文档库 最新最全的文档下载
当前位置:文档库 › 图灵斑图动力学_张春霞

图灵斑图动力学_张春霞

图灵斑图动力学_张春霞
图灵斑图动力学_张春霞

系统动力学与动态系统描述-流图

系统动力学与动态系统描述 李旭教授 复旦大学管理学院

因果关系图和流图 ?因果关系图: –用因果关系图分析问题的意义 –因果链与因果回路 –因果关系图 –因果关系图举例 ?流图: –流图的概念和表达的内容 –流图中的变量和符号 –建立流图时应该遵循的原则 –流图举例 –区分系统中各种性质的变量

流图的概念和表达的内容 ?概念: –流图是在因果关系图的基础上,进一步区分变量的性质,用更加直观的符号进一步刻画系统运行的规律和系统中决策所遵循的规律。为定量分析打基础。 ?表达的内容: –反映了系统要素之间的逻辑关系; –明确了系统中各种变量的性质; –刻画了系统的反馈与控制。

存量和流量 ?存量和流量是两种最基本的变量: –存量是积累,表征系统的状态并为决策和行动提供信 息基础。 –流量则反映了存量的时间变化,流入和流出之间的差 异随着时间累积而产生存量。 –存量例:制造企业的库存是其仓库中产品的存量;一 个企业雇佣的员工数是一个存量;你银行账户的余额 是一个存量;存量通过入流和出流所改变。 –流量例:企业的库存由生产量所增加、由发货量所减 少;员工人数因雇佣而增加并因辞职、退休和解雇所减少;你的银行余额因存款而增加,随支出而减少。

流图中的变量和符号?系统中变量的性质及其描述:–水平变量(Level): –速率变量(Rate): –辅助变量(Auxiliary) –函数变量(Function) –常量(Constant):

流图中使用的流线及其它 ?流图中流线的性质及其描述: –守衡流线(物质流线):改变所流经变量的数量。 守衡流线 –非守衡流线(信息流线):只是获取或提供相关联变量的当前信息,不改变其数值。 非守衡流线 ?“源点”和“汇点”: 源点汇点

图灵不稳定性及斑图形成

Turing 不稳定性及斑图形成 摘要:在这篇文中,我们借助于浮游植物-浮游动物的数学模型来研究Turing 不稳定是如何产生的.首先介绍了Turing 不稳定产生的内在机理,给出了详细的过程,并且最终得出了产生Turing 不稳定的参数空间.然后在结合含有扩散项的浮游植物、浮游动物的捕食模型来研究该模型是否能够产生Turing 不稳定现象. 关键词:Turing 不稳定,捕食模型 1.Turing 不稳定性 1952年Turing 在文中《The chemical basis of morphogenesis 》一文中提出:如果参加相互反应的化学物质自身不存在扩散作用,经过一段时间反应后,它们会达到一定的平衡状态,即这些化学物质的浓度将会变得均匀. 但如果这些化学物质具有扩散作用的话,那么在某种条件下,这种均匀的平衡态将会被打破,变成不均匀的平衡态,这边是Turing 不稳定现象. 换句话说在同一个正常数平衡解处的常微风模型是稳定的,但对于加入扩散作用的偏微分方程模型却是不稳定的. 本文借助于数学模型来说明发生Turing 不稳定性的条件. 海洋中存在着多种浮游植物和浮游动物,它们的关系非常的复杂,这里我们仅分别考虑一种浮游植物、一种浮游动物,并且这种浮游动物主要以这种浮游植物为食. 浮游植物会产生毒素,可以杀死一定量的浮游动物,进而来保护自己免受捕食.并且还考虑两种浮游生物在二维平面上的空间分布,从而引入其含有Laplacian 算子的扩散项。 Spatiotemporal dynamics toxic-phytoplankton-zooplankton model : 1P P aPZ rP t K P m Z bPZ cPZ dZ t P m P m ???=-- ??+???=--?++(1) 这里的参数均为正常数,其中()()=,,,,P P x y t Q x y t =,分别是能够产生毒素的浮游植物、浮游动物在t 时刻(),x y 处的密度,并且浮游植物产生的毒素可以杀死浮游动物且满足第二类功能性反应函数. 浮游植物服从Logistic 的增长方式,r

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

科学杂志文章-图灵斑图动力学(欧阳颀)

科学杂志文章! 图灵斑图动力学 张春霞 欧阳颀 斑图(pattern)是在空间或时间上具有某种规律性的非均匀宏观结构。它普遍存在于自然界中,形形色色的斑图结构,构成了多姿多彩、千媚百态的世界。因而了解斑图形成的原因及机制,对于揭开自然界形成之谜具有重大意义。 从热力学角度观察,自然界的斑图可分为两类:一类是存在于热力学平衡态条件下的斑图,如无机化学中的晶体结构、有机聚合物中自组织形成的斑图;另一类是在离开热力学平衡态条件下产生的斑图,如天上的条状云、水面上的波浪、动物体表面的花纹等。对于前一类斑图,对它们的形成机理人们已经有了比较系统、深入的了解,即用平衡态热力学和统计物理原理来解释。而对于后一类斑图,由于其形成总是在远离热力学平衡态的情况下发生的,热力学原理不再适用,人们需要从动力学角度对这类斑图的形成原因及规律进行探讨。 最近发展起来的非线性科学的主要分支之一斑图动力学,就是以这类斑图的形成为研究对象的科学。本文主要介绍其中的一大类——图灵斑图的有关情况。 图 灵 斑 图 1952年,被后人称为计算机科学之父的著名英国数学家图灵(A. M.Turing)把他的目光转向生物学领域。他在著名论文“形态形成的化学基础”中[1],用一个反应扩散模型成功地说明了某些生物体表面所显示的图纹(如斑马身上的斑图)是怎样产生的。 可以设想,在生物胚胎发育的某个阶段,生物体内某些被称为“形态子”的生物大分子与其他反应物发生生物化学反应,同时在体内随机扩散。图灵的研究表明,在适当的条件下,这些原来浓度分布均匀的“形态子”会在空间自发地组织成一些周期性的结构,也就是说,“形态子”在空间分布变得不均匀。而正是这种“形态子”分布的不均匀性引起了生物体表面不同花纹的形成。 在图灵提出的反应扩散体系中,由体系内在的反应扩散特性所引起的空间均匀态失稳导致了对称性破缺(空间平移对称破缺),从而使体系自组织出一些空间定态图纹。这个过程及其所形成的图纹分别被后人称为图灵失稳(图灵分岔)和图灵斑图。图灵在他的文章中表达了斑图动力学过程的最重要的特征,即由于体系内部决定的、自发的对称性破缺引起体系本身重新自组织,形成比以前对称性弱的空间斑图。 熟悉近代物理理论的人知道,对称性原则是构造宇宙的最根本要素,对称性破缺过程是宇宙之所以演化到现在所观察到的形式的根本原因。那么,在生物体系中对称性破缺扮演怎样的角色呢?笔者认为,它仍是我们了解一个受精卵细胞如何发育成一个生命有机体的关键。这种观点并不与现代分子遗传学相矛盾。如果估算一下一个受精卵正常发育为一个生命体所需要的信息量,我们会发现这个数字远大于受精卵中DNA所能承载的信息量,因此这就需要基因之间、由基因规定的蛋白质之间,及基因与蛋白质之间存在一些非线性耦合。而图灵分岔正是由反应扩散的一种特殊耦合所引发的。 图灵关于图灵分岔及图灵斑图的文章,在很长一个时期没有引起人们的重视。原因主要有两个:第一,生物学界没有发现称之为“形态子”的这种物质(人们迄今还没有找到“形态子”存在的直接证据);第二,在图灵提出的反应扩散模型中,图灵斑图的解出现负值,而这种负浓度是化学家绝对不能接受的。 图灵斑图动力学模型 从1960年代末起,以1977年诺贝尔化学奖获得者普里戈金(I. Prigogine)为首的比利时布鲁塞尔热力学小组,从热力学角度向图灵斑图问题接近[2]。他们证明,在远离热力学平衡态的条件下,体系的自组织行为是可能的。这种自组织形成的斑图在后来被称为“耗散结构”。普里戈金的理论揭示了自然界不同系统中斑图形成的共性。从此,图灵分岔及图灵斑图的研究开始引起人们的重视。同时,普里戈金等还提出了一个简单的、不违反任何化学反应动力学常识的反应模型——布鲁塞尔子,以表明图灵斑图的确有可能存在。 从对布鲁塞尔子产生图灵斑图过程的分析中,人们总结出体系发生自组织过程的几个必要条件。第一,体系必须远离热力学平衡态。热力学第二定律告诉我们,在一个封闭系统中,体系总是自发地向热力学平衡态移动,而该系统的热力学平衡态一定是均匀态。因此,能够支持图灵斑图存在的反应扩散系统一定是一个开放系统,它必须与外界有物质与能量的交换。第二,反应体系中必须存在一个自催化过程,即有自催化机制。换句话说,反应体系中需要存在着一种称之为“活化子”的反应物,它的存在加速其本身的反应。第三,反应体系中必须存在一种禁阻机制,它的作用与自催化机制相反。具有禁阻效应的反应物叫“禁阻子”。第四,体系必须存在扩散过程。这最后一个条件看起来有些不合常理,从日常生活经验来看,扩散过程会抹去一切浓度上的空间不均匀性,但它的确是图灵斑图产生所必需的条件,甚至可以说图灵失稳是扩散引起的失稳。 图灵斑图产生的“秘密”在于,一个非线性反应动力学过程(如自催化、自禁阻过程)与一种特殊的扩散过程的耦合。这个特殊的扩散过程,要求系统中活化子的扩散速度远小于禁阻子的扩散速度,也就是说活化子的扩散系数远小于禁阻子的扩散系数。 可以用一个简单的模型来说明一维体系中图灵斑图形成的过程。但在二维体系中情况马上会变得复杂起来。由于体系本身具有空间旋转不变性,当图灵失稳时体系可能有无穷多个绝对值相同而方向不同的波矢。从表面上看,处理此类问题不会有太大希望,只能预料到二维体系的图灵斑图可能是杂乱无章的,只有斑图波矢的绝对值可以被确定。但实际上并非如此。原因是当图灵斑图生长到一定程度时,体系内不同波矢所代表的斑图之间的非线性耦合变得重要起来。非线性耦合的一个重要结果是体系的斑图动力学行为开始由斑图选择机制所决定。 斑图选择理论的精髓是空间共振原则,推导此原则需要用到一些非线性理论知识[3]。这里不介绍空间共振原则的推导过程,而只给出它的结论,即在高维空间(二维、三维)中,体系只选择那些不重叠而又可以完全覆盖整个平面(或空间)的斑图。对于一个二维系统,体系

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

非平衡非线性化学动力学 侯中怀

第12章非平衡非线性化学动力学 侯中怀 hzhlj@https://www.wendangku.net/doc/0117138055.html, 中国科学技术大学化学物理系合肥 230026 非线性化学动力学的研究对象,是化学体系在远离平衡条件下,由体系中非线性过程的作用,自发形成的宏观尺度上的各种复杂的时空有序结构,包括多重定态,化学振荡,图灵斑图,化学波和化学混沌等[1-3]。这些现象都是非平衡条件下大量分子的集体行为,因此非线性化学动力学的研究,属于物理化学和非平衡统计物理的交叉领域。 随着20世纪50年代BZ化学反应体系中各类非线性化学现象的实验发现,非线性化学动力学的研究便成为物理化学研究中的一个新的生长点。20世纪70年代,以普里高津(Prigogine)为首的比利时布鲁塞尔学派提出了著名的“耗散结构”理论[4,5],奠定了非线性化学现象的热力学基础。过去20年,计算机技术和非线性科学的发展,使得人们能从理论上再现实验上观测到的各种非线性现象,以深入了解非线性化学现象的动力学机制,从而进一步推动非线性化学动力学在实际体系中的应用。近年来,随着化学研究的对象向生命和纳米等复杂体系的深入,非平衡、非线性和复杂性之间的相互作用,目前是非线性化学动力学研究的一个主要发展方向。在生命和表面催化等体系中,实验上已发现大量的非线性动力学行为,如细胞体系内的钙振荡及钙波[6],生理时钟振荡[7],单晶表面催化过程中的化学振荡、螺旋波、化学混沌等[8,9]。研究表明,这些非线性化学动力学行为,对生命体系的功能和催化过程的活性与选择性等,起着非常重要的作用;要深入理解这些作用的机制,必须考虑到实际体系中的各种复杂性因素,包括噪声和无序等随机因素,环境和体系以及体系内部的复杂相互作用等。 本章中,我们将对非线性化学动力学的基本内容和研究进展作一简单概述。为使内容具有相对完整性,第一节主要介绍非线性化学动力学的基本概念和研究方法。在第二节和第三节,将重点介绍近年来复杂体系非线性化学动力学的一些研究结果,主要包括环境噪声、空间和拓扑无序、介观反应体系内涨落对非线性化学动力学的调控作用等。最后,我们进行简单地总结和展望。 §1 非线性化学动力学简介 本节中,我们将对非线性化学动力学的基本概念和理论方法进行简单概括。首先结合表面催化和生命体系的实例,描述几种典型的非线性化学现象,增加感性认识。在后3小节中,将对非线性化学现象的热力学基础、确定性动力学方法和随机动力学方法进行简介。 §1.1 非线性化学现象 1.化学振荡 化学振荡是最典型的非线性化学动力学行为,它指的是化学反应物质的浓度随时间呈周期变化的现象。虽然早在1828年人们就报道了电化学体系中的振荡现象,但直到20世纪70年代,人们一致认为化学振荡现象是违反热力学第二定律的:那时人们的普遍观点是化学反应体系不可能自发形成有序结构。当然我们现在已经知道,在远离平衡的条件下,化学振荡的自发形成是不违反热力学第二定律的。随着20世纪50年代Belousov- Zhabotinsky (BZ)振荡反应体系的发现[10,11],化学振荡现象逐步受到了化学和生物学科工作者的重视。 生命及表面催化体系体系中,有丰富的化学振荡行为。在生命体系中,化学振荡作为信号传递的基本形式,扮演着十分重要的角色。如钙离子振荡信号既调节着细胞内的生命过程,同时又在细胞间传递信息以控制细胞整体的行为[6];生理时钟振荡的分子机制,是基因表达产物蛋白质浓度的振荡[7];神经网络中信号的传递也是以振荡的形式进行[12]。在非均相表面催化体系中,反应速率及产物浓度常常表现出振荡,这种振荡与催化活性及选择性都密切相关。例如,图(1.1a)显示了合成基因振荡网络体系中,基因表达产物蛋白质浓度(用荧光强度来表征)随时间的振荡现象[13];图(1.1b)中给出了10纳米的Pd 金属粒子表面,CO催化氧化产物CO2的浓度随时间的振荡现象[14]。

单摆非线性动力学

单摆的非线性动力学分析 亚兵 (交通大学车辆工程专业,,730070) 摘要:研究单摆的运动,从是否有无阻尼和驱动力方面来分析它们对单摆运动的影响。对于小角度单摆的运动,从单摆的动力学方程入手,借助雅普诺夫一次近似理论,推导出单摆的运动稳定性情况。再借助绘图工具matlab,对小角度和大角度单摆的运动进行仿真,通过改变参数,如阻尼大小、驱动力大小等绘出单摆运动的不同相图,对相图进行分析比较,从验证单摆运动的稳定性情况。关键词:单摆;振动;阻尼;驱动力 Abstract:The vibration of simple pendulum is studied by analyzing whether or not damp and drive force its influence of the simple pendulum. For small angle pendulum motion, pendulum dynamic equation from the start, with an approximate Lyapunov theory of stability of motion is derived pendulum situation. Drawing tools with help from matlab, small angle and wide-angle pendulum motion simulation, by changing the parameters, such as damping size, drive size draw simple pendulum of different phase diagram, analysis and comparison of the phase diagram, from the verification the stability of the situation pendulum movement. Key words: simple pendulum; vibration; damp; drive force 1 引言 单摆是一种理想的物理模型[1],单摆作简谐振动(摆角小于5°)时其运动微分方程为线性方程,可以求出其解析解,而当单摆做大幅度摆角运动时,其运动微分方程为非线性方程,我们很难用解析的方法讨论其运动,这个时候可以用MATLAB软件对单摆的运动进行数值求解,并可以模拟不同情况下单摆的运动。 θ=时, 随着摆角的减小,摆球的运动速率将越来越大,而加速度将单调下降,至0 加速度取极小值。本文从动力学的角度详细考察了这一过程中摆球的非线性运,得出了在运动过程中.,t θθθ --的关系。

非线性动力学外语词

非线性动力学 非线性动力学 nonlinear dynamics @M 动态系统 dynamical system SG=]@ 原象 preimage u@p 控制参量 control parameter -"_h7> 霍普夫分岔 Hopf bifurcation 6.k4 倒倍周期分岔 inverse period- doubling bifurca-tion5-;>ZO 全局分岔 global bifurcation Ms6 魔[鬼楼]梯 devil's staircase @h[ 非线性振动 nonlinear vibration B}up< 侵入物 invader -s 锁相 phase- locking I`![! 猎食模型 predator- prey model :y [状]态空间 state space w5O [状]态变量 state variable xg7JU 吕埃勒-塔肯斯道路Ruelle- Takens route 0{ 斯梅尔马蹄 Smale horseshoe Cn/rpJ 混沌 chaos CA!WI| 李-约克定理 Li-Yorke theorem >> 李-约克混沌 Li-Yorke chaos '2; 洛伦茨吸引子 Lorenz attractor ]/9 混沌吸引子 chaotic attractor z KAM环面 KAM torus "I/ 费根鲍姆数 Feigenbaum number {. 费根鲍姆标度律 Feigenbaum scaling !6 KAM定理 Kolmogorov-Arnol'd Moser theorem, KAM theorem q3`勒斯勒尔方程 Rossler equation ?C_R9 混沌运动 chaotic motion z&q|w 费根鲍姆函数方程 Feigenbaum functional equation xS+l1 蝴蝶效应 butterfly effect ;cA 同宿点 homoclinic point bcx 异宿点 heteroclinic point [MH$ 同宿轨道 homoclinic orbit J(y6 异宿轨道 heteroclinic orbit M)PL_ 排斥子 repellor-XI 超混沌 hyperchaos zg 阵发混沌 intermittency chaos }. 内禀随机性 intrinsic stochasticity l 含混吸引子 vague attractor [of Kolmogorov]V AK hBkc 奇怪吸引子 strange attractor :S FPU问题 Fermi-Pasta- Ulam problem, FPU problem #0x 初态敏感性 sensitivity to initial state @ 反应扩散方程 reaction-diffusion equation -}CKy 非线性薛定谔方程 nonlinear Schrodinger equation r,CP}w 逆散射法 inverse scattering method K z/A

在大学物理中适当增加斑图动力学内容的重要性

- 95 - 第25卷第6期 呼伦贝尔学院学报 No.6 V ol.25 2017年12月 Journal of Hulunbeier University Published in December.2017 在大学物理中适当增加斑图动力学内容的重要性 陈绍英 1 袁国勇2 (1.呼伦贝尔学院学报编辑部 内蒙古 海拉尔 021008; 2.河北师范大学物理科学与信息工程学院 河北 石家庄 050016) 摘 要:作为非线性科学研究领域的一个重要分支,斑图动力学是中一直受到广大学者的重视,而螺旋波动力学又是斑图动力学中的重要研究方向。把斑图动力学的核心内容介绍给本科生,可进一步丰富学生的非线性科学知识,加深其对学科交叉重要意义的认识,促进创新能力的培养。 关键词:斑图 螺旋波 交叉学科 中图分类号:O415.6;Q612 文献标识码:A 文章编号:1009-4601(2017)06-0095-07    当前,非线性科学各个研究领域非常活跃,其中斑图(pattern)动力学的研究一直受到专家、学者们的关注。把非线性科学的知识内容融入到本科课堂中已有了很多探索[1-3] ,并且在有些高校中 已取得很好的效果,编写了相应的教材,开设了 相关课程或选修课[4-5] ,但在非线性知识内容介绍 上主要集中在混沌(包括量子混沌)、分形、混沌 控制等方面 [6-9] ,而对和大自然及人们生活紧密相 关的斑图动力学内容介绍的较少。斑图是在空间或时间上具有某种规律性的非均匀宏观结构,许许多多的斑图结构形成了绚丽多彩的大自然。不同的系统在不同的条件下可产生各式各样的斑图,它广泛存在于我们的世界中。如宇宙中的星际分布,连绵起伏的沙丘及微观世界原子、分子的自组织排列。同样,在人们日常生活中斑图也是随处可见的。例如,动物皮毛表面上的斑纹,土地的龟裂,液体受热的对流花样等等,可以说绮丽多彩的各种各样的斑图是自然给予人类最美丽的馈赠,如图1所示。而人类在对这些瑰丽的时空结构充满好奇的同时,也在孜孜不倦地探究着这些时空斑图背后的产生机理和规律。因而了解斑图的产生机制,对于揭开自然界形成之谜有重 要意义。在斑图动力学的研究领域中,螺旋波动力学一直是一个重要的研究方向并取得长足的进展,也是在实践中有重要应用的研究领域,特别是其在医学上对开发新的治疗心脏病方法将具有重要的指导意义。时代发展要求高校物理教育改革不断深化,将新的研究成果引入到本科课程中有助于创新型人才的培养,促进本科教学水平的不断提升。斑图动力学作为一门横向科学,研究的内容学科交叉是它一大特点,涉及到物理学、化学、数学、生物学、医学等多个学科领域。因此,将斑图动力学研究比较成熟的部分内容适当引入大学物理本科课程中有利于学生综合素质的提高。笔者一直关心大学物理教学现代化问题,此前也曾撰文讨论过把混沌理论及混沌控制的思想引入大学物理本科教学中[8] 。国内有很多院校也在此方面做了有益的尝试,在拓展学生知识面,培养学生创新意识方面起到较好的作用。  1. 斑图动力学的历史和研究进展 斑图动力学是非线性科学领域内的一个重要分支,它和孤立子与孤波,时空混沌,元胞自动机,分形结构等非线性问题同样受到研究者的关注。从热力学角度看,自然界的斑图既可存在热力学 收 收稿日期:2017-11-28 作者简介:陈绍英(1964—),男,汉族,呼伦贝尔学院物理与电子信息学院教授,博士。研究方向:非线性理论方面研究。基金项目:内蒙古自治区高等学校科学研究项目(NJZZ14310),河北省高等学校科学技术研究项目(ZD2015080)。

非线性动力学混沌理论方法及其意义_吴彤

非线性动力学混沌 理论方法及其意义 吴 彤 (清华大学 科学技术与社会研究所,北京 100084) 摘 要:本文考察了非线性混沌的各类描述定义,研究了混沌的细致分类,讨论和研究了混沌特性以及判别混沌、寻找混沌征兆的方法,区别了混沌与噪声;对混沌理论的认识论和方法论意义进行了四方面的研究:混沌研究对复杂性研究的非线性方法论的意义,混沌和决定论与可预测性的关系,混沌边缘研究意义,建设和避免混沌的关系。 关键词:非线性;混沌;方法;可预测性 中图分类号:F224.0 文献标识码:A 文章编号:1000-0062(2000)03—0072-08 如果仔细考察人类在自己的生命演化过程中的关注,似乎有两个问题最重要,第一,如何预测未 来,第二,是否能够预测未来,因果关系等问题均在此列。第一个问题是实用性的,而第二个问题则是理论性的,它关系到一种原则和生活的意义。20世纪中叶以后,当气象学家洛伦兹提出“蝴蝶效应”时,人们了解到,就是完全确定性的动力学方程,也仍然会出现随机性演化。那么,如何预测未来呢?预测还可能吗?人们现在更害怕混沌理论打破他们对未来可预测性的幻想。但是这种幻想实在是一种幻象。其实,从休谟起,科学哲学对归纳问题本质的揭示已经对单一的决定论因果观念给出了不可能的回答。有哪一个人知道自己的生命和生命之途将如何走向呢?哪一个生命的道路不是在生命演化过程中逐渐完成的呢?其实,宿命论与线性决定论的联系比与随机论的联系更强。另一方面,也出现了相反的误读和误解。人们以为,混沌理论如果正确,那么世界将完全不可预测。似乎混沌理论助长了悲观主义。其实,混沌理论的出现,一方面揭示了自然界和社会客观存在混 沌,谁都无法避免;另一方面,混沌理论对混沌动力学系统的研究,恰恰帮助人们了解混沌现象,对“混沌”不混沌,才能处事(处世)不惊、不乱。混沌理论在一定意上更支持了决定论,因为它把原来属于随机性的、偶然性的领域,也纳入到决定论的管辖范围内。所以,在一定意义上,混沌理论是预测混沌的,是认识和控制混沌的工具和方法。而且后面我们将看到,混沌强弱不同时,系统演化行为的预测完全是不同的。 一、关于非线性动力学 混沌的各种定义 普通意义上,混沌只是意味着混乱、无秩序,而在非线性动力学系统中,混沌一词则有更精细的十分不同的意义。为了区别,把前一种混沌称为线性平衡态热力学混沌,后一种混沌称为非线性动力学混沌。关于混沌在古代、经典科学的不同含义,以往许多文献讨论的比较充分,这里不再赘述。本文只研究非线性动力学混沌的定义、方法和意义。 收稿日期:2000-02-23 作者简介:吴 彤(1954- ),男,清华大学科学技术与社会研究所教授,硕士.   2000年第3期第15卷 清华大学学报(哲学社会科学版)JOU RNA L O F T SING HUA UN IV ERSIT Y (Philosophy and Social Sciences )   N o .3 2000Vol .15 DOI :10.13613/j .cn ki .qh dz .000757

经济混沌和经济波动的非线性动力学理论

No. C2000015
2000-10
经济混沌和经济波动的 非线性动力学理论
陈平
北大中国经济研究中心 美国得克萨斯大学
普利高津统计力学和复杂系统研究中心 NO.C2000015 2000 年 10 月
1

经济混沌和经济波动的非线性动力学理论
陈平
北大中国经济研究中心 中国北京大学北大中国经济研究中心,100871
Email: pchen@https://www.wendangku.net/doc/0117138055.html,
美国得克萨斯大学 普利高津统计力学和复杂系统研究中心
I.为什么要研究经济混沌
(1.1)什么是决定论混沌? 在研究经济混沌之前,先得了解什么是决定论混沌
(deterministic chaos 简称为混沌)。读者可参考理论物理所的郝柏林 教授编的权威文集: 混沌 II (Hao 1990).
牛顿力学对动力学机制的研究主要基于线性谐振子模型,其主 要的运动特征是产生等幅的周期振荡。周期运动的研究在科学和 工程上获得广泛的应用。分析周期运动的主要方法是频譜分析。
统计物理和信息论对随机过程的研究发展了线性白噪声模型, 其主要的特征是产生振幅无规则,时间序列不相关的无序扰动。对 短程相关的色噪声可以用线性迭加的白噪声信号来描写。例如, 经济学家常用的色噪声模型是线性随机的自回归(AR)模型。分析 随机运动的主要方法是相关分析,噪声运动的研究在工程和经济 学中有重要的应用。
人们一度以为,只有随机过程才能产生不规则运动,但廿十世 纪七、八十年代间对决定论混沌的突破性研究发现:非线性的低
2

非线性转子 动力学

航空发动机非线性转子碰磨研究 XXX (XXXX 机械工程上海200072) 摘要:综述了国内外非线性转子动力学的研究现状,讨论了非线性转子动力学研究中的7个主要问题,并引述了大量相应的国内外文献,包括:非线性转子动力学研究的一般方法;求解非线性转子动力学问题的数值积分方法;大型转子-轴承系统高维非线性动力学问题的降维求解;基于微分流形的动力系统理论方法;转子非线性动力学行为的机理研究和实验研究;高速转子-轴承系统的非线性动力学设计,最后讨论了非线性转子动力学研究中存在的问题及展望。 关键词:非线性;高速转子;数值积分法 The research for Aeroengine nonlinear rotor WANG Qing-long (Shanghai university mechainal engineering 20072 shanghai) Abstract: Reviewed the research status of nonlinear rotor dynamics both at home and abroad, discusses the seven main in the study of nonlinear rotor dynamics. To questions, and cited a large number of relevant literature both at home and abroad, include: common methods of nonlinear rotor dynamics; To solve the non-linear. Rotor dynamics problems of numerical integral method; Rotor - bearing system of large dimension reduction solution for high dimensional nonlinear dynamics; In the theory of differential dynamic system of the manifold method; Rotor nonlinear dynamics behavior of mechanism research and experiment research; High speed rotor shaft. Bearing system of the nonlinear dynamics design, and finally discusses the problems of nonlinear rotor dynamics research and prospects. Key words: nonlinear; High speed rotor; The numerical integral method. 由于旋转机械系统中各种异常振动的存在,常常引发灾难性的事故。过去研究转子-轴承-基础系统大多采用基于线性转子动力学理论。例如传统转子动力学对转子-轴承系统稳定性问题的研究,一般采用8个线性化的刚度与阻尼特性系数的油膜力模型。对于大型旋转机械中存在的油膜力、密封力、不均匀蒸汽间隙力等严重的非线性激励源,由于数学模型不够完善,以致系统中存在的许多由非线性因素引起的多种复杂动力学行为尚没有彻底搞清,不能满足现代工程设计的需要,迫切需要建立转子-轴承系统的非线性动力学理论,揭示系统存在的各种非线性动力学行为,提出转子-轴承系统的非线性动力学设计方法,研究旋转机械中存在的各种实际问题,这对提高旋转机械运行的稳定性、安全性、可靠性具有重要的现实意义和实际工程背景。 随着非线性动力学理论的发展,非线性转子动力学理论和方法也受到了关注,大量的研究成果使转子动力学面貌一新。但现有的非线性动力学理论和方法在解决高维动力系统方面还存在困难,而工程实际中的转子-轴承-基础系统是一个复杂的高维系统,从而吸引了更多的研究者从事这方面的研究,特别是现代非线性动力学理论在转子动力学中的应用,已成为当今国

系统动力学(自己总结)

系统动力学 1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相

系统动力学自己总结)

系统动力学1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

相关文档