文档库 最新最全的文档下载
当前位置:文档库 › The distance modulus of the Large Magellanic Cloud based on double-mode RR Lyrae stars

The distance modulus of the Large Magellanic Cloud based on double-mode RR Lyrae stars

The distance modulus of the Large Magellanic Cloud based on double-mode RR Lyrae stars
The distance modulus of the Large Magellanic Cloud based on double-mode RR Lyrae stars

a r X i v :a s t r o -p h /0011056v 1 2 N o v 2000

A&A manuscript no.

(will be inserted by hand later)

ASTRONOMY

AND

ASTROPHY SICS

1.Introduction

The determination of the distance moduli (DM )of the Magellanic Clouds plays an important role in establish-ing the cosmic distance scale.Mostly due to the analyses of the hipparcos data,there is a renewed e?ort to pin down this crucial distance within an accuracy of better than ≈0.05mag.However,the question is far from being settled,and the LMC distance moduli obtained with var-ious methods may di?er by several tenth of magnitudes,stretching from the ‘short’(DM ≈18.2,e.g.,Stanek et al.2000)to the ‘long’(DM ≈18.6,e.g.,Feast 1999)distance scales.

In the ?rst paper of this series (Kov′a cs &Walker 1999,hereafter KW99,see also Kov′a cs 2000b)we used

2G.Kov′a cs:The distance modulus of the Large Magellanic Cloud based on double-mode RR Lyrae stars KW99simply leads to the distance modulus through the

comparison with the observed magnitudes.

In the following we give a more detailed description

of the parameters entering in the calculation of the LMC

distance modulus.

Together with the earlier discoveries of Alcock et al.

(1997),the recent analysis of more than1300short-period

RR Lyrae stars led to a substantial extension of the known

RRd stars in the LMC(Alcock et al.2000).In the present

analysis we include181RRd variables,which constitute

all presently known RRd stars in the LMC.The macho

instrumental magnitudes have been transformed to the

standard Johnson V and Kron-Cousins R c colors accord-

ing to the recipe of Alcock et al.(1999).The periods and

the average magnitudes are listed in Table1.1

For an independent computation of the LMC distance

modulus we use globular cluster RRd data compiled by

KW99.Relative distance moduli required by this method

are checked by the photometric data of Udalski(1998)and

Clementini et al.(2000b,hereafter C00b).

The T e?=f(color,log g,[M/H])relations are derived

from the stellar atmosphere models of Castelli et al.(1997,

hereafter C97)with the zero point adjusted to the irfm re-

sults of Blackwell&Lynas-Gray(1994,hereafter BLG94).

The required color,log g and[M/H]data are obtained

from Clementini et al.(1995).It is important to remark

that this approach assumes a uniform shift in log T e?be-

tween the irfm and theoretical scales,and that this shift

is applicable throughout the relevant parameter regime

(i.e.,from dwarfs to giants).Additional di?culty might

occur because of the inaccuracy of the[Fe/H]and log g

values given by the irfm sources,or the neglect of the

log g dependence in some of those works(e.g.,Alonso et

al.1996;1999,hereafter A96and A99,respectively).Fur-

thermore,di?erent colors may yield di?erent shifts,pro-

ducing inconsistency among the derived temperatures at

a level of0.004in log T e?.By considering various colors

and overlapping samples in the irfm publications,our

current estimates for the zero point di?erences(in the

sense of log T e?(source)minus log T e?(C97))are as fol-

lows:?0.004(BLG94),?0.007(A96);?0.008(Blackwell

&Lynas-Gray1998);?0.010(A99).Here we use the scale

of BLG94,because it is close to the one used in our pre-

vious studies and in the Baade-Wesselink analyses(see

KW99).In Sect.3we will discuss the e?ect of the T e?

zero point on the distance determination.The?nal for-

mulae,adjusted to the BLG94scale are the following

log T e?=3.8804?0.3213(B?V)+0.0176log g

+0.0066[M/H],(2)

log T e?=3.8928?0.4910(V?R c)+0.0116log g

+0.0012[M/H].(3)

G.Kov′a cs:The distance modulus of the Large Magellanic Cloud based on double-mode RR Lyrae stars3 Table2.Relative distance moduli(LMC minus IC4499)

and reddenings of LMC?eld RR Lyrae stars

Field(ogle RRab):100 2.040.13

RRd(macho):181 1.990.11

RRd(C00b):10 2.030.09

4G.Kov′a cs:The distance modulus of the Large Magellanic Cloud based on double-mode RR Lyrae stars

Table3.Derived distance moduli for the LMC.Columns5–8show the changes in the distance modulus,if E B?V, [M/H],log T0,P1/P0(observed)are changed by+0.03,+0.2,+0.005and+0.001,respectively.Column9shows the e?ect of changing X from0.76to0.70

M15?2.30.0718.520.040.050.070.050.01

M68?2.00.0318.470.050.080.070.060.02

IC4499?1.50.2218.500.060.150.080.050.04

LMC?1.50.1118.520.040.140.080.060.04

(完整版)光杠杆的使用与杨氏模量的测定(精)

光杠杆的使用与杨氏模量的测定 【实验目的】 1、学习微小长度变化的测量方法; 2、测定钢丝样品的杨氏模量。 【实验仪器】 杨氏模量装置一套、米尺、千分尺。 【实验原理】 任何弹性物体在外力作用下都会发生形变。一长度为L 、横截面积为S 的均匀金属 丝,在受到沿长度方向上的外力F 作用时,伸长量为δ,在弹性形变的限度内,根据胡克定律,其受到的拉伸应力S F 与伸长的应变L δ成正比,即 L E S F δ= (1) 比例系数E 称为该金属的杨氏模量。 又设金属丝直径为d ,则241d S π= ,代入上式得 δ π24d FL E = (2) 其中,δ是一个微小量,采用放大法,用光杠杆来测量。 光杠杆原理如下图所示: 一个直立的平面镜装在三足底板的一端,三足尖321,,f f f 构成等腰三角形。1f 至32f f 的垂线长为Z ,并以前足32f f 为光点转轴,后足1f 的高低若发生微小的变化,通过平面镜反射,经较长的光程作为杠杆指示反映在标尺上。 先调节平面镜的法线水平,镜尺与平面镜距离为D 。望远镜水平对准平面镜,从望远镜中可以看到竖尺由平面镜反射的像,望远镜中的叉丝对准竖尺某一刻度线进行读数0A ,如果加砝码(mg F =)后被测物体向下的位移为δ,光杠杆后足也随之下降δ,使平面镜

微微仰起,于是1f 以32f f 为轴,以Z 为半径旋转θ角。因为Z <<δ,所以θ角较小,有Z δ θ≈。 望远镜中叉丝原来对准竖尺上的刻度为0A ,平面镜移动后,根据光的反射定律,镜面旋转θ角,反射线将旋转2θ角,这时叉丝对准的新刻度m A ,当D L <<,有 D A A m 02-= θ 所以 )(20A A D Z m -= δ (3) 代入(2)式,可得 Z A A d mgLD E m )(802-= π (4) [实验内容] 1、安置好光杠杆及尺读望远镜并调节好,从望远镜中能清晰地看到直尺的像并选则好0A 的值。 2、逐次增加一定质量的砝码,至少加六次砝码,记录相应的望远镜中的读数1A ,2A ……6A 。 3、依次减去六个砝码,记录相应的望远镜中的读数。 4、选择合适的仪器测出l ,d ,D 和Z 。测量Z 时,可将光杠杆在纸上压出三个足迹,再在测量其Z 值。 5、用逐差法求出钢丝的杨氏模量。 [注意事项] (1)注意维护金属丝的平直状态。实验之前若发现金属丝有些弯折,可在砝码托上加一本底砝码,使它伸直后再开始做实验。 (2)仪器调整好以后,在实验过程中要防止仪器有任何踫动现象。特别是在加减砝码时要轻拿轻放。

动态悬挂法测杨氏模量数据处理参考范例

动态悬挂法测杨氏模量数据处理参考范例 1. 数据记录 表1 各测量量测量值 样品 () L m m () m L m m ? ()m g ()m m g ? () 1f H z ()1 m f H z ? 黄铜 0.05 0.01 0.1 不锈钢 0.05 0.01 1 表2 样品直径测量值 次数 黄铜直径 () d m m () m d m m ? 不锈钢直径 () d m m () m d m m ? 1 0.005 0.005 2 3 4 5 6 2. 数据处理 (1)黄铜: L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f :0.10.058B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.998d m m = 1.110.0170.019A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.020u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001037.9310 701.0 1.6067 1.6067 5.99810 L m f Y d ---????==? ? 10 2 9.47710 N m = ?Y E = =

1.3%= 则101029.47710 1.3%0.1310Y Y u Y E N m =?=??=? (2)不锈钢 L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f : 10.58B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.945d m m = 1.110.0210.024A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.025u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001034.4310 1014 1.6067 1.6067 5.94510L m f Y d ---????==? ? 11 2 1.86510 N m =?Y E = = 1.7%= 则11 11 2 1.86510 1.7%0.03210 Y Y u Y E N m =?=??=? 3. 实验结果 (1)室温下测得黄铜样品的杨氏模量为: ()10 2 9.50.210Y N m =±? () 0.683p = 1.3% Y E = (2)室温下测得不锈钢样品的杨氏模量为: ()11 2 1.860.0410Y N m =±? () 0.683p = 1.7% Y E = 备注:不确定度u 在计算过程中保留两位有效数字,在最后计算结果中保留一位有效数字。

实验 杨氏模量的测定(梁弯 曲法)

实验杨氏模量的测定(梁弯曲法) 【实验目的】 用梁的弯曲法测定金属的杨氏模量。 【仪器用具】 攸英装置,光杠杆,望远镜及直尺,螺旋测微计,游标卡尺,米尺,千分表。 【实验原理】 将厚为、宽为的金属棒放在相距为的二刀刃上(图1),在棒上二刀刃的中点处挂上质量为的砝码,棒被压弯,设挂砝码处下降,称此为弛垂度,这时棒材的杨氏模量

. (1) 下面推导上式。图(2)为沿棒方向的纵断面的一部分。在相距的二点上的横断面,在棒弯曲前互相平行,弯曲后则成一小角度。显然在棒弯曲后,棒的下半部呈现拉伸状态,上半部为压缩状态,而在棒的中间有一薄层虽然弯曲但长度不变,称为中间层。 计算与中间层相距为、厚、形变前长为的一段,弯曲后伸长了,它受到的拉力为,根据胡克定律有 . 式中表示形变层的横截面积,即。于是 . 此力对中间层的转矩为,即 . 而整个横断面的转矩应是 . (2) 如果将棒的中点固定,在中点两侧各为处分别施以向上的力(图3),则棒的弯曲情况当和图1所示的完全相同。棒上距中点为、长为的一段,由于弯曲产生的下降等于

(3) 当棒平衡时,由外力对该处产生的力距应当等于由式(2)求出的转距,即 . 由此式求出代入式(3)中并积分,可求出弛垂度 , (4) 即 . (1) 【仪器介绍】 攸英装置如图4所示,在二支架上设置互相平的钢制刀刃,其上放置待测棒和辅助棒。在待测棒上二刀刃间的中点处,挂上有刀刃的挂钩和砝码托盘,往托盘上加砝码时待测棒将被压弯,通过在待测棒和辅助棒上放置的千分表测量出棒弯曲的情况,从而求出棒材的杨氏模量。

【实验内容与要求】 1.按图4安置好仪器,用千分表直接测出。 2.用螺旋测微计在棒的各处测厚度,要测10次取平均值。 3.用游标卡尺在棒的各处测宽度(测4次)。 4.用米尺测二刀刃间的距离,测4次。 5.将测得的量代入(1)求出棒材的杨氏模量。单位用。 6.求测量结果的误差。 【注意事项】 【思考问题】 1.调节仪器的程序分几步,每一步要达到什么要求? 2.测量时哪些量要特别仔细测?为什么? 3.什么是弛垂度?怎样测量它? 4.如果被测物是半径为的圆棒,式(1)将是什么样子的? 5.如果用读数显微镜或螺旋测微计去测弛垂度,应当怎样进行测量?

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm , )、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ??? ????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】 <一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方左右位置上;

4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0‘,' 7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: 4 )()()()(37261504n n n n n n n n n -+-+-+-=? 3. 注:上式中的n ?为增重400g 的金属丝的伸长量。 【实验数据记录处理】 【结果及误差分析】 1. 光杠杆、望远镜和标尺所构成的光学系统一经调节好后,在实验过程中就不可 在移动,否则,所测的数据将不标准,实验又要重新开始; 2. 不准用手触摸目镜、物镜、平面反射镜等光学镜表面,更不准用手、布块或任 意纸片擦拭镜面;

实验报告-杨氏模量测量

实验报告:杨氏模量的测定

杨氏模量的测定(伸长法) 【实验目的】 1.用伸长法测定金属丝的杨氏模量 2.学习光杠杆原理并掌握使用方法 【实验仪器】 伸长仪;光杆杆;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。 【实验原理】 物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。 设有一截面为S ,长度为l 的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了δ,其单位面积截面 所受到的拉力S F 称为胁强,而单位长度的伸长量l δ称为胁变。根据胡克定律,在弹性形变范围内,棒状 (或线状)固体胁变与它所受的胁强成正比: F E S l δ = 其比例系数E 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。 Fl E S δ = (1) 右图是光杠杆镜测微小长度变化量的原理图。左侧曲尺状物为光杠杆镜,M 是反射镜,b 为光杠杆镜短臂的杆长,B 为光杆杆平面镜到尺的距离,当加减砝码时,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为l 时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为0h ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为i h 。这样,钢丝的微小伸长量δ,对应光杠杆镜的角度变化量θ,而对应的光杠杆镜中标尺读数变化则为Δh 。由光路可逆可以得知,h ?对光杠杆镜的张角应为θ2。从图中用几何方法可以得出: tg b δ θθ≈= (1) tg22h B θθ?≈= (2) 将(1)式和(2)式联列后得: 2b h B δ= ? (3) 考虑到2 =/4S D π,F mg = 所以:2 8Bmgl E D b h π=? 这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。 图 光杠杆原理 A

实验6 杨氏模量的测定(拉伸法)

一、拉伸法 【实验目的】 1. 学会用拉伸法测量金属丝的杨氏模量 2. 掌握光杠杆法测量微小伸长量的原理 3. 掌握各种测量工具的正确使用方法 4. 学会用逐差法或最小二乘法处理实验数据 5. 学会不确定度的计算方法,结果的正确表达 【实验仪器】 杨氏模量仪如图 所示,主要由实验架和望远镜系统、数字拉力计、测量工具(图中未显示)组成。 标尺 金属丝 望远镜 拉力传感器 数字拉力计 光杠杆 施力螺母 水平卡座 垂直卡座 图 2-6-1 杨氏模量系统示意图 1. 实验架 实验架是待测金属丝杨氏模量测量的主要平台。金属丝通过一夹头与拉力传感器相连,采用螺母旋转加力方式,加力简单、直观、稳定。拉力传感器输出拉力信号通过数字拉力计显示金属丝受到的拉力值。光杠杆的反射镜转轴支座被固定在一台板上,动足尖自由放置在夹头表面。反射镜转轴支座的一边有水平卡座和垂直卡座。水平卡座的长度等于反射镜转轴与动足尖的初始水平距离(即小型测微器的微分筒压到0刻线时的初始光杠杆常数),该距离在出厂时已严格校准,使用时勿随意调整动足与反射镜框之间的位置。旋转小型测微器上的微分筒可改变光杠杆常数。实验架含有最大加力限制功能,实验中最大实际加力不应超过13.00kg 。

2. 望远镜系统 望远镜系统包括望远镜支架和望远镜。望远镜支架通过调节螺钉可以微调望远镜。望远镜放大倍数12倍,最近视距0.3m ,含有目镜十字分划线(纵线和横线)。望远镜如图所示。 图2-6-2 望远镜示意图 3. 数字拉力计 电源:AC220V ±10%,50Hz 显示范围:0~±19.99kg (三位半数码显示) 最小分辨力:0.001kg 含有显示清零功能(短按清零按钮显示清零)。 含有直流电源输出接口:输出直流电,用于给背光源供电。 数字拉力计面板图: 图 2-6-3 数字拉力计面板图 4. 测量工具 【实验原理】 分划线 视度调节手轮 调焦手轮 物镜 O 型连接圈

金属丝杨氏模量的测定

物理实验报告 【实验名称】 杨氏模量的测定 【实验目的】 1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。 2. 掌握各种长度测量工具的选择和使用。 3. 学习用逐差法和作图法处理实验数据。 【实验仪器】 MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。 【实验原理】 一、杨氏弹性模量 设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即 L L Y S F ?= (1) 则 E L L S F Y ?= (2) 比例系数E 即为杨氏弹性模量。在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。Y 的国际单位制单位为帕斯 卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。 本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S 42d S π= 则(2)式可变为 E L d FL Y ?=24π (3) 可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量, F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时, F 每变化1kg 相应的ΔL 约为mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。 二、光杠杆测微小长度变化 尺读望远镜和光杠杆组成如图2所示的测量系统。光杠杆系统是由光杠杆镜架与尺读望远镜组成的。光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。三个尖足的边线为一等腰三角形。前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。尺读望远镜由一把竖立的毫米刻度尺和在尺旁的一个望远镜组成。

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85 实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。在数据处理中,掌握逐差法 和作图法两种数据处理的方法 实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ, 其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: D b =≈θθ22t a n 故: ) 2(D b l L = ?,即是) 2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确 定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并

动态法测量杨氏弹性模量

动态法测量杨氏弹性模量 郑新飞 杨氏模量是固体材料在弹性形变范围内正应力与相应正应变(当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S 叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量)的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。杨氏模量的测量是物理学基本测量之一,属于力学的范围。根据不同的测量对象,测量杨式模量有很多种方法,可分为静态法、动态法、波传播法三类。 一、实验目的 1、理解动态法测量杨氏模量的基本原理。 2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。 4、培养综合运用知识和使用常用实验仪器的能力。 二、实验仪器 1、传感器I(激振):把电信号转变成机械振动。 2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。

3、传感器II (拾振):机械振动又转变成电信号。 4、示波器:观察传感器II 转化的电信号大小。 三、实验原理 理论上可以得出用动态悬挂法测定金属材料的杨氏模量,为 2436067.1f d m l E (1) 式中l 为棒长,d 为棒的直径,m 为棒的质量。如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。 四、实验内容 1、测定试样的长度l 、直径d 和质量m 。每个物理量各测六次,列表记录。

2、在室温下不锈钢和铜的杨氏模量分别为211102m N ?和 211102.1m N ?,先由公式(1)估算出共振频率f ,以便寻找共振点。 3、把试样棒用细钢丝挂在测试台上,试样棒的位置约距离端面l 224.0和l 776.0处,悬挂时尽量避开这两个位置。 4、把2-YM 型信号发生器的输出与2-YM 型测试台的输入相连,测试台的输出与放大器的输入相接,放大器的输出与示波器的1CH (或2CH )的输入相接。 5、把示波器触发信号选择开关置于“内置”,1CH 增益置于最小档,极性置于“AC ”,X-Y 旋钮弹起。 6、打开示波器,把2-YM 型信号发生器的频率调至估算得出的频率附近,调节示波器触发电平旋钮,直至示波屏上出现稳定的正弦波形。 7、因试样共振状态的建立需要有一个过程,且共振峰十分尖锐,在共振点附近调节信号频率时,必须十分缓慢地进行,直至示波器示波屏上出现最大的信号。 8、记下室温下的共振频率f ,求出材料的杨氏模量E 。 9、本实验用铜棒和钢棒各做一次。 注意事项: (1)千万不能用力拉悬丝,否则会损坏膜片或换能器。挂试样或移动悬丝位置时,应轻放轻动,以免对悬丝施加冲击力。 (2)换能器由厚度为为0.1~0.3mm 的电压晶片用胶粘在0.1mm 左右的黄铜片上构成,故极其脆弱。测定时一定要轻拿轻放,不能用力,也不能敲打。

动态法测量杨氏模量教案资料

实验四 动态法测定材料杨氏模量 杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。 杨氏模量测量方法有多种,最常用的有拉伸法测量金属材料的杨氏模量,这属于静态法测量,这种方法一般仅适用于测量形变较大、延展性较好的材料,对如玻璃及陶瓷之类的脆性材料就无法用此方法测量。动态法由于其在测量上的优越性,在实际应用中已经被广泛采用,也是国家标准指定的一种杨氏模量的测量方法。本实验用悬挂、支撑二种“动态法”测出试样振动时的固有基频,并根据试样的几何参数测得材料的杨氏模量。 一、实验目的 1.理解动态法测量杨氏模量的基本原理。 2.掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3.培养综合运用知识和使用常用实验仪器的能力。 4.进一步了解信号发生器和示波器的使用方法。 二、实验原理 长度L 远远大于直径d (L>>d )的一细长棒,作微小横振动(弯曲振动)时满足的动 解以上方程的具体过程如下(不要求掌握): 用分离变量法:令)()(),(t T x X t x y = 代入方程(1)得: 2 244d d 1d d 1t T T YJ s x X X ρ-= 等式两边分别是x 和t 的函数,这只有都等于一个常数才有可能,设该常数为4 K ,于是得:

0d d 444=-X K x X 0d d 422=+T s YJ K t T ρ 这两个线形常微分方程的通解分别为: Kx B Kx B shKx B chKx B x X sin cos )(4321+++= ) cos()(?ω+=t A t T 于是解振动方程式得通解为: ) cos()sin cos (),(4321?ω++++=t A Kx B Kx B shKx B chKx B t x y 其中式(2)称为频率公式: 2 14??????=s YJ K ρω (2) 该公式对任意形状的截面,不同边界条件的试样都是成立的。我们只要用特定的边界条件定出常数K ,并将其代入特定截面的转动惯量J ,就可以得到具体条件下的计算公式了。 如果悬线悬挂(支撑点)在试样的节点附近,则其边界条件为自由端横向作用力: 033=??-=??-=x y YJ x M F 弯矩 : 02 2=??=x y YJ M 即 0x d X d 0x 3 3== 0x d X d l x 33== 0x d X d 0x 2 2== 0x d X d l x 22== 将通解代入边界条件,得到1cos =KLchKL ,用数值解法求得本征值K 和棒长L 应满足:ΛΛ420.20 ,279.17 ,137.14 ,9956.10 ,8532.7 ,7300.4 ,0=KL , 由于其中第一个根“0”对应于静态情况,故将其舍去。将第二个根作为第一个根,记作L K 1。一般将7300.4 1=L K 所对应的共振频率称为基频(或称作固有频率)。在上述L K n 值中,1,3,5…个数值对应着“对称形振动”, 第2、4、6…个数值对应着“反对称形振动”。图1给出了当4 ,3 ,2 ,1n =时的振动波形。由1n =图可以看出,试样在作基频振动时,存在两个节点,它们的位置距离端面分别为L 224.0和L 776.0处。理论上悬

大学物理实验-报告实验21----用拉伸法测杨氏模量

实验21 用拉伸法测杨氏模量 林一仙 1 实验目的 1)掌握拉伸法测定金属杨氏模量的方法; 2)学习用光杠杆放大测量微小长度变化量的方法; 3)学习用作图法处理数据。 2 实验原理 … 相关仪器: 杨氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。 杨氏模量 任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。本实验研究的是棒状物体弹性形变中的伸长形变。 设金属丝的长度为L ,截面积为S ,一端固定, 一端在延长度方向上受力为F ,并伸长△L ,如图 21-1,比值: L L ?是物体的相对伸长,叫应变。 《 S F 是物体单位面积上的作用力,叫应力。 根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即 L L Y S F ?= 则有 L S FL Y ?= (1) (1)式中的比例系数Y 称为杨氏弹性模量(简称杨氏模量)。 实验证明:杨氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 根据(1)式,测出等号右边各量,杨氏模量便可求得。(1)式中的F 、S 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。本实验采用光杠杆法进行间接测量(具体方法如右图所示)。 、 光杠杆的放大原理 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。

那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。从下图我们可以看出: h L tg ?= θ (2) 这时望远镜中看到的刻度为1N ,而且θ201=ON N ∠,所以就有: D N N tg 0 12-= θ(3) 采用近似法原理不难得出: L h D N N N ?= -=?201(4) 这就是光杠杆的放大原理了。 将(4)式代入(1)式,并且S=πd 2,即可得下式: ^ N h d F LD Y ??= π28 这就是本实验所依据的公式。 实验步骤 1)将待测金属丝下端砝码钩上加1.000kg 砝码使它伸直。调节仪器底部三脚螺丝,使G 平台水平。 2)将光杠杆的两前足置于平台的槽内,后足置于C 上,调整镜面与平台垂直。 3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D 约为1.5米左右。 4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L 。 5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。 " 6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。若有视差,应继续细心调节目镜,直到无视差为止。检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。记下水平叉丝(或叉丝交点)所对准的标尺的初读数N 0,N 0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。 7)每次将1.000kg 砝码轻轻地加于砝码钩上,并分别记下读数N '1、N '2、…、N i ',共做5次。 8)每次减少1.000kg 砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0。 9)当砝码加到最大时(如6.000kg )时,再测一次金属丝上、中、下的直径d ,并与挂1.000kg 砝码时对应的直径求平均值,作为金属丝的直径d 值。

实验二动态悬挂法测定金属材料的杨氏模量

实验二 动态悬挂法测定金属材料的杨氏模量 杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。“静态拉伸法”由于受弛豫过程等的影响不能真实地反映材料内部结构的变化,对脆性材料无法进行测量。目前工程技术上常用“动态悬挂法”测量杨氏模量,也是国家标准指定的一种测量方法。其基本操作是:将一根截面均匀的试样(棒)悬挂在两只传感器(一只激振,一只拾振)下面。在两端自由的条件下,使之作自由振动。测出试样的固有基频,并根据试样的几何尺寸、密度等参数,测得材料的杨氏模量。 一、实验目的 1、用动态悬挂法测定金属材料的杨氏模量。 2、培养学生综合应用物理仪器的能力。 3、学习确定试样节点处共振频率的方法。 二、仪器与用具 动态杨氏模量实验仪(包括试样、杨氏模量测试台、信号发生器),存贮示波器,电子天平,螺旋测微器,游标卡尺 三、实验原理 对于一根水平放置的细棒,以水平方向为x 轴,竖直方向为轴,由棒的横振动方程: 04 42 22=?????? ??+??x y S EJ t y ρ (2.1) 用分离变量法解以上方程对圆形棒得:。 2 436067.1f d m l E = (2.2) 上两式中,E 为杨氏模量,l 为棒长,d 为棒的直径,m 为棒的质量,S 为棒的截面积,ρ为棒的密度。如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。在国际单位制中杨氏模量的单位为(2 -?m N )。 本实验的基本问题是测量试样在不同温度时的共振频率。 由信号发生器输出的等幅正弦波信号,加在传感器I (激振)上。通过传感器I 把电信号转变成机械振动,再由悬线把机械振动传给试样,使试样受迫作横向振动。试样另一端的悬线把试样的振动传给传感器II (拾振),这时机械振动又转变成电信号。该信号经放大后送

钢丝杨氏模量的测定-实验报告

钢丝氏模量的测定 创建人:系统管理员 总分:100 实验目的 本实验采用拉伸法测量氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 实验仪器 MYC-1型金属丝氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 实验原理 在胡克定律成立的围,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,L/l tan ?=≈θθ,其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:

实验容 1.调节仪器 (1)调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽,支脚放在管制器的槽,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数i r ,然后再将砝码逐次减去,记下对应的读数' i r ,取两组对应数据的平均值i r 。 (3)用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3.数据处理 (1)逐差法 (2)作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2(6) 其中)/(2SlM DL M =,在一定的实验条件下,M 是一个常量,若以i r 为纵坐标,i F 为横坐标作图应得一直线,其斜率为M 。由图上得到M 的数据后可由式(7)计算氏模量 )/(2SlM DL E = (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

(完整版)拉伸法测钢丝杨氏模量

拉伸法测钢丝杨氏模量 实验目的 1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量; 2. 掌握有效数字的读取、运算以及不确定度计算的一般方法. 3. 掌握用逐差法处理数据的方法; 4. 了解选取合理的实验条件,减小系统误差的重要意义. 实验仪器 YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干. 1.标尺 2.锁紧手轮 3.俯仰手轮 4.调焦手轮 5.目镜 6.内调焦望远镜 7.准星 8.钢丝上夹头 9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝. 实验原理 设一粗细均匀的钢丝,长度为L 、横截面 积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即 F L E S L ?= 或 //F S E L L =? 式中E 称为杨氏模量,单位为 N·m -2,在数值上等于产生单位应变的应力. 由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题. 本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放 在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动. 设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此 时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度). 由图可知 2 tan L d θ?= ,1011tan 2s s s d d θ-?== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有 θtan ≈θ2d L ?= ,θ2tan θ2≈1 101d s d s s ?=-= 由此可得 2 1 2d L s d ?= ? 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式: 1 228mgLd E D d s = π? 其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E . 实验内容 1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度; 2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次; 3. 用游标卡尺测量光杠杆常数d 2一次; 4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度; 5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果. 实验步骤 1. 杨氏模量测定仪的调整 (1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直; (2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直. (3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在 支架上. 调整到平面镜法线和望远镜轴线等高共轴. (4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节 平面镜倾角,直到在平面镜中看到镜筒或标尺的像. (6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝. 杠杆架 反射镜 固定平台 砝码 光杠杆结构图 θ θ 光杠杆 望远镜 标尺 s 0 s 1 d 1 d 2 ΔL θ θ Δs

用拉伸法测量杨氏弹性模量教学内容

用拉伸法测量杨氏弹 性模量

用拉伸法测量杨氏弹性模量 任何物体在外力作用下都会发生形变,当形变不超过某一限度时,撤走外力之后,形变能随之消失,这种形变称为弹性形变。如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变,称为塑性形变。发生弹性形变时,物体内部产生恢复原状的内应力。弹性模量是反映材料形变与内应力关系的物理量,是工程技术中常用的参数之一。 一. 实验目的 1. 学会用光杠杆放大法测量长度的微小变化量。 2. 学会测定金属丝杨氏弹性模量的一种方法。 3. 学习用逐差法处理数据。 二. 实验仪器 杨氏弹性模量测量仪支架、光杠杆、砝码、千分尺、钢卷尺、标尺、灯源等。 三. 实验原理 在形变中,最简单的形变是柱状物体受外力作用时的伸长或缩短形变。设柱状物体的长度为L ,截面积为S ,沿长度方向受外力F 作用后伸长(或缩短)量为ΔL ,单位横截面积上垂直作用力F /S 称为正应力,物体的相对伸长ΔL /L 称为线应变。实验结果证明,在弹性范围内,正应力与线应变成正比,即 L L Y S F ?= (3-1-1) 这个规律称为虎克定律。式中比例系数Y 称为杨氏弹性模量。在国际单位制 中,它的单位为N /m 2,在厘米克秒制中为达因/厘米2。它是表征材料抗应变能力的一个固定参量,完全由材料的性质决定,与材料的几何形状无关。 本实验是测钢丝的杨氏弹性模量,实验方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量ΔL ,即可求出Y 。钢丝长度L 用钢卷尺测量,钢丝的横截面积42 d S π=,直径d 用千分尺测出,力F 由砝码的质量求出。在实际测量中,由于钢丝伸长量ΔL 的值很小,约mm 110-数量级。因此ΔL 的测量采用光杠杆放大法进行测量。

实验三十七用动态悬挂法测定杨氏模量

实验三十七 用动态悬挂法测定杨氏模量 杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。 “静态拉伸法”由于 受弛豫过程等的影响不能真实地反映材料内部结构的变化,对脆性材料无法进行测量。本实验用“动态悬 挂法”测出 试样振动时的固有基频,并根据试样的几何参数测得材料的杨氏模量。 目的 (1) 悬挂法测定金属材料的杨氏模量。 (2) 培养学生综合应用物理仪器的能力。 (3) 设计性扩展实验,培养学生研究探索的科学精神 二实验 棒的振动方程为(如图 1): 4 2 y ps y 0 4 2 0 x 4 EJ t 2 这两个线形常微分方程得通解分 别为 称为频率公式。对任意形状的截面,不同边界条件的试样都是成立的。我们只要用特定的边界条件定出常 数K ,并将其代入特定截面的转动惯量 J ,就可以得到具体条件下的计算公式了。 如果悬线悬挂在试样的节点附近,则其边界条件为自由端横向作用力: 将通解代入边界条件,得到 COS KI chKl 1 用数值解法求得本征值 K 和棒长l 应满足 Kl =0, 4.730 , 7.853 , 10.966…。 由于其中一个根“ 0”对应于静态情况,故将第二个根作为第一个根,记作 K 1l 。一般将K 1l 所对应的 频率称为基频频率。在上述 K m l 值中,1, 3, 5…个数值对应着“对称形振动” ,第2、4、6…个数值对应 着“反对解以上方程的具体过程如下(不要求掌握) 。 用分离变量法:令 y(x,t) X(x)T(t) )得 代入方程(7-1 1 d 4X X dx 4 等式两边分别是 S 1 d 2T 2~ EJ T dt 2 x 和t 的函数,这 该 只有都等于一个常数才有可能, 常数设为K 4 , dx 4 立 dt 2 得: K 4X 0 测试棒 B 3 COS Kx B 4 sin Kx X(x) BchKx B 2shKx T (t) A COS ( t ) 于是解振动方程式得通解为 y(x,t) (B 1ChKx B 2ShKx B 3 COS Kx B 4 sin Kx)Acos( t ) 1 K 4EJ 2 S 其中 (2 F M 3 y x x 2 弯距 M EJ y 0 x 即 d 3X 0, d 3X 0 , dx 3 dx 3 x 0 x l dx 2 x 0 dx2 x l I.'[换能器 n

相关文档
相关文档 最新文档