文档库 最新最全的文档下载
当前位置:文档库 › 一、几何与函数问题参考答案

一、几何与函数问题参考答案

一、几何与函数问题参考答案
一、几何与函数问题参考答案

几何与函数问题的参考答案

【典型例题】

【例1】(上海市)(1)取AB 中点H ,联结MH ,

M 为DE 的中点,MH BE ∴∥,1

()2

MH BE AD =

+. 又

AB BE ⊥,MH AB ∴⊥.

1

2

ABM S AB MH ∴=

△,得12(0)2y x x =+>;

(2

)由已知得DE =

以线段AB 为直径的圆与以线段DE 为直径的圆外切,

11

22

MH AB DE ∴=

+

,即11(4)222x ?+=+?.

解得43

x =,即线段BE 的长为4

3;

(3)由已知,以A N D ,,为顶点的三角形与BME △相似, 又易证得DAM EBM ∠=∠.

由此可知,另一对对应角相等有两种情况:①ADN BEM ∠=∠;②A

D B B M

E ∠=∠.

①当ADN BEM ∠=∠时,

AD BE ∥,ADN DBE ∴∠=∠.DBE BEM ∴∠=∠.

DB DE ∴=,易得2BE AD =.得8BE =;

②当ADB BME ∠=∠时,

AD BE ∥,ADB DBE ∴∠=∠.

DBE BME ∴∠=∠.又BED MEB ∠=∠,BED MEB ∴△∽△.

DE BE BE EM

=,即2BE EM DE =

,得2

22(x x =+-

解得12x =,210x =-(舍去).即线段BE 的长为2. 综上所述,所求线段BE 的长为8或2.

【例2】(山东青岛)(1)在Rt△ABC 中,

=AB 由题意知:AP = 5-t ,AQ = 2t , 若PQ ∥BC ,则△APQ ∽△ABC , ∴

=AC AQ AB AP ,∴5542t t -=,∴7

10

=t .(2)过点P 作PH ⊥AC 于H . ∵△APH ∽△ABC ,

图①

B

=BC PH AB AP ,∴=3

PH 55t -,∴t PH 533-=,

∴t t t t PH AQ y 35

3

)533(221212+-=-??=??=.

(3)若PQ 把△ABC 周长平分,则AP+AQ=BP+BC+CQ . ∴)24(32)5(t t t t -++=+-, 解得:1=t .

若PQ 把△ABC 面积平分,则ABC APQ S S ??=2

1

, 即-25

3t +3t =3.

∵ t =1代入上面方程不成立,

∴不存在这一时刻t ,使线段PQ 把Rt△ACB 的周长和面积同时平分. (4)过点P 作PM ⊥AC 于M,PN ⊥BC 于N ,

若四边形PQP ′ C 是菱形,那么PQ =PC . ∵PM ⊥AC 于M ,∴QM=CM .

∵PN ⊥BC 于N ,易知△PBN ∽△ABC . ∴

AB

BP

AC PN =, ∴54t PN =, ∴5

4t PN =, ∴54t CM QM ==,

425454=++t t t ,解得:9

10

=t . ∴当9

10

=t 时,四边形PQP ′ C 是菱形.

此时375

33=

-=t PM , 9

854==t CM , 在Rt△PMC 中,9

50581649492

2=+=

+=CM PM PC , ∴菱形PQP ′ C 边长为

9

505

. 【例3】(山东德州)(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .

∴ AM AN AB AC

=,即43x AN

=.

∴ AN =4

3

x .

∴ S =2133

248

MNP AMN S S x x x ??==

??=.(0<x <4) (2)如图(2),设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =

2

1

MN .

B

N

在Rt△ABC 中,BC

=5. 由(1)知 △AMN ∽ △ABC .

∴ AM MN AB BC

=,即45x MN

=.

∴ 5

4MN x =

, ∴ 58OD x =.过M 点作MQ ⊥BC 于Q ,则

MQ OD =在Rt△BMQ 与Rt△BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC

=. ∴ 5

5258324

x

BM x ?=

=,25424AB BM MA x x =+=+=. ∴ x =

49

96

. ∴当x =

49

96

时,⊙O 与直线BC 相切. (3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点. ∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP .

∴ 12AM AO AB AP ==. AM =MB =2.

故以下分两种情况讨论:

① 当0<x ≤2时,2Δ83

x S y PMN ==.

∴ 当x =2时,2332.82

y =

?=最大 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F ∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,

∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .

D 图( 2)

图 ( 4)

P

图 (3)

B

图 (1)

∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .

∴ 2

PEF ABC S PF AB S ????

= ???

.∴ ()2322PEF S x ?=-. MNP PEF y S S ??=-=

()2

22339266828

x x x x --=-+-. 当2<x <4时,29668y x x =-+-2

98283x ??

=--+ ???

∴ 当8

3

x =

时,满足2<x <4,2y =最大. 综上所述,当8

3

x =时,y 值最大,最大值是2.

【例3】(山东德州)(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .

∴ AM AN AB AC

=,即43x AN

=.

∴ AN =4

3

x .

∴ S =2133

248

MNP AMN S S x x x ??==

??=.(0<x <4) (2)如图(2),设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =2

1

MN . 在Rt △ABC 中,BC

. 由(1)知 △AMN ∽ △ABC .

∴ AM MN AB BC

=,即45x MN

=.

∴ 5

4MN x =, ∴ 58OD x =.过M 点作MQ ⊥BC 于Q ,则

MQ =在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,

∴ △BMQ ∽△BCA . ∴ BM QM BC AC

=. ∴ 5

5258324

x

BM x ?=

=,25424AB BM MA x x =+=+=. ∴ x =4996. B

D

图( 2) B

图 (1)

∴ 当x =

49

96

时,⊙O 与直线BC 相切. (3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点. ∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP .

∴ 12AM AO AB AP ==. AM =MB =2.

故以下分两种情况讨论:

① 当0<x ≤2时,2Δ83

x S y PMN ==.

∴ 当x =2时,2332.82

y =

?=最大 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F . ∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,

∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .

∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .

∴ 2

PEF ABC S PF AB S ????

= ???

.∴ ()2322PEF S x ?=-. MNP PEF y S S ??=-=

()2

22339266828

x x x x --=-+-. 当2<x <4时,29668y x x =-+-2

98283x ??

=--+ ???

∴ 当8

3

x =时,满足2<x <4,2y =最大. 综上所述,当8

3

x =时,y 值最大,最大值是2.

【学力训练】

1、(山东威海)(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .

∵ AB ∥CD ,

∴ DG =CH ,DG ∥CH .

图 ( 4)

P

图 (3)

∴ 四边形DGHC 为矩形,GH =CD =1. ∵ DG =CH ,AD =BC ,∠AGD =∠BHC =90°,

∴ △AGD ≌△BHC (HL ). ∴ AG =BH =

2

1

72-=

-GH AB =3. ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.

∴ ()174162

ABCD S +?=

=梯形.

(2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB , ∴ ME =NF ,ME ∥NF . ∴ 四边形MEFN 为矩形. ∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .

∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ). ∴ AE =BF . 设AE =x ,则EF =7-2x .

∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA . ∴

DG ME AG AE =

.∴ ME =x 3

4

. ∴ 6

49

4738)2(7342

+??? ??--=-=?=x x x EF ME S MEFN 矩形.

当x =

47时,ME =37

<4,∴四边形MEFN 面积的最大值为6

49. (3)能.

由(2)可知,设AE =x ,则EF =7-2x ,ME =x 3

4

. 若四边形MEFN 为正方形,则ME =EF . 即

=3

4x 7-2x .解,得 1021=x .

∴ EF =2114

7272105

x -=-?

=<4.

A

B

E F

G

H A

B

E F G H

∴ 四边形MEFN 能为正方形,其面积为25196

5142

=

??

? ??=MEFN S 正方形. 00000000…………. 2、(浙江温州市)(1)

Rt A ∠=∠,6AB =,8AC =,10BC ∴=.

点D 为AB 中点,1

32

BD AB ∴=

=. 90DHB A ∠=∠=,B B ∠=∠. BHD BAC ∴△∽△,

DH BD AC BC ∴

=,312

8105

BD DH AC BC ∴==?=. (2)

QR AB ∥,90QRC A ∴∠=∠=.

C C ∠=∠,RQC ABC ∴△∽△,

RQ QC AB BC ∴

=,10610

y x

-∴=, 即y 关于x 的函数关系式为:3

65

y x =-+. (3)存在,分三种情况:

①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.

1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.

84cos 1cos 105C ∴∠==

=,45

QM QP ∴=, 1364251255

x ??-+ ??

?∴=,185x ∴=. ②当PQ RQ =时,312655

x -

+=, 6x ∴=.

③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,

11

224

CR CE AC ∴=

==. A

B

C

D E

R

P

H Q

M 2

1 H

A B

C

D E R P

H

Q

tan QR BA

C CR CA

=

=, 3

6

6

528

x -+∴=,152x ∴=.

综上所述,当x 为185或6或15

2

时,PQR △为等腰三角形.

3、(湖南郴州)(1) 因为四边形ABCD 是平行四边形, 所以AB DG 所以,

B GCE G BFE ∠=∠∠=∠

所以BEF CEG △∽△

(2)BEF CEG △与△的周长之和为定值.理由一: 过点C 作FG 的平行线交直线AB 于H ,

因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH 由 BC =10,AB =5,AM =4,可得CH =8,BH =6,

所以BC +CH +BH =24

理由二:

由AB =5,AM =4,可知 在Rt△BEF 与Rt△GCE 中,有:

4343

,,,5555

EF BE BF BE GE EC GC CE =

===, 所以,△BEF 的周长是125BE , △ECG 的周长是12

5CE 又BE +CE =10,因此BEF CEG 与的周长之和是24.

(3)设BE =x ,则43

,(10)55

EF x GC x ==- 所以

2

11436

2

2[(10)

5

]225525

5

y E F D G x x x x

==-+=--

配方得:26

55121()2566

y x =--+.

所以,当556x =

时,y 有最大值.最大值为121

6

4、(浙江台州)(1)如图,

四边形ABCD 是矩形,AB CD AD BC ∴==,.

又9AB =,AD =90C ∠=,

A

M x

H

G

F

E

D

C

B

9CD ∴=

,BC =

tan BC CDB CD ∴∠=

=

30CDB ∴∠=. PQ BD ∥,30CQP CDB ∴∠=∠=.

(2)如图(1),由轴对称的性质可知,RPQ CPQ △≌△,

RPQ CPQ ∴∠=∠,RP CP =.

由(1)知30CQP ∠=,60RPQ CPQ ∴∠=∠=,

60RPB ∴∠=,2RP BP ∴=. CP x =,PR x ∴=

,PB x =.

在RPB △

中,根据题意得:)x x =,

解这个方程得:x =

(3)①当点R 在矩形ABCD 的内部或AB 边上时,

0x <≤2

113322CPQ S CP CQ x x x =??=

=

△, RPQ CPQ △≌△,

∴当0x <≤2

y x =

当R 在矩形ABCD 的外部时(如图(2)),x <<,

在Rt PFB △中,

60RPB ∠=,

2)PF BP x

∴==,

RP CP x ==,3RF RP PF x ∴=-=-

在Rt

ERF △中,

30EFR PFB ∠=∠=

6ER ∴=-.

211822

ERF S ER FR x x ∴=

?=-+△ RPQ ERF y S S =-△△,

D

Q

C B

P

A

(图1)

D

Q

C B

P

R A

图(2)

F E

当x <<

时,218y x =+-.

综上所述,y 与x

之间的函数解析式是:2

2(018x x y x x <=??+-<

≤.

②矩形面积9=?

当0x <≤

函数2

y x =随自变量的增大而增大,所以y

的最大值是727

的值7

27

=

?=

而>

,所以,当0x <

27

当x <

218x +-=

x =

>,

所以x =

所以x =

综上所述,当x =PQR △与矩形ABCD 重叠部分的面积等于矩形面积

的7

27

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

二次函数与几何综合(习题及答案)

二次函数与几何综合(习题) ?例题示范 例1:如图,抛物线y=ax2+2ax-3a 与x 轴交于A,B 两点(点 A 在点 B 的左侧),与y 轴交于点C,且OA=OC,连接AC. (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a,可以求解A(-3,0),B(1,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由y=ax2+2ax-3a=a(x+3)(x-1) 可知A(-3,0),B(1,0), ∵OA=OC, ∴C(0,-3), 将C(0,-3)代入y=ax2+2ax-3a, 解得,a=1, ∴y=x2+2x-3. 1

△ 第二问:铅垂法求面积 【思路分析】 (1) 整合信息,分析特征: 由所求的目标入手分析,目标为 S △ACP 的最大值,分析 A ,C 为定点,P 为动点且 P 在直线 AC 下方的抛物线上运动,即 -3<x P <0; (2) 设计方案: 注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达 S △ACP . 【过程示范】 如图,过点 P 作 PQ ∥y 轴,交 AC 于点 Q , 易得 l AC :y =-x -3 设点 P 的横坐标为 t ,则 P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3), ∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴ S = 1 PQ ? (x - x ) = - 3 t 2 - 9 t (-3<t <0) △ ACP 2 C A 2 2 ∵ - 3 < 0 , 2 ∴抛物线开口向下,且对称轴为直线t = - 3 , 2 ∴当t = - 3 时,S ACP 最大,为 27 . 2 8 第三问:平行四边形的存在性 【思路分析】 分析不变特征: 以 A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点 A ,B 连接成为定线段 AB . 分析形成因素: 要使这个四边形为平行四边形.首先考虑 AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则 AB 既可以作边,也可以作对角线. 画图求解: 先根据平行四边形的判定来确定 EF 和 AB 之间应满足的条 2

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

(完整版)一次函数与几何图形综合题,精选十道,道道经典。

专题训练:一次函数与几何图形综合 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并 证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不 变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; x y o B A C P Q x y o B A C P Q M 第2题图①

(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分) 第2题图② 第2题图③ C B A l 2 l 1 x y

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

(完整版)一次函数与几何综合练习(含答案)

一次函数与几何综合 1.如图,在平面直角坐标系中,点A 的坐标为(2,0),以OA 为边在第四象限内作等边△AOB ,点C 为x 轴的正半轴上一动点(OC >2),连接BC ,以BC 为边在第四象限内作等边△CBD . (1)试问△OBC 与△ABD 全等吗?并证明你的结论; (2)直线AD 与y 轴交于点E ,在C 点移动的过程中,E 点的位置是否发生变化?如果不变求出它的坐标;如果变化,请说明理由. 2.如图1,在平面直角坐标系中,直线y =1 2 x m -+(m >0)与x 轴,y 轴分别交 于点A ,B ,过点A 作x 轴的垂线交直线y =x 于点D ,C 点坐标(m ,0),连接 CD . (1)求证:CD ⊥AB ; (2)连接BC 交OD 于点H (如图2),求证:DH = 3 2 BC . y =-1 2 x y =-1 2 x 图1 图2

3.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB落在x轴正 半轴上,直线 48 33 y x =-经过点C,与x轴交于点E. (1)求四边形AECD的面积; (2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l 的解析式; (3)若直线l1经过点F(-3 2 ,0)且与直线y=3x平行,将(2)中直线l沿着 y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积. 4.已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6). (1)求直线l1,l2的表达式; (2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF. ①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示); ②若矩形CDEF的面积为108,求出点C的坐标.

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

八年级数学一次函数与几何图形综合题专题训练

一次函数与几何图形综合题专题训练 1、直线y=-x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的 值不变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 第2题图① 第2题图②

(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分) (2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF = 第2题图③

八年级数学下《一次函数及几何综合》专题练习题.doc

2019-2020 年八年级数学下《一次函数与几何综合》专题练习题 1.如图,直线 l1的函数解析式为 y=- 3x+3,且 l1与 x 轴交于点 D,直线 l2经过点 A,B,直线 l 1,l2交于点 C. (1)求点 D 的坐标; (2)求直线 l 2的函数解析式; (3)求△ADC 的面积; (4)在直线 l 2上存在异于点 C 的另一点 P,使得△ADP 与△ADC 的面积相等,请直接写出点 P 的坐标. 1 2. 如图,直线 y=2x+6 与 x 轴交于点 A,与 y 轴交于点 B,直线 y=-2x+1 与 x 轴交于点 C,与 y 轴交于点 D,两直线交于点 E,求 S△BDE和 S 四边形AODE . 4 3.如图,直线 y=-3x+8 分别交 x 轴、y 轴于 A,B 两点,线段 AB 的垂直平分线分别交 x 轴、 y 轴于 C,D 两点. (1) 求点 C 的坐标; (2) 求直线 CE 的解析式; (3) 求△BCD 的面积.

4.如图,在平面直角坐标系中,点 A( -1,0),B(0,3),直线 BC 交坐标轴于 B,C两点,且∠ CBA =45°.求直线 BC 的解析式. 5.如图, A(0,4),B(-4,0),D(-2,0),OE⊥AD 于点 F,交 AB 于点 E,BM ⊥OB 交 OE 的延长线于点 M. (1)求直线 AB 和直线 AD 的解析式; (2)求点 M 的坐标; (3)求点 E,F 的坐标. 6.如图,正方形 OBAC 中, O(0,0),A( -2,2),B,C 分别在 x 轴、 y 轴上, D(0,1),CE⊥BD 交 BD 延长线于点 E,求点 E 的坐标. 1 7. 如图,在平面直角坐标系中,A(0 ,1),B(3,2),P 为 x 轴上一动点,则 PA+PB 最小时点 P 的坐标为 ________.

一次函数与几何图形综合题10及答案(供参考)

1文档来源为: . 专题训练:一次函数与几何图形综合 1、直线y=-x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并 证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不 变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, x y o B A C P Q x y o B A C P Q M 第2题图① 2题图② 题图③

2文档来源为:从网络收集整理.word 版本可编辑. (1)求直线2l 的解析式;(3分) (2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF (3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。在 这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分) 4.如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、 b 满足 . (1)求直线AB 的解析式; (2)若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; (3)过A 点的直线交y 轴于负半轴于P ,N 点的横坐标为-1,过N 点的直线 交AP 于点M ,试证明的值为定值. 5.如图,直线AB :y =-x -b 分别与x 、y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC=3:1。 (1)求直线BC 的解析式: (2)直线EF :y =kx-k (k ≠0)交AB 于E ,交BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD ?若 存在,求出k 的值;若不存在,说明理由? (3)如图,P 为A 点右侧x 轴上的一动点,以P 为直角顶点,BP 为腰在第一象限内作等腰直角△BPQ ,连接QA 并延长交y轴于点K ,当P 点运动时,K 点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。 C B A 0x y Q M P C B A x y

一次函数与几何图形综合

一次函数与几何图形综合 思想方法小结 :(1)函数方法.(2)数形结合法. 例题1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM 的 值不变;②(MQ -AC )/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 x y x y

2、如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA =OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =4,BN =3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 第2题图① 第2题图② 第2题图③

3、如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足. (1)求直线AB的解析式; (2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值; (3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线交AP于点M,试证明的值为定值.

一次函数与几何综合 专题练习题 含答案

一次函数与几何综合专题练习题 1. 如图,直线l 1的函数解析式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C. (1)求点D 的坐标; (2)求直线l 2的函数解析式; (3)求△ADC 的面积; (4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接写出点P 的坐标. 2. 如图,直线y =2x +6与x 轴交于点A ,与y 轴交于点B ,直线y =-12x +1与x 轴 交于点C ,与y 轴交于点D ,两直线交于点E ,求S △BDE 和S 四边形AODE . 3.如图,直线y =-43x +8分别交x 轴、y 轴于A ,B 两点,线段AB 的垂直平分线分 别交x 轴、y 轴于C ,D 两点.

(1)求点C的坐标; (2)求直线CE的解析式; (3)求△BCD的面积. 4. 如图,在平面直角坐标系中,点A(-1,0),B(0,3),直线BC交坐标轴于B,C 两点,且∠CBA=45°.求直线BC的解析式. 5. 如图,A(0,4),B(-4,0),D(-2,0),OE⊥AD于点F,交AB于点E,BM⊥OB 交OE的延长线于点M. (1)求直线AB和直线AD的解析式; (2)求点M的坐标; (3)求点E,F的坐标. 6. 如图,正方形OBAC中,O(0,0),A(-2,2),B,C分别在x轴、y轴上,D(0,1),CE⊥BD交BD延长线于点E,求点E的坐标.

7. 如图,在平面直角坐标系中,A(0,1),B(3,12),P 为x 轴上一动点,则PA +PB 最 小时点P 的坐标为________. 8. 如图,直线y =x +4与坐标轴交于点A ,B ,点C(-3,m)在直线AB 上,在y 轴上 找一点P ,使PA +PC 的值最小,求这个最小值及点P 的坐标.

一次函数与几何综合题型

第1页一次函数与几何综合 班级:__________ 姓名:__________ 【知识点睛】 1.一次函数表达式:y=kx+b (k ,b 为常数,k ≠0) ①k 是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡 面的竖直高度与水平宽度的比叫坡度或坡比,如图所示, AM 即为竖直高度,uj7BM 即为水平宽度,则= AM k BM ,②b 是截距,表示直线与y 轴交点的纵坐标. 2.设直线l 1:y 1=k 1x+b 1,直线l 2:y 2=k 2x+b 2,其中 k 1,k 2≠0. ①若k 1=k 2,且b 1≠b 2,则直线l 1∥l 2; ②若k 1·k 2=-1,则直线l 1⊥l 2. 3.一次函数与几何综合解题思路 从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交 点.通过点的坐标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题.【精讲精练】 1.如图,点B ,C 分别在直线y=2x 和y=kx 上,点A ,D 是x 轴上的两点,已 知四边形ABCD 是正方形,则k 的值为______. y=kx y=2x A C B D O x y A O C D E B l 1l 2x y D y x O B C A 第1题图第2题图第3题图 2.如图,直线l 1交x 轴、y 轴于A ,B 两点,OA=m ,OB=n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2;若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_________. M A B

一次函数与几何综合(习题)

一次函数与几何综合(习题) ? 例题示范 例1:如图,在平面直角坐标系xOy 中,已知长方形纸片ABCO 的顶点A ,C 分别在x 轴、y 轴的正半轴上,且BC =15.将纸片沿过点C 的直线折叠后,点B 恰 好落在x 轴上的点B ′处,折痕交AB 于点D .若3 4 OC OB'=,则直线CD 的表达式为 _____________. D (15,4); 3. 例2:如图,点A 的坐标为(-2,0),点B 在直线1 22 y x =-+上运动,则当线段 AB 最短时,点B 的坐标为_____________. 思路分析: 1. 如图,当AB ⊥l 时,线段AB 最短; 2. 因为AB ⊥ l ,所以1 ()12 AB k ?-=-,故k AB =2,设l AB :y =2x +b ,把A (-2,0)代 入,得b =4; 3. 联立可求得点B 的坐标为(? 巩固练习

1.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上的两点.若 四边形ABCD是长方形,且AB:AD=1:2,则k的值为____________. 第1题图第2题图 2.如图,已知直线l1:y=-x+2与直线l2:y=2x+8相交于点F,l1,l2分别交x 轴于点E,G,矩形ABCD顶点C,D分别在直线l1,l2上,顶点A,B都在x轴上,且点B与点G重合,则长方形ABCD的面积为____________. 3.如图,已知长方形纸片OABC,D是OA上的一点,且OD:AD=5:3, CD OCD沿折痕CD向上翻折,若点O恰好与AB边上的点E重 合,则CD所在直线的表达式为____________. 第3题图第4题图 4.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4, 0),P为AB边上一点,沿CP折叠正方形,折叠后的点B落在平面内的点B′ _____________,直线CP的表达式为___________________. 5.如图,点A的坐标是(-2,0),点B的坐标是(6,0),点C在第一象限内,且 △OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为点E,交OC于点F,则点C的坐标为_______,直线AE的表达式为______________.

一次函数与几何综合-培优

一次函数与几何综合 1.一次函数与全等三角形的综合 以一次函数为背景的常见的几何模型如下: 2.一次函数与面积的综合 解决在坐标系中的图形面积计算的常用方法: (1)割补法;(2)转化法;(3)加减法;(4)铅垂线法.有的问题还需要分类讨论. 3.一次函数与特殊图形的综合 以一次函数为背景的常见的特殊图形有等腰三角形、直角三角形和平行四边形. (1)等腰三角形 ①确定点的位置 如下图所示,在直线L 上找一点C ,使得△ABC 是等腰三角形. ,:AC AB I =以A 点为圆心,AB 长为半径画圆,交直线L 于两点,,21C C ,:BC AB =X 以B 点为圆心,AB 长为半径画圆,交直线L 于两点,,43C C Ⅲ,:BC AC =作AB 的中垂线交直线L 于点?5C ②求点的坐标:若△ABC 是等腰三角形,则分三种情况分类讨论:BC AC BC AB AC AB ===,, 然后利用等腰三角形的性质或勾股定理计算(或建立方程)解题. (2)直角三角形 若△ABC 是直角三角形,则分三种情况分类讨论:.0 9,90,90o o C B A &ο =∠=∠=∠然后利用勾股定 理解题. (3)平行四边形 ①确定点的位置

如右图所示,在△ABC 中,点A 、B 在直线L 上,点C 在x 轴上 ,在坐标平面内找一点D ,使得A 、B 、C 、D 围成的四边形是平行四边形. 作法:分别为过A 、B 、C 的三个顶点作对边的平行线,交点即为平行四边形的第四个顶点,如右图所示. ②求点的坐标:若四边形ABCD 是平行四边形,利用平行四边形的性质解题. 基 础 演 练 1.点P 是等边△ABC 的边上的一个作匀速运动的动点,点P 从点A 开始沿AB 边运动到B 再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,S 与t 的大致图像是图19 -4—1中的( ) 2.(1)如图19-4-2所示,已知A 点坐标为(5,0),直线)0(>+=b b x y 与y 轴交于点B ,连接,75,ο =∠αAB 则b 的值为( ). 3.A 335. B 4. C 4 3 5.D (2)如图19-4-3所示,直线23 3 +-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针 旋转ο60后得到,/ /B AO ?则点/ B 的坐标是( ). )32,4.(A )4,32.(B )3,3.(C )32,232(+?D 3.平面直角坐标系中,0是坐标原点,点A 的坐标是(4,O),点P 在直线m x y +-=上,且.4==OP AP 则m 的值为( ). 322.+A 或322- 4.B 或4- 32.C 或32- 324.+D 或324- 4.若函数4--=x y 与x 轴交于点A ,直线上有一点M ,若△AOM 的面积为8,则点M 的坐标

一次函数和几何综合题(精选版)

1、 直线22y x =-+与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC OB = (1)求AC 的解析式; (2)在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的 数量关系,并证明你的结论。 (3)在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:① MQ AC PM + 的值不变;② MQ AC PM -的值不变,期中只有一个正确结论,请选择并加以证明。 2、如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA =OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =4,BN =3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直 角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 图① 图② 图③ x y

3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式; (2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E ,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF ; (3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交 于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。 4、如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足( )2 20a -=. (1)求直线AB 的解析式; (2)若点M 为直线y =m x 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; (3)过A 点的直线2y kx k =-交y 轴于负半轴于P ,N 点的横坐标为1-,过N 点的直 线22k k y x = -交AP 于点M ,试证明 PM PN AM - 的值为定值.

相关文档
相关文档 最新文档