文档库 最新最全的文档下载
当前位置:文档库 › Bessel函数介绍

Bessel函数介绍

Bessel函数介绍
Bessel函数介绍

第一类贝塞尔函数

图2 0阶、1阶和2阶第一类贝塞尔函数(贝塞尔J函数)曲线

(在下文中,第一类贝塞尔函数有时会简称为“J函数”,敬请读者留意。)

第一类α阶贝塞尔函数Jα(x)是贝塞尔方程当α为整数或α非负时的解,须满足在x= 0 时有限。这样选取和处理Jα的原因见本主题下面的性质介绍;另一种定义方法是通过它在x= 0 点的泰勒级数展开(或者更一般地通过幂级数展开,这适用于α为非整数):

上式中Γ(z)为Γ函数(它可视为阶乘函数向非整型自变量的推广)。第一类贝塞尔函数的

形状大致与按速率衰减的正弦或余弦函数类似(参见本页下面对它们渐进形式的介

绍),但它们的零点并不是周期性的,另外随着x的增加,零点的间隔会越来越接近周期性。图2所示为0阶、1阶和2阶第一类贝塞尔函数Jα(x)的曲线(α = 0,1,2)。

如果α不为整数,则Jα(x)和J?α(x)线性无关,可以构成微分方程的一个解系。反之若α是整数,那么上面两个函数之间满足如下关系:

于是两函数之间已不满足线性无关条件。为寻找在此情况下微分方程与Jα(x)线性无关的另一解,需要定义第二类贝塞尔函数,定义过程将在后面的小节中给出。

贝塞尔积分

α为整数时贝塞尔函数的另一种定义方法由下面的积分给出:

(α为任意实数时的表达式见参考文献[2]第360页)

这个积分式就是贝塞尔当年提出的定义,而且他还从该定义中推出了函数的一些性质。另一种积分表达式为:

和超几何级数的关系

贝塞尔函数可以用超几何级数表示成下面的形式:

第二类贝塞尔函数(诺依曼函数)

图3 0阶、1阶和2阶第二类贝塞尔函数(贝塞尔Y函数)曲线图

(在下文中,第二类贝塞尔函数有时会简称为“Y函数”,敬请读者留意。)

第二类贝塞尔函数也许比第一类更为常用。这种函数通常用Yα(x)表示,它们是贝塞尔方程的另一类解。x = 0 点是第二类贝塞尔函数的(无穷)奇点。

Yα(x)又被称为诺依曼函数(Neumann function),有时也记作Nα(x)。它和Jα(x)存在如下关系:

若α为整数(此时上式是0/0型未定式)则取右端的极限值。

从前面对Jα(x)的定义可以知道,若α不为整数时,定义Yα是多余的(因为贝塞尔方程的两个线性无关解都已经用J函数表示出来了)。另一方面,若α为整数,Yα便可以和Jα构成贝塞尔方程的一个解系。与J函数类似,Y函数正负整数阶之间也存在如下关系:

单位。以上的线性组合也成为

若α

为整数,则须对等号右边取极限值。另外,无论α

是不是整数,下面的关系都成立:

虚宗量的贝塞尔函数(修正贝塞尔函数)

贝塞尔函数当宗量x 为

复数

时同样成立,并且当x 为纯虚数时能得到一类重要情形——它们被称为第一类和第二类虚宗量的贝塞尔函数,或修正贝塞尔函数(有时还称为双曲型贝塞尔函数),定义为:

以上形式保证了当宗量x 为实数时,函数值亦为实数。这两个函数构成了下列修正贝塞尔方程(与一般贝塞尔方程的差别仅在两个正负号)的一个相互线性无关的解系:

修正贝塞尔函数与一般贝塞尔函数的差别在于:一般贝塞尔函数随实宗量是振荡型的,而修正贝塞尔函数I α 和K α则分别是指数增长和指数衰减型的。和第一类贝塞尔函数J α一样,函数I α当α > 0 时在x =0 点等于0,当α=0时在x =0 点趋于有限值。类似地,K α在x =0 点发散(趋于无穷)。

图4-1 第一类修正贝塞尔函数I α(x )对实自变量的曲线(α = 0,1,2)

图4-2 第二类修正贝塞尔函数K α(x )对实自变量的曲线(α = 0,1,2)

复数宗量的贝塞尔函数之零值:Jα(x) = 0的解在α≥-1的情况下都是实数;阶数-2>α>-1的情况下,除了实数之外还有且仅有一对共轭的纯虚数解(G.N Watson 参考文献[5])。

球贝塞尔函数

图5-1第一类球贝塞尔函数j n(x)曲线(n = 0,1,2)

图5-2第二类球贝塞尔函数y n(x)曲线(n = 0,1,2)

若使用分离变量法求解球坐标下的三维拉普拉斯方程,则可得到如下形式关于径向(r方向)分量的常微分方程:

关于上述方程的一对线性无关解称为球贝塞尔函数,分别用j n和y n表示(有时也记为n n)。这两个函数与一般贝塞尔函数J n和Y n存在关系:

球贝塞尔函数也可写成:

0阶第一类球贝塞尔函数j0(x)又称为sinc函数。头几阶整阶球贝塞尔函数的表达式分别为:

第一类:

}-

第二类:

}-

}-

还可以依照前面构造汉开尔函数相同的步骤构造所谓球汉开尔函数:

事实上,所有半奇数阶贝塞尔函数都可以写成由三角函数组成的封闭形式的表达式,球贝塞尔函数也同样可以。特别地,对所有非负整数n,存在:

而对实自变量x,h n(2)是上面h n(1)的复共轭(!! 表示双阶乘)。由此我们可以通过得到h,再分离实部虚部,求出相应阶j和h的表达式,譬如j0(x) = sin(x)/x,y0(x) = -cos(x)/x,等等。

黎卡提-贝塞尔函数

黎卡提-贝塞尔函数(Riccati-Bessel functions)和球贝塞尔函数比较类似:

该函数满足方程:

,即时,渐近形式为:

数的渐近形式可以从上面的式子直接推得。譬如,对大自变量,修正对小自变量:

[2] Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover: New York, 1972) (英文)

Chapter 9整阶贝塞尔函数

■Section 9.1 J, Y (韦伯) and H (汉开尔)

■Section 9.6修正贝塞尔函数(I和K)

■Section 9.9开尔文函数

■Chapter 10分数阶贝塞尔函数

■Section 10.1球贝塞尔函数(j、y和h)

■Section 10.2修正球贝塞尔函数(I和K)

■Section 10.3黎卡提-贝塞尔函数

■Section 10.4艾里函数(Airy functions)

[3] George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists(Harcourt: San Diego, 2001).

[4] Frank Bowman, Introduction to Bessel Functions (Dover: New York, 1958) ISBN 0486604624.

[5] G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edition, (1966) Cambridge University Press.

[6] G. Mie, "Beitr?ge zur Optik trüber Medien, speziell kolloidaler Metall?sungen", Ann. Phys. Leipzig25(1908), p.377.

[7] Hong Du, "Mie-scattering calculation," Applied Optics43(9), 1951-1956 (2004).

高中数学函数的零点和最值

函数的零点 1、函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。 方程f(x)=0有实数根?函数y=f(x)的图象与x 轴有交点?函数y=f(x)有零点 注意:零点是一个实数,不是点。 练习:函数23)(2 +-=x x x f 的零点是( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 方程f(x)=0的根的个数就是函数y=f(x)的图象与x 轴交点的个数。 方程f(x)=0的实数根就是函数y=f(x)的图象与x 轴交点的横坐标。 方法:①(代数法)求函数的零点就是求相应的方程的根,一般可以借助求根公式或因式分解等办法,求出方程的根,从而得出函数的零点。 ②(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 练习:Ⅰ求零点 ①y=x 3-1, ② y=2^x-1, ③y=lg(x 2-1)-1, ④y=2^|x|-8, ⑤y=2+log 3x Ⅱ结合函数的图像判断函数f(x)=x 3-7x+6的零点 Ⅲ判断函数f(x)=lnx+2x 是否存在零点及零点的个数 2、一元二次方程和二次函数 例,当a>0时,方程ax 2+bx+c=0的根与函数y=ax 2+bx+c 的图象之间的关系如下表: 练习:如果函数f(x)= ax 2-x-1仅有一个零点,求实数a 的范围。 3、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。 例1:观察二次函数f (x)=x 2- 2x - 3的图象: ① 在区间[-2,1]上有零点_______; f (-2)=_____,f (1)=_____, f (-2) · f(1)___0(< 或 > 或 =) ② 在区间[2,4]上有零点_______; f (2) · f(4)___0(< 或 > 或 =) 例1图 例2图 例2:观察函数 y = f (x)的图象: ①在区间[a ,b]上___(有/无)零点; f (a) · f(b)___0(< 或 > 或 =) ②在区间[b ,c]上___(有/无)零点; f (b) · f(c)___0(< 或 > 或 =) 练习:①判断函数f(x)=x2-2x-1在区间(2,3)上是否存在零点? 4、函数最值: 最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x0∈I ,使得f(x0) = M ,那么,称M 是函数y=f(x)的最大值. 方法:利用函数单调性的判断函数的最大(小)值 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b). 练习:①函数 f (x )= )1(11 x x --的最大值是______ ②函数f (x )=ax (a >0,a ≠1)在[1,2]中的最大值比最小值 大2a ,则a 的值为______ ③设a 为实数,函数f (x )=x2+|x -a|+1,x ∈R. (1)讨论f (x )的奇偶性;(2)求f (x )的最小值. ④已知二次函数f (x )=(lga )x2+2x +4lga 的最大值为3,求a 的值.

Bessel函数介绍

第一类贝塞尔函数 图2 0阶、1阶和2阶第一类贝塞尔函数(贝塞尔J函数)曲线 (在下文中,第一类贝塞尔函数有时会简称为“J函数”,敬请读者留意。) 第一类α阶贝塞尔函数Jα(x)是贝塞尔方程当α为整数或α非负时的解,须满足在x= 0 时有限。这样选取和处理Jα的原因见本主题下面的性质介绍;另一种定义方法是通过它在x= 0 点的泰勒级数展开(或者更一般地通过幂级数展开,这适用于α为非整数): 上式中Γ(z)为Γ函数(它可视为阶乘函数向非整型自变量的推广)。第一类贝塞尔函数的 形状大致与按速率衰减的正弦或余弦函数类似(参见本页下面对它们渐进形式的介 绍),但它们的零点并不是周期性的,另外随着x的增加,零点的间隔会越来越接近周期性。图2所示为0阶、1阶和2阶第一类贝塞尔函数Jα(x)的曲线(α = 0,1,2)。 如果α不为整数,则Jα(x)和J?α(x)线性无关,可以构成微分方程的一个解系。反之若α是整数,那么上面两个函数之间满足如下关系: 于是两函数之间已不满足线性无关条件。为寻找在此情况下微分方程与Jα(x)线性无关的另一解,需要定义第二类贝塞尔函数,定义过程将在后面的小节中给出。 贝塞尔积分

α为整数时贝塞尔函数的另一种定义方法由下面的积分给出: (α为任意实数时的表达式见参考文献[2]第360页) 这个积分式就是贝塞尔当年提出的定义,而且他还从该定义中推出了函数的一些性质。另一种积分表达式为: 和超几何级数的关系 贝塞尔函数可以用超几何级数表示成下面的形式: 第二类贝塞尔函数(诺依曼函数) 图3 0阶、1阶和2阶第二类贝塞尔函数(贝塞尔Y函数)曲线图 (在下文中,第二类贝塞尔函数有时会简称为“Y函数”,敬请读者留意。)

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

第12讲-二次函数的零点与最值

第十二讲 二次函数的零点与最值 知识归纳和梳理: 1.一元二次方程的根即二次函数的零点也是二次函数的图象与x 轴交点的横坐标 2.解决二次函数零点问题的方法: (1)转化为???韦达定理判别式 (零点的正负问题) (2)结合二次函数的图象等价转化为??? ????特殊函数值符号判别式符号对称轴位置开口方向的不等式组 3.解二次函数的最值问题的方法: (1)分离参数转化为函数的值域 (2)讨论对称轴和区间的关系 4.恒成立问题的解决方法:)(x f a >恒成立max )(x f a >?(具体情况还要分析能否取”=”) )(x f a ≤恒成立min )(x f a ≤? 【典型例题】: 例1.已知方程023222 =---k x kx 有两个不相等的实根21x x 、 (1)若12,x x 都小于零,求k 的取值围; (2)若12,x x 都小于1,求k 的取值围; (3)若121x x <<,求k 的取值围; (4)若1220x x -<<、,求k 的取值围; (5)恰有一根在(1,2)区间,求k 的取值围。

例2. 若二次函数12 -+-=mx x y 的图像与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,求m 的取值围。 经典练习1,2 1.若一元二次方程0332 =-++k kx kx 的两根都是负数,求k 的取值围。 2. 已知方程012)2(2=-+-+m x m x 有一实根在0和1之间,求m 的取值围。 3. 若方程0)2(2=-++k x k x 的两实根均在区间(-1、1),求k 的取值围。

4.设? ?????≤≤=121| x x A ,}0)1()12(|{2≤+++-=a a x a x x B ,若B A ?,数a 的取值围 例3..求函数2 2242)(a x x x f --=在区间]1,[+a a 上的最小值 例4.求函数1)(2+-=ax x x f 在区间]2,1[-上的最大值 经典练习3,4 1.函数1)(2+-=ax x x f 在区间]2,1[-上的最小值为-2求a

贝塞尔函数

贝塞尔函数 当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。 §5.1 贝塞尔方程的引出 下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。 这个问题可以归结为求解下述定解问题: 22222 2222 22222 0(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ?=+=???=++<>???=+≤= (5.3)?????? ??? 用分离变量法解这个问题,先令 (,,)(,)() u x y t V x y T t =

代入方程(5.1)得 2 2 2 2 2 ( )V V VT a T x y ??'=+ ?? 或 2 2 2 2 2 (0)V V T x y a T V λλ??+'??= =-> 由此得到下面关于函数()T t 和(,)V x y 的方程 2 0T a T λ'+= (5.4) 2 2 2 2 0V V V x y λ??+ +=?? (5.5) 从(5.4)得 2 ()a t T t Ae λ-= 方程(5.5)称为亥姆霍兹(Helmholtz )方程。为了求出这个方程满足条件 2 2 2 0x y R V +== (5.6) 的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得 22 222 110,,02, (5.7)0,02, (5.8)R V v V V R V ρλρθπρρρρθθπ=????+++=<≤≤??????=≤≤? 再令 (,)()()V P ρθρθ=Θ, 代入(5.7)并分离变量可得 ()()0θμθ''Θ+Θ= (5.9) 2 2 ()()()()0P P P ρρρρλρμρ'''++-= (5.10)

数理方程与特殊函数教学大纲

数理方程与特殊函数 课程简介:本课程为电子与通信工程类专业的基础课。学分2,周学时2。本课程由“数学物理方程”与“特殊函数”两大部分组成。“数学物理方程”讲授物理学的一个分支——数学与物理所涉及的偏微分方程。主要介绍物理学中常见的三类偏微分方程及其有关的定解问题和这些问题的几种常用解法。“特殊函数”讲授贝塞尔函数与勒让德多项式,以及如何利用这两种特殊函数来解决数学物理方程的一些定解问题的过程。 教学目的与基本要求:通过数理方程与特殊函数课程的学习,使学生系统的掌握工程数学中数学物理方法的知识和技能,培养学生分析问题解决问题的能力,为后续课程的学习及研究奠定重要的数学基础。本课程的先修课程为:高等数学,复变函数,积分变换 主要教学方法:课堂讲授与课外习题。 第零章预备知识(4学时) 复习先修课程中相关的一些内容,主要包括:二阶线性常微分方程解的结构以及常系数情形解的求法;积分学中的一些重要公式和技巧;傅里叶(Fourier)分析;解析函数的极点及其留数;拉普拉斯(Laplace)变换。 第一章典型方程和定解条件的推导(4学时) 在讨论数学物理方程的求解之前,应建立描述某种物理过程的微分方程,再把一个特定物理现象所具有的具体条件用数学形式表达出来。本章学习的重点和难点是了解数学物

理方程的推导及定解问题的确定过程,学会推导一些简单物理过程的微分方程并能确定某些具体物理现象的定解条件。 第一节基本方程的建立 通过几个不同的物理模型,推导出数学物理方程中的三种典型偏微分方程:波动方程、电磁场方程和热传导方程。 第二节初始条件与边界条件 方程决定了物理规律的数学形式,但具体的物理问题所具有的特定条件也应用数学形式表达出来。用以说明某一具体物理现象的初始状态的条件称为初始条件,用以说明其边界上约束情况的条件称为边界条件。 第三节定解问题的提法 由于每一个物理过程都处在特定的条件之下,所以我们要求出偏微分方程适合某些特定条件的解。初始条件和边界条件都称为定解条件。把某个偏微分方程和相应的定解条件结合在一起,就构成了一个定解问题。 本章习题:3-5题 第二章分离变量法(8学时) 本章主要介绍在求解偏微分方程的定解问题时,如何设法把它们转化为常微分方程来求解。本章学习的重点和难点是掌握分离变量法这一“化繁为简”的典型方法的实质,学会求解常见的定解问题。

函数的图像与零点试题

高三数学函数的图像、零点 一:选择题 1.已知函数f (x )=x 2﹣2x+b 在区间(2,4)有唯一零点,则b 的取值围是( D ) A 、R B 、(﹣∞,0) C 、(﹣8,+∞) D 、(﹣8,0) 2.设,用二分法求方程在(1,3)近似解的过程中,f (1)>0,f (1.5)<0,f (2)<0,f (3)<0,则方程的根落在区间( A ) A 、(1,1.5) B 、(1.5,2) C 、(2,3) D 、无法确定 3.已知函数31 )21()(x x f x -=,那么在下列区间中含有函数)(x f 零点的是( B ) (A ))31,0( (B ))2 1 ,31( (C ))32,21( (D ))1,3 2( 4.设函数,则函数y=f (x )( A ) A 、在区间(0,1),(1,2)均有零点 B 、在区间(0,1)有零点,在区间(1,2)无零点 C 、在区间(0,1),(1,2)均无零点 D 、在区间(0,1)无零点,在区间(1, 2)有零点 5.已知1x 是方程32=?x x 的根, 2x 是方程2log 3x x ?=的根,则21x x 的值为( B ) A.2 B.3 C.6 D.10 6.已知x 0是函数f (x )=2x +的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( B ) A 、f (x 1)<0,f (x 2)<0 B 、f (x 1)<0,f (x 2)>0 C 、f (x 1)>0,f (x 2)<0 D 、f (x 1)>0,f (x 2)>0 解答:解:∵x 0是函数f (x )=2x +的一个零点∴f (x 0)=0 ∵f (x )=2x +是单调递增函数,且x 1∈(1,x 0),x 2∈(x 0,+∞), ∴f (x 1)<f (x 0)=0<f (x 2) 故选B . 7.如图是函数f (x )=x 2+ax+b 的部分图象,函数g (x )=e x ﹣f'(x )的零点所在的区间是(k ,k+1)(k ∈z ),则k 的值为( C ) A . ﹣1或0 B . 0 C . ﹣1或1 D . 0或1 解答:

函数的零点、极值点、驻点与拐点的关系

在日常生活和高中数学学习中有些相近的概念容易混为一谈,例如: 有的经济学家或股评专家分析预测股市(或房市)的发展,根据......,当前股市形势大好,预期股市成交量或指数会出现“拐点”......,意思说成交量或指数会有从下降到上升的反转。但是,这里引用的“拐点”并非数学意义上的“拐点”。还曾经有一位文科教师在讲课中想说明“一个量随着另一个量的增加而增加“的数量关系,就引用了数学中的“正比例关系“,例如: “知识与阅读量成正比例关系。”显然是不准确,甚至错误的。 人们有时为了使自己的论点可信度高,常常会引用一些数学概念或结论作“马甲“,特别是当今“大数据”时代。但是,数学中许多概念相近,不仅是不熟悉数学的人们搞不清楚,就是从教和学习数学的老师与学生也常常搞混。例如: 函数的零点、极值点、驻点和拐点等,下面针对这几个概念,简单地说说它们的定义、几何意义、联系和区别。 函数的零点是使得函数值为零的自变量的值。例如: f(x)=x-1,x=1就是函数f(x)的零点。 函数的极值点是函数的单调性发生变化的点,或是函数的局部极大值或极小值点。当函数存在导数时,函数的极值点是其导函数的变号零点(2014山东高考数学21题的考点)。例如: f(x)=x^2-1,x=0就是函数的f(x)的极小值点。或者说函数在x=0附近的函数值都比x=0时的函数值大。 且x=1和x=-1是函数f(x)的零点。再如: g(x)=|x|,x=0是函数的极小值点,但不是函数的驻点。函数的驻点是函数一阶导数为零的点,即函数的驻点是函数的导函数的零点。但函数的驻点不一定是函数的极值点。当函数存在导数时,极值点一定是驻点,反之不一定正确。例如:

函数图像与零点

3. 【2014南通高三期末测试】设函数()y f x =是定义域为R ,周期为2的周期函数,且当[)11x ∈-,时,2 ()1f x x =-;已知函数lg ||0()10x x g x x ≠??=?=??,, , . 则函数()f x 和()g x 的图象在 区间[]510-, 内公共点的个数为 . 【答案】15 【文·山东实验中学高三三模·2014】5.函数y= 1x n x x 的图象大致是 【答案】B 5.【常州市2013届高三教学期末调研测试】已知函数f (x )=32 , 2,(1),02x x x x ????-<0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取 值范围是________. 答案:[1 2 ,1)∪(1,2] 9.已知函数y =f (x )和y =g (x )在[-2,2]的图象如下图所示:

则方程f [g (x )]=0有且仅有________个根,方程f [f (x )]=0有且仅有________个根. 解析:由图可知f (x )=0有三个根,设为x 1,x 2,x 3,- 2

2020高考数学(文)总复习《导数与函数的零点》

导数与函数的零点 考点一 判断零点的个数 【例1】 (2020·潍坊检测)已知函数f (x )=ln x -x 2+ax ,a ∈R . (1)证明ln x ≤x -1; (2)若a ≥1,讨论函数f (x )的零点个数. (1)证明 令g (x )=ln x -x +1(x >0),则g (1)=0, g ′(x )=1 x -1=1-x x , 可得x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; x ∈(1,+∞)时,g ′(x )<0,函数g (x )单调递减. ∴当x =1时,函数g (x )取得极大值也是最大值, ∴g (x )≤g (1)=0,即ln x ≤x -1. (2)解 f ′(x )=1 x -2x +a =-2x 2+ax +1x ,x >0. 令-2x 20+ax 0+1=0,解得 x 0=a +a 2+8 4 (负值舍去), 在(0,x 0)上,f ′(x )>0,函数f (x )单调递增; 在(x 0,+∞)上,f ′(x )<0,函数f (x )单调递减. ∴f (x )max =f (x 0). 当a =1时,x 0=1,f (x )max =f (1)=0,此时函数f (x )只有一个零点x =1. 当a >1时,f (1)=a -1>0, f ????12a =ln 12a -14a 2+12<12a -1-14a 2+12 =-????12a -122 -14<0, f (2a )=ln 2a -2a 2<2a -1-2a 2=-2 ????a -122 -12 <0. ∴函数f (x )在区间????12a ,1和区间(1,2a )上各有一个零点. 综上可得:当a =1时,函数f (x )只有一个零点x =1; 当a >1时,函数f (x )有两个零点. 规律方法 1.利用导数求函数的零点常用方法:

贝塞尔函数及其应用

题目:贝塞尔函数及其应用

摘要 贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程时得到的,因此它在波动问题以及各种涉及有势场的问题的研究中占有非常重要的地位。贝塞尔函数是贝塞尔方程的解。它在物理和工程中,有着十分广泛的应用。 本文首先通过一个物理问题引入贝塞尔方程,并求出贝塞尔方程的解,即贝塞尔函数。其次列出了贝塞尔函数的几个重要的结论,如递推公式,零点性质等,并对他们进行了深入的分析。第二部分主要介绍了傅里叶-贝塞尔级数,通过matlab编程对函数按傅里叶-贝塞尔级数展开之后的图像进行分析,得到了它们的逼近情况。最后一部分介绍了贝塞尔函数的几个重要应用,一个是在物理光学中的应用,着重分析了贝塞尔函数近似公式的误差;一个是在信号处理中调频制的应用,得到了特殊情况下的公式算法。 关键词:贝塞尔函数,傅里叶-贝塞尔级数,渐近公式

目录 一、起源.......................................................................................................... 错误!未定义书签。 (一)贝塞尔函数的提出...................................................................... 错误!未定义书签。 (二) 贝塞尔方程的引出?错误!未定义书签。 二、贝塞尔函数的基本概念.......................................................................... 错误!未定义书签。 (一)贝塞尔函数的定义........................................................................ 错误!未定义书签。 1. 第一类贝塞尔函数....................................................................... 错误!未定义书签。 2. 第二类贝塞尔函数 (6) 3. 第三类贝塞尔函数?错误!未定义书签。 4. 虚宗量的贝塞尔函数................................................................... 错误!未定义书签。 (二)贝塞尔函数的递推公式?错误!未定义书签。 (三)半奇数阶贝塞尔函数?错误!未定义书签。 (四) 贝塞尔函数的零点?错误!未定义书签。 (五) 贝塞尔函数的振荡特性................................................................ 错误!未定义书签。 三、 Fourier-Bessel级数?错误!未定义书签。 (一) 傅里叶-贝塞尔级数的定义?错误!未定义书签。 (二) 将函数按傅里叶-贝塞尔级数展开?错误!未定义书签。 四、贝塞尔函数的应用?错误!未定义书签。 (一)贝塞尔函数在光学中的应用...................................................... 错误!未定义书签。 (二)贝塞尔函数在调频制中的应用.................................................... 错误!未定义书签。附录 ................................................................................................................... 错误!未定义书签。

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

第五章_贝塞尔函数

n阶第一类贝塞尔函数() J x n 第二类贝塞尔函数,或称Neumann函数() Y x n 第三类贝塞尔函数汉克尔(Hankel)函数,(1)() H x n 第一类变形的贝塞尔函数() I x n 开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数 在第二章中,用分离变量法求解了一些定解问题。从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所

以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。 §5.1 贝塞尔方程的引出 下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。 这个问题可以归结为求解下述定解问题: 2222 22222 22222 0(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ?=+=???=++<>???=+≤= (5.3)?????? ??? 用分离变量法解这个问题,先令 (,,)(,)()u x y t V x y T t = 代入方程(5.1)得 222 22()V V VT a T x y ??'=+?? 或

专题14 运用函数的图像研零点问题(解析版)

专题14 运用函数的图像研零点问题 一、题型选讲 题型一: 运用函数图像判断函数零点个数 可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。 例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上 题型二: 运用函数图像研究复合函数零点个数 复合函数零点问题的特点:考虑关于x 的方程()0g f x =????根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层( )f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =????的根的个数 题型三 运用函数图像研究与零点有关的参数问题 三类问题之间的联系:即函数的零点?方程的根?函数图象的交点,运用方程可进行等式的变形进

而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原 题型四、运用函数图像研究与零点有关的复合函数的参数问题 求解复合函数()y g f x =????零点问题的技巧:(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出()(),f x g x 的图像(2)若已知零点个数求参数的范围,则先估计关于()f x 的方程()0g f x =????中()f x 解的个数,再根据个数与()f x 的图像特点,分配每个函数值()i f x 被几个x 所对应,从而确定()i f x 的取值范围,进而决定参数的范围 例6、(2018南京、盐城、连云港二模)已知函数f(x)=? ?? ??-x 3+3x 2+t , x <0,x ,x ≥0, t ∈R .若函数g (x )=f (f (x ) -1)恰有4个不同的零点,则t 的取值范围为________. 2、(2017南京、盐城二模)若函数f (x )=x 2-m cos x +m 2+3m -8有唯一零点,则满足条件的实数m 组成的集合为________. 3、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ?=?-

数理方程与特殊函数试卷 3套

2010年6月 一、填空题(20分) 1、微分方程的固有值为 ____________,固有函数为____________。 2、勒让德多项式的母函数为________________________。 3、一长为的均匀直金属杆,x=0端固定,x=l端自由,则纵向震动过程中的边界条件为 ________________________。 4、二阶线性偏微分方程属于____________型方程。 5、微分方程,在条件下的拉氏变换表 达式为____________________________________。 6、埃尔米特多项式的微分表达式为____________________________________。 7、函数是区域内的调和函数,它在上有一阶连续偏导数,则 ____________. 8、定解问题的解为________________________。 9、在第一类奇次边界条件下=____________。 10、=____________,=____________。 二、证明题(10分) 三、建立数学物理方程(10分) 一长为l、截面积为s、密度为、比热容为的均匀细杆,一端保持零度,另一端有恒定的热量q流入,初始温度为试建立热传导方程,写出定界条件(要有必要的步骤)。四、写出下列定解问题的解(35分) 1、

2、 3、 五、将函数展开为广义傅里叶级数(25分) 1、设是的正零点,试将函数展开成的傅里叶贝塞尔级数。 2将函数按埃尔米特多项式展开成级数。 2009年6月 一、填空题(20分) 11、微分方程的固有值为 ____________,固有函数为____________。 12、勒让德多项式的母函数为________________________。 13、一长为的均匀直金属杆,x=0端温度为零,x=l端有恒定的热流流出,则热传导过 程中的边界条件为________________________。 14、二阶线性偏微分方程属于____________型方程。 15、微分方程,在条件下,其拉氏 变换表达式为____________________________________。 16、埃尔米特多项式的微分表达式为____________________________________。 17、函数是区域内的调和函数,它在上有一阶连续偏导数,则 ____________. 18、定解问题的解为 ________________________。 19、在第一类奇次边界条件下=____________。 20、=____________,=____________。 二、证明题(10分)

利用导数研究函数的图像及零点问题(提高)

利用导数研究函数的图像及零点问题 【复习指导】 本讲复习时,应注重利用导数来研究函数图像与零点问题,复习中要注意等价转化、分类讨论等数学思想的应用. 双基自测 1.已知曲线C :x 2+y 2=9(x ≥0,y ≥0)与函数y =ln x 及函数y =e x 的图像分别交于点A (x 1,y 1),B (x 2,y 2),则2212x x +的值为 .9 2.[10浙江]已知0x 是函数1()21x f x x =+-的一个零点.若10(1,)x x ∈,20(,)x x ∈+∞,则1()f x ,2()f x 的符号分别______________.解:负;正; 3.已知函数()ln x f x e x -=+(e 是自然对数的底数),若实数0x 是方程()0f x =的解,且1020x x x <<<,则1()f x 2()f x (填“>”,“≥”,“<”,“≤”). 4.已知234101()1234101x x x x f x x =+-+-+???+,234101()1234101x x x x g x x =-+-+-???-,若函数()f x 有唯一零点1x ,函数()g x 有唯一零点2x ,则1x ,2x 所在的区间 为 .1(1,0)x ∈-,2(1,2)x ∈ 考点一 函数的图像问题 【例1】对于三次函数32()(0)f x ax bx cx d a =+++≠.定义:设''()f x 是函数 ()y f x =的导数'()y f x =的导数, 若方程''()0f x =有实数解x 0,则称点(x 0,f (x 0))为函数()y f x =的“拐点”;已知函数32()654f x x x x =-++,请回答下列问题; ⑴.求函数()y f x =的“拐点”A 的坐标; ⑵.检验函数()y f x =的图像是否关于“拐点”A 对称,对于任意的三

导数与函数的零点讲义

【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3 ()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。 变式:已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根,则 【答案】 -8 【解析】因为定义在R 上的奇函数,满足,所以,所以, 由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间[0,2]上 是增函数,所以在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间上有四个不同的根,不妨设,由对称性知,.所以 . 【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况

【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数 1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两 个相异的实根,求实数a 的取值范围(注:1n2≈: 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即: 如果函数()f x 在区间[]a b ,上是一条连续不断曲线,并且()()0f a f b ?<,则函数()f x 在区间()a b ,上至少有一个零点。即存在一点()0x a b ∈,,使得0()0f x =,这个0x 也就是方程()0f x =的根. (2)要求证一个函数“有且只有一个”零点,先要证明函数为单调函数,即存在零点;再用“函数零点的存在性定理”求证函数零点的唯一性。其依据为: 如果函数()f x 在区间[]a b ,上是单调函数,并且()()0f a f b ?<,则函数()f x 在区间 ()a b ,上至多有一个零点。 【例3】设函数3 2 9()62 f x x x x a =- +-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值; (2)若方程()0f x =有且仅有一个实根,求a 的取值范围.

相关文档