kg 的金属丝的伸长量。

杨氏弹性模量

几种不同的方法测杨氏弹性模量 卢一鸣(05110538) (东南大学,土木工程学院,南京211189) 摘要:介绍了杨氏弹性模量几种不同的测量方法,有传统的拉伸法、改进过的动力学法和方便的霍尔传感器测量法。 关键词:杨氏弹性模量;拉伸;动力学;霍尔传感器。 Several methods of measuring Young's modulus Lu Yi Ming ((Department of Civil Engineering,South East University ,Nanjing 05110538) Abstract:We introduce several way to measure Young's modulus.For example,stretching method, Kinetic method and Hall sensor method Key words: Young's modulus;stretch;kinetics; Hall sensor. 一、杨氏弹性模量的定义 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 二、目前通用的测量方法 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。

传统的杨氏弹性模量实验报告

氏弹性模量的测定 实验人: 氏弹性模量是材料弹性性质的一个主要特征量.本实验通过对钢丝氏弹性模量的测量,学习一种测量长度微小变化的方法:光杠杆镜尺法. [目的] 1. 测定金属丝的氏弹性模量. 2. 掌握光杠杆镜尺法测定长度微小变化的原理,学会具体的测量方法. 3. 学习处理实验数据的两种方法:图解法和逐差法. [原理] 1. 金属丝受外拉力作用,会有伸长,且遵从虎克定律,有L L S mg Y ?= 其中,Y:氏弹性模量 mg:外力 S:金属丝横截面积 L:金属丝长度 △L:金属丝伸长量 2. 光杠杆镜尺法测微原理 如图1,该系统利用镜子放大微小变化,从而达到测微效果.结合虎克定律及光杠杆镜尺法,可得氏弹性模量为 图1. 拉伸法测量杨氏弹性模量原理图 标尺 l m sk LDg Y ??= 2

其中,L:金属丝原长 D:镜面到标尺的垂直距离 S:金属丝截面积 K:光杠杆前足到两后足连线的垂直距离 m ?:单个砝码质量 l ?:加/减单个砝码时,标尺读数变化量 LDgSK 均为常量,l m ??/由图解法和逐差法求出 [仪器] 氏模量测定仪(如图M-4-3),调节方法如下: 1. 调节光杠杆与望远镜在同一高度,光杠杆镜面尽可能铅直. 2. 在望远镜外侧寻找光杠杆镜面上标尺的象(如看不到,应调节镜面方位和移动测定仪的位置) 3. 移动望远镜,使其缺口与准星大致对准标尺的像. 4. 调节望远镜目镜,使观察到的十字叉丝清晰. 5. 调节望远镜调焦手轮,先观察到镜子,再观察到标尺,使观察到的标尺读数与十字叉丝均清晰而无视差. [实验步骤] 1. 调节测定仪,使支架铅直. 2. 在金属丝下端先挂一负载(如2千克),使金属丝完全拉直,此负载为初始负载,不计入作用力. 3. 用带有卡具的米尺量出金属丝长度L. 4. 在不同位置,用螺旋测微计测10次金属丝直径d,取平均值. 5. 安装光杠杆,调节望远镜,记录望远镜读数x 0,逐渐增加砝码到9×0.500kg,每次增加0.500kg,记录望远镜读数x i ’,再逐渐减少砝码,记录望远镜读数,则x i =0.5(x i ’+ x i ’’) 6. 用钢皮尺测量光杠杆镜面到标尺的距离D 7. 用游标卡尺测量光杠杆前足到后两足连线的垂直长度K. [注意事项] 1. 调节望远镜时,注意消除视差,即要求标尺读数相对十字叉丝无相对位移.

杨氏模量实验报告

钢丝的杨氏模量 【预习重点】 (1)杨氏模量的定义。 (2)利用光杠杆测量微小长度变化的原理和方法。 (3)用逐差法和作图法处理实验数据的方法。 【仪器】 杨氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。 【原理】 1)杨氏模量 物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。在弹性形变范围内,按照胡克(HookeRobert1635—1703)定律,物体内部的应力正比于应变,其比值 (5—1) 称为杨氏模量。 实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。从微观结构考虑,杨氏模量是一个表征原子间结合力大小的物理参量。 2)用静态拉伸法测金属丝的杨氏模量 杨氏模量测量有静态法和动态法之分。动态法是基于振动的方法,静态法是对试样直接加力,测量形变。动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。静态法原理直观,设备简单。 用静态拉伸法测金属丝的杨氏模量,是使用如图5—1所示杨氏模量仪。在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个支架受力后变形极小,可以忽略。待测样品是一根粗细均匀的钢丝。钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B夹紧并穿过平台C的中心孔,使钢丝自由悬挂。通过调节三角底座螺丝,使整个支架铅直。下卡头在平台C的中心孔内,其周围缝隙均匀而不与孔边摩擦。圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。钢丝的伸长量δL是很微小的,本实验采用光杠杆法测量。 3)光杠杆

杨氏弹性模量测量

杨氏弹性模量测量 【实验目的】 1、学习光杠杆原理及使用光杠杆测量微小长度变化时的调节方法及测量方法。 2、学习使用逐差法处理数据 3、用拉伸法测定钢丝的杨氏弹性模量。 【实验原理】 1.胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为范性形变。 协强:单位面积上所受到的力(F/S)。 协变是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 胡克定律:在物体的弹性限度内,胁强于胁变成正比,其比例系数称为杨氏模量(记为Y)。用公式表达为: (1) Y在数值上等于产生单位胁变时的胁强。它的单位是与胁强的单位相同。杨氏弹性模量是材料的属性,与外力及物体的形状无关。本试验主要测量的是钢丝的杨氏弹性模量。 2.光杠杆镜尺法测量微小长度的变化

在(1)式中,在外力的F 的拉伸下,钢丝的伸长量DL 是很小的量。用一般的的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。 图 光杠杆是一块平面镜直立的装在一个三足底板上。三个足尖f 1,f 2,f 3构成一个等腰三角形。f 1,f 2为等腰三角形的底边。f 3到这底边的垂直距离(即距离三角形底边上的高)为光杠杆常数,记为b 。如果f 1,f 2在一个平台上,而f 3下降DL ,那么平面镜将绕f 1,f 2转动q 。 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中呈像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为r 0。当f 3 下降DL 时,平面镜将绕f 1,f 2转q 角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为r 处。由于平面镜转动q 角,进入望远镜的光线旋转2q 角。从图中看出望远镜中标尺刻度的变化a 1 = r 1 – r 0。

10(杨氏模量)讲解

杨氏模量的测定 概述 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 杨氏弹性模量是选定机械零件材料的依据之一是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。 【实验目的】 1、学会测量杨氏模量的一种方法; 2、掌握用光杠杆法测量微小长度变化的原理; 3、学习用逐差法处理实验数据。 【实验仪器及装置】 杨氏模量测定仪、光杠杆、尺读望远镜、螺旋测微计(25mm 、0.01mm )、直尺、钢卷尺 杨氏模量测定仪 底座 砝码 水平调节螺钉 平台 钢丝 上夹具 尺读望远镜 望远镜 支架 标尺 望远镜 钢卷尺 直尺 前足 后足 镜面M 光杆杆

【实验原理】 1、静态法测杨氏模量 一根均匀的金属丝或棒,设其长度为L ,截面积为S,在受到沿长度方向的外力F 的作用下伸长L ?。根据胡克定律可知,在材料弹性范围内,其相对伸长量L L /?(应变)与外力造成的单位面积上受力/F S (应力)成正比,两者的比值 L L S F Y //?= (1) 称为该金属的弹性模量,也称杨氏模量,它的单位为2/N m (牛顿/平方米)。 实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量。设金属丝的直径为d ,则24 1 d S π=,杨氏模量可表示为: 2 4FL Y d L π= ? (2) (2)式表明:在长度L 、直径d 和外力F 相同的情况下,杨氏模量大的金属丝的伸长量较小,而一般金属材料的杨氏模量均达到211/10m N 的数量级,所以当2/FL d 的比值不太大时,绝对伸长量L ?就很小,用通常的测量仪(游标卡尺、螺旋测微器等)就难以测量。实验中可采用光学放大法将微小长度转换成其它量测量,用一种专门设计的测量装置——光杠杆来进行测量。 2、用光杠杆测微小长度L ? 微小长度L ?测量,需要光杠杆与望远镜标尺配合使用.如上图所示,从望远镜标尺R 发 0R 1R 2α α L ? D b α 金属丝 砝码 金属丝夹 图1 光杠杆的测量原理光

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)电子版本

大学物理实验-拉伸法测钢丝的杨氏模量(已 批阅)

实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85 实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。在数据处理 中,掌握逐差法和作图法两种数据处理的方法 实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直 接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光 线转过2θ,而且有: D b =≈θθ22tan 故:) 2(D b l L =?,即是) 2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体 重合。

(2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表 面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面 (1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜 处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上 的读数r i ,然后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值 i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=, 262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为

杨氏弹性模量

金属丝拉伸变形 图 3.1.1 杨氏模量测量仪 图3.1.2 杨氏弹性模量的测量 【实验目的】 (1)用拉伸法测量金属丝的杨氏弹性模量。 (2)掌握用光杠杆测量微小长度的原理及方法。 (3)学会用逐差法处理实验数据和不确定度的计算。 【实验原理】 物体在外力的作用下发生形变,若撤走外力后形变消失,即物体恢复原状,这种形变叫做弹性形变,当外力超过某一限度,撤除外力后,物体不能恢复原状而留下剩余形变称为塑性形变,产生塑性形变的最小限度叫弹性极限;当外力进一步增大到某一点时,物体会突然发生很大的形变,则该点称为屈服点,超过屈服点后,该物体就会发生断裂。在物体的弹性范围内,产生一定的形变所需应力与应变(相对形 变)之比称为弹性模量。如果物体是柱形或条形,则(由拉 力或压力所导致)沿纵向的弹性模量叫杨氏弹性模量。 如图3.1.1所示,设一粗细均匀的金属丝长度为L ,横 截面面积为S ,将其上端固定,下端悬挂砝码,金属丝受砝 码重力F 的作用而发生形变,伸长量为 L ,F /S 是金属丝截面上 单位面积所受的作用力,叫做应力,而 L /L 是金属丝单位长度的 相对形变,叫做应变,由胡克定律得:在弹性形变范围内,物体所 受的应力F/S 与应变△L/L 成正比,即 F L E S L ?= (3.1.1) 其比例系数 //F S E L L =? (3.1.2) 称为杨氏弹性模量,简称杨氏模量。式中各量的单位均用SI 单位时,E 的单位为帕斯卡(即 Pa ,1 Pa =1 N/m 2)。杨氏模量是表征物体(材料)性质的一个参量,与物体的几何尺寸以及 外力大小无关,对一定材料而言,E 是一个常数,它仅取决于材料的性质。杨氏模量的大小标志了材料的刚性。 【实验仪器简介】 1. 杨氏模量仪 杨氏模量仪如图3.1.2所示。三脚底座上装有两个 立柱和三个调整螺丝(调节调整螺丝可使钢丝铅直), 立柱的上端装有横梁,横梁中间小孔中有个上夹头A , 用来夹紧金属丝L 的上端。立柱的中部有一个可以沿立 柱上下移动的平台C ,用来承托光杠杆M 。平台上有一

动态法测杨氏模量实验报告

动态法测量杨氏模量 一、 实验目的 1. 理解动态法测量杨氏模量的基本原理。 2. 掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3. 了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。学会用示波器观 察判断样品共振的方法。 4. 培养综合运用知识和使用常用实验仪器的能力。 二、 实验原理: 在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。 根据杆的横振动方程式 02 244=??+??t y EJ S x y ρ (1) 式中ρ为杆的密度,S 为杆的截面积,?= s dS y J 2 称为惯量矩(取决于截面的形状),E 即为杨氏模量。 如图1所示,长度L 远远大于直径d (L >>d )的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为 02244=??+??t EJ y S x y ρ (1) 棒的轴线沿x 方向,式中y 为棒上距左端x 处截面的y 方向位 移,E 为杨氏模量,单位为Pa 或N/m 2;ρ为材料密度;S 为 截面积;J 为某一截面的转动惯量,??=s ds y J 2。 横振动方程的边界条件为:棒的两端(x =0、L )是自由端,端点既不受正应力也不受切向力。用分离变量法求解方程(1),令)()(),(t T x X t x y =,则有 2 24411dt T d T EJ S dx X d X ?-=ρ (2) 由于等式两边分别是两个变量x 和t 的函数,所以只有当等式两边都等于同一个常数时等式才成立。假设此常数为K 4 ,则可得到下列两个方程 044 4=-X K dx X d (3) 0422=+T S EJ K dt T d ρ (4) 如果棒中每点都作简谐振动,则上述两方程的通解分别为 图1 细长棒的弯曲振动

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器 (0-150mm,0.01) 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L,截面积为S,沿长度方向施

力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ???????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】

<一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上; 4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2 以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0 n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0 ‘ ,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微

钢丝杨氏模量的测定-实验报告

钢丝氏模量的测定 创建人:系统管理员 总分:100 实验目的 本实验采用拉伸法测量氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 实验仪器 MYC-1型金属丝氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 实验原理 在胡克定律成立的围,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,L/l tan ?=≈θθ,其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:

实验容 1.调节仪器 (1)调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽,支脚放在管制器的槽,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数i r ,然后再将砝码逐次减去,记下对应的读数' i r ,取两组对应数据的平均值i r 。 (3)用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3.数据处理 (1)逐差法 (2)作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2(6) 其中)/(2SlM DL M =,在一定的实验条件下,M 是一个常量,若以i r 为纵坐标,i F 为横坐标作图应得一直线,其斜率为M 。由图上得到M 的数据后可由式(7)计算氏模量 )/(2SlM DL E = (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

相关文档
相关文档 最新文档