文档库 最新最全的文档下载
当前位置:文档库 › RLC暂态实验

RLC暂态实验

t

3、RLC串联电路的暂态过程

◆放电过程(K 接到2)

因有L di u L dt =,R u iR =,c du i C

dt

=上式可改写为

2

20d q dq q L R dt dt C

++=1000(0,,|0)

i dq

t q CE i dt

=====初始条件2

20C C

C d u du LC RC

u dt dt

++=(0,,0)C

C dU t U E dt

===初始条件

)

)

临界阻尼

过阻尼

欠阻尼

◆充电过程(K 接到1)

因有L di u L dt =,R u iR =,c

du i C

dt

=上式可改写为

2

2d q dq q L R E dt dt C

++=10(0,0)

t q ==初始条件2

2C C

C d u du LC RC

u E dt dt

++=(0,0)

C t U ==初始条件

RLC串联电路的充、放电暂态过程曲线

RC串联电路暂态过程的研究

实验十七 RC 串联电路暂态过程的研究 RC 串联电路在接通或断开直流电源的瞬间,相当于受到阶跃电压的影响,电路对此要作出响应,会从一个稳定态转变到另一个稳定态,这个转变过程称为暂态过程。此过程变化快慢是由电路中各元件的量值和特性决定的,描述暂态变化快慢的特性参数是放电电路的时间常数或半衰期。 一个实际电路总可简化成某种等效电路,常见的等效电路有RC 或RLC 电路。本实验研究RC 串联电路在暂态过程中,不同参数对电流、电压的影响。通过对暂态过程的研究,可以积极控制和利用暂态现象。 研究RC 串联电路暂态过程通常用直流法或交流法,直流法包括冲击法和电压法,交流法中有示波器观测法。 RC 串联电路的暂态特性在电子电路中有许多用途,例如:可起延迟作用、积分作用、耦合作用、隔直作用等等。 【实验目的】 1.学习如何通过实验方法研究有关RC 串联电路的暂态过程。 2.通过研究RC 串联电路暂态过程,加深对电容特性的认识和对RC 串联电路特性的理解。 3.提高对RC 串联电路暂态过程的分析技能。 4.根据对实验现象的分析,学习和了解进行科学实验的一般程序和方法。 【实验原理】 1. RC 串联电路的充放电过程 在由电阻R 及电容C 组成的直流串联电路中,暂态过程即是电容器的充放电过程(图17-1),当开关K 打向位置1时,电源对电容器C 充电,直到其两端电压等于电源E 。这个暂态变化的具体数学描述为q =CUc ,而I = dq / dt dt dUc C dt dq i == (1) E iR Uc =+ (2) 将式(1)代人式(2),得 E RC Uc RC dt dUc 11=+ 考虑到初始条件t=0时,u C =0,得到方程的解: 上式表示电容器两端的充电电压是按指数 增长的一条曲线,稳态时电容两端的电压等于电 源电压E ,如图17-2(a) 所示。式中RC=τ具有 时间量纲,称为电路的时间常数,是表征暂态过 程进行得快慢的一个重要的物理量,由电压u c 上升到0.63E ,所对应的时间即为τ。 当把开关k 1打向位置2时,电容C 通过电阻R 放电,放电过程的数学描述为 图17-2 RC 电路的充放电曲线 (a )电容器充电过程 (b )电容器放电过程 图17-1 RC 串联电路

电力系统分析实验报告四(理工类)

西华大学实验报告(理工类) 开课学院及实验室: 实验时间 : 年 月 日 一、实验目的 1)初步掌握电力系统物理模拟实验的基本方法。 2)加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用。 3)通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。 二、实验原理 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和g 轴总电抗分别为d X ∑和q X ∑,则发电机的功率特性为 当发电机装有励磁调节器时,发电机电势q E 随运行情况而变化,根据一般励磁调节器的性能,可认为保持发电机'q E (或' E )恒定。这时发电机的功率特性可表示成 或 这时功率极限为 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一,就是尽可能提高电力系统的功率极限。从简单电力系统功率极限的表达式看,要提高功率极限,可以通过发电机装设性能良好的励磁调节器,以提高发电机电势、增加并联运行线路回路数;或通过串联电容补偿等手段,以减少系统电抗,使受端系统维持较高的运行电压水平;或输电线采用中继同步调相机、中继电力系统等手段以稳定系统中继点电压。 (3)实验内容 1)无调节励磁时,功率特性和功率极隈的测定 ①网络结构变化对系统静态稳定的影响(改变戈): 在相同的运行条件下(即系统电压U-、发电机电势E 。保持不变.罚芳赆裁Ll=E 。),分别 测定输电线单回线和双回线运行时,发电机的功一角特性曲线,&豆甍辜授冁蝮和达到功率极 限时的功角值。同时观察并记录系统中其他运行参数(如发电极端毫玉萼蔫交化。将两种 情况下的结果加以比较和分析。 实验步骤如下: a)输电线路为单回线; b)发电机与系统并列后,调节发电机,使其输出的有功和无ZZ 蔓专零: c)功率角指示器调零; d)逐步增加发电机输出的有功功率,而发电机不调节震磁: e)观察并记录系统中运行参数的变化,填入表1.3中: f)输电线路为双回线,重复上述步骤,将运行参数填入表l 。毒=:

RLC串联电路暂态过程的研究

选十 RLC 串联电路暂态过程的研究 一、目的要求: 通过对RLC 电路暂态过程的研究,了解该电路的特性,具体要求达到: 1.加深对阻尼振荡的理解; 2.能用示波器定量描绘三种不同阻尼振荡的波形;并记录下临界阻尼电路R 且与理论值相比较。 3.测量弱阻尼振荡周期T ’。并与理论值相比较; 二、实验仪器: 示波器、低频讯号发生器,波形发生器。 三、参考书目 1.林抒、龚镇雄《普通物理实验》P.319-324 2.邱关源《电路》 3.A.M.波蒂斯、H.D.扬《大学物理实验》P.149-158。 四、基本原理 本实验要研究的是RLC 串联电路在阶跃电压(或称方波讯号)作用下的工作过程及电容上电压0V 变化的规律。 实验线路如图1所示。输入讯号如图2所示。 R L C A B 方波讯号a b c t u (t) 0T /2T 图1 图2 方波(或称矩形波)讯号的周期为T ,其电压变化的特点是:1.a~b 电压为E ,b~c 电压为零,以后周而复始。形成阶跃式电压;2.该讯号电压变化的周期较短。约310-s~510-s 。在电路中相当于供能断续开关,使电路的变化过程是短暂的瞬态过程。 由上述可知,当电路处于方波的正讯号输入时,即相当于在A 、B 端加上电压E ,使电容充电。由于R 、L 、C 的存在,可得电路中电流I 随时间变化的方程如下: E IR dt dI L =+ 又因I=dt dQ ,上式可写为: E C Q dt dQ R dt Q d L =++22 (1) 由初始条件t=0时,Q=0、dt Q d =0且当阻尼较小时(即2R

MATLAB实验 电力系统暂态稳定分析

实验三 电力系统暂态稳定分析 电力系统暂态稳定计算实际上就是求解发电机转子运动方程的初值问题,从而得出δ-t 和ω-t 的关系曲线。每台发电机的转子运动方程是两个一阶非线性的常微分方程。因此,首先介绍常微分方程的初值问题的数值解法。 一、常微分方程的初值问题 (一)问题及求解公式的构造方法 我们讨论形如式(3-1)的一阶微分方程的初值问题 ?? ?=≤≤='00 )(),,()(y x y b x a y x f x y (3-1) 设初值问题(3-1)的解为)(x y ,为了求其数值解而采取离散化方法,在求解区间[b a ,]上取一组节点 b x x x x x a n i i =<<<<<<=+ΛΛ110 称i i i x x h -=+1(1,,1,0-=n i Λ)为步长。在等步长的情况下,步长为 n a b h -= 用i y 表示在节点i x 处解的准确值)(i x y 的近似值。 设法构造序列{}i y 所满足的一个方程(称为差分方程) ),,(1h y x h y y i i i i ??+=+ (3-2) 作为求解公式,这是一个递推公式,从(0x ,0y )出发,采用步进方式,自左相右逐步算出)(x y 在所有节点i x 上的近似值i y (n i ,,2,1Λ=)。 在公式(3-2)中,为求1+i y 只用到前面一步的值i y ,这种方法称为单步法。在公式(3-2)中的1+i y 由i y 明显表示出,称为显式公式。而形如(3-3) ),,,(11h y y x h y y i i i i i ++?+=ψ (3-3) 的公式称为隐式公式,因为其右端ψ中还包括1+i y 。 如果由公式求1+i y 时,不止用到前一个节点的值,则称为多步法。 由式(3-1)可得

电力系统暂态稳定实验

电力系统暂态稳定实验 一、实验目的 1 ?通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。 2?学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施 3?用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。 二、原理与说明 电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。在各种扰动中以短路故障的扰动最为严重。 正常运行时发电机功率特性为:P1=( Eo x Uo)x sin S i/X1 ; 短路运行时发电机功率特性为:P2=( Eo x Uo)x sin S 2X2 ; 故障切除发电机功率特性为:P3 =( Eo x Uo)x sin S 3/X3 ; 对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。而系统保持稳定条件 是切除故障角S c小于S max S max可由等面积原则计算出来。本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,S max也不同,使对故障切除的时间要求也不同。 同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使S max增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重 合闸,使系统进入正常工作状态。这二种方法都有利于提高系统的稳定性。 三、实验项目与方法 (一)短路对电力系统暂态稳定的影响 1 ?短路类型对暂态稳定的影响 本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接 地短路和三相短路试验。 固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。 在手动励磁方式下通过调速器的增 (减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。将实验结果与理论分析结果进行分析比较。P max为系统可以稳定输出的极限,注意观察有功表 的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-川型微机保护 装置读出,具体显示为: GL- 三相过流值 GA- A相过流值

电力系统静态稳定暂态稳定实验报告

电力系统静态、暂态稳定实验报告 一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.通过实验加深对电力系统暂态稳定内容的理解 3.通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施 二、原理与说明 实验用一次系统接线图如图1所示: 图1. 一次系统接线图 实验中采用直流电动机来模拟原动机,原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 电力系统静态稳定问题是指电力系统受到小干扰后,各发电机能否不失同步恢复到原来稳定状态的能力。在实验中测量单回路和双回路运行时,发电机不同出力情况下各节点的电压值,并测出静态稳定极限数值记录在表格中。 电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否过渡到新的稳定状态,继续保持同步运行的问题。在各种扰动中以短路故障的扰动最为严重。 正常运行时发电机功率特性为:P1=(Eo×Uo)×sinδ1/X1; 短路运行时发电机功率特性为:P2=(Eo×Uo)×sinδ2/X2; 故障切除发电机功率特性为:P3=(Eo×Uo)×sinδ3/X3; 对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。而系统保持稳定条件是切除故障角δc小于δmax,δmax可由等面积原则计算出来。本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,δmax也不同,使对故障切除的时间要求也不同。 同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使δmax增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重合闸,使系统进入正常工作状态。这两种方法都有利于提高系统的稳定性。 三、实验项目与结果 双回路对称运行与单回路对称运行比较实验

rc电路暂态过程实验报告

实验 1.3 RC 电路的暂态过程 实验 1.3.1 硬件实验 1. 实验目的 (1) 研究一阶 RC 电路的零输入响应、零状态响应和全响应。 (2) 学习用示波器观察在方波激励下,RC 电路参数对电路输出波形的影响。 2. 实验预习要求 (1) 分别计算图 1.3.1 ~ 1.3.3 中,电容电压在 t = τ时的 u C (τ)及电路时间常数τ的理论 值,填入表 1.3.1 ~ 1.3.4 中。 (2) 掌握微分电路和积分电路的条件。 3. 实验仪器和设备 4. 实验内容及要求 (1) 测绘 u C ( t )的零输入响应曲线 按图 1.3.1 连接电路,元件参数为 R = 10 k Ω r = 100 Ω ,C = 3300 μF ,U S 由 SS3323 型直流稳压电源提供。 注意:电容 C 为电解电容器,正、负极性不能接反(实验箱上各电解电容器的安装极性均为上正下负),否则易造成电容损坏。 R 图 1.3.1 闭合开关 S ,调整直流稳压电源的输出幅度旋钮,用万用表直流电压档监测电容器 C 上电压 u C ,使其初始值为 10 V 。 打开开关 S ,电容 C 开始放电过程。在 C 开始放电的同时,按表 1.3.1 给出的电压用手表计时,将测量的时间值记入表 1.3.1。 再将 u C (τ) 对应的时间(此数值即为时间常数τ1)记入表 1.3.2 中。 注意:a) 用万用表直流电压档测量 u C ,用手表计时。 b) 因放电过程开始时较快,建议测量零输入响应的过程分几次进行计时。 将电阻换为 R = 5.6 k Ω,C 不变,测量 u C (τ) 对应的时间τ2,记入表 1.3.2。

简单电力系统暂态稳定性计算与仿真

中南大学CENTRAL SOUTH UNIVERSITY 本科毕业论文(设计) 论文题目简单电力系统暂态稳定性计算与仿真 学生姓名李妞妞 指导老师 学院中南大学继续教育学院 专业班级电气工程及其自动化2014专升本 完成时间2016年5月1日

毕业论文(设计)任务书 函授站(点): 江西应用工程职业学院继续教育分院专业: 电气工程及其自动化 注:本任务书由指导教师填写并经审查后,一份由学生装订在毕业设计(论文)的封面之后,原件存函授站。

毕业设计(论文)成绩单

摘要 随着电力工业的迅速发展,电力系统的规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,依据电网用电供电系统电路模型要求,因此,论文利用MATLAB 的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网可能遇到的多种故障方面运行的需要。 论文以MATLAB R2009b电力系统工具箱为平台,通过SimPowerSyetem 搭建了电力系统运行中常见的单机—无穷大系统模型,设计得到了在该系统发生各种短路接地故障并故障切除的仿真结果。 本文做的主要工作有: (1)Simulink下单机—无穷大仿真系统的搭建 (2)系统故障仿真测试分析 通过实例说明,若将该方法应用到电力系统短路故障的诊断中,快速实现故障的自动诊断、检测,对于提高电力系统的稳定性具有十分重要的意义。 关键词:电力系统;暂态稳定;MATLAB;单机—无穷大;

实验三 RLC串联电路的暂态过程实验报告

实验三RLC串联电路的暂态过程实验报告 14级软件工程班 候梅洁14047021

【实验目的】 1.用存储示波器观察RC,RL电路的暂态过程,理解电容,电感特性及电路时间常数τ的物理意义。 2.用示波器观察RLC串联电路的暂态过程,理解阻尼振动规律。 3.进一步熟悉使用示波器。 【实验仪器】 电感箱、电容箱、电阻箱、函数信号发生器、示波器、导线等。【实验原理】 在阶跃电压作用下,RLC串联电路由一个平衡态跳变到另一平衡态的转变过程,这一转变过程称为暂态过程。暂态过程期间,电路中的电流及电容,电感上的电压呈现出规律性的变化,称为暂态特性。 1.RC电路的暂态过程。 电路如图所示:

【实验结果与分析】 1.观测U c波形时:方波信号500Hz输出;分别取:第一组R=1000?,C=0.5uF,第二组R=500?,C=0.2uF; 用示波器观测波形后,我们在坐标纸上绘制了U、U c、U R 的 波形图,从图中可以看到:U、U R 、U c三者周期、相位均相同。且 U R =U-U c。U、U c都是呈指数型变化的,然而U比U c变化的缓一些。在阶跃电压的作用,U c是渐变接近新的平衡值,而不是跃变, 这是由于电筒C储能元件,在暂态过程中不能跃变。而U R 变化幅度 很大,理论上,U R 的峰值应该是是U的峰值的两倍,因为开关接1时,给电容正向充电时,R两端的电压为E,当反向电容放时,R两 端电压为-E,两者之差为2E,就是U R 的峰值。而事实上,我们看到 的波形图中U R 的峰值小于2U,这可能是由于: (1)电阻内部有损耗、欠阻尼振荡状态下的电感和电容存在着附加损耗电阻,并且其阻值随着振荡频率的升高而增大.故实际上电路中的等效阻值大于R与用万用表测出的电感阻值之和. (2)数字示波器记录的数据精确度有限造成误差。 (3)数字示波器系统存在内部系统误差。 (4)外界扰动信号会对示波器产生影响。 (5)电器元件使用时间过长,可能造成相应的参数有误差。 (6)电源电压不稳定. 2.测量RC串联电路的时间常数:我们取一个峰值处为t 1 ,取与其最 近的一个零点处为t 2,调节示波器将t 1 和t 2 时间段的波形放大到合适

《RC串联电路的暂态过程研究》实验指导(最新版)

《RC 串联电路的暂态过程研究》实验内容 1.RC 电路暂态过程的观测 实验中用方波发生器代替了直流电源和电键。用示波器观察电容器的波形,在方波电压值为U 0的半个周期时间内,电源对电容器C 充电,而在方波电压为零的半个周期内,电容器内电荷通过电阻R 放电。充放电过程如图所示。 (1)把方波信号发生器Hz f 500=、可变电阻R=0~5K Ω、电容C=0.1μF ,示波器按图接线。 (2)调节可调电阻R ,观察C V 的波形。 (3)记录电阻R=1K Ω、电容C=0.1μF 选用合适的扫描速率档位和衰减档位,完整地显示暂态过程。用示波器逐点测试Uc 和时间t 值,记入表中 具体方法如下: 按下cursor 按钮以显示测量菜单,光标模式选追踪;光标A 、光标B 都选测试通道,并将光标B 固定在所选参考点,移动光标A,记录所在位置的)(),(C U Y t X =?=?

(4)测量半衰期2 1T ,求出τ的实验值,并与理论值τ=RC 进行比较. (4)选做:改变电阻(电容)值,观测Uc 波形,记录一完整暂态过程内的Uc 值。 (5)选做:观测RL 串联电路的暂态过程,记录一周期内的UR 值。 数据记录 一.研究不同τ值的RC 串联电路的暂态过程 1、f=500Hz(方波) R=1000Ω, C=0.1μF 。 数据处理 1、 用Excel 或其它软件作图,把不同τ值的的RC 串联电路的暂态过程作在同一图上。测量 得:R=1000Ω C=0.1μF =2 1T 计算得:==2ln 2 1RC T 理论值 相对误差 2、 用Excel 或其它软件作图,描绘欠阻尼状态的RLC 暂态过程图。 测算2 11 2ln C C V V t t -= 实验τ,并与理论值比较

武大电气《电力系统分析综合实验》2019年度PSASP实验报告

电气工程与自动化学院 《电力系统分析综合实验》2019年度PSASP实验报告 学号: 姓名: 班级:

1、阐述基于PSASP的电力系统分析综合实验的目的。 实验目的:掌握用PSASP进行电力系统潮流计算,短路计算,暂态稳定计算。(1)潮流计算可以为短路计算和暂态稳定计算提供初始状态,是电力系统计算中的基本计算,要求掌握软件的操作步骤,并对比分析牛顿拉夫逊法和PQ分解法的区别,在实验过程中体会PQ分解法相比牛顿拉夫逊法的特点。 (2)短路计算的目的要求根据数据结合对称分量法加深对于短路计算的理论知识的理解。 (3)暂态稳定计算里最关键的是故障极限切除时间的确定,加深对复杂电力系统暂态的判定的认识。 2、简要阐述本实验课程的主要实验任务 (1)掌握用PSASP对电力系统进行建模。 (2)潮流计算,包括对常规方式和规划方式的电力系统进行潮流计算。 (3)短路计算,基于潮流作业1和2等5个单相接地短路、AB两相短路、复杂故障短路计算等短路计算并分析结果。 (4)暂态计算,基于潮流作业1和2的瞬时故障进行暂态稳定计算并分析结果。 3、实验方案原理图介绍。 图1(a)常规方式(b)规划方式以上为系统常规运行方式的单线图。由于母线STNB-230 处负荷的增加,需对原有电网进行改造,具体方法为:在母线GEN3-230 和STNB-230 之间增加一回输电线,增加发电3 的出力及其出口变压器的容量,新增或改造的元件如下图虚线所示: 4、计算分析用建模数据的整理 表1母线数据

5、按照下列作业要求,完成计算分析实验作业。 (1)基于实验二的潮流计算,对牛顿法和PQ法的原理做比较性的说明。 表6 常规方式下PQ法和NR法的潮流计算摘要信息报表 表7 常规方式下PQ法和NR法的全网母线(发电、负荷)结果报表 牛顿拉夫逊法每次都对电压幅值和相位进行修正,且每次计算

电力系统分析实验指导书

第四章 电力系统功率特性和功率极限实验 一、实验目的 1. 初步掌握电力系统物理模拟实验的基本方法; 2. 加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用; 3. 通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实 际及分析问题的能力。 二、原理与说明 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和q 轴总电抗分别为X d ∑和X q ∑,则发电机的功率特性为: δδ2sin 2sin 2∑ ∑∑ ∑∑?-?+= q d q d d q Eq X X X X U X U E P 当发电机装有励磁调节器时,发电机电势E q 随运行情况而变化。根据一般励磁调节器的性能,可认为保持发电机E 'q (或E ')恒定。这时发电机的功率特性可表示成: δδ2sin 2sin 2∑∑∑∑∑?'-'?+''='q d q d d q Eq X X X X U X U E P 或 δ'''='∑sin d q E X U E P 这时功率极限为 ∑ '='d Em X U E P 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一是尽可能提高电力系统的功率极限,从简单电力系统功率极限的表达式看,提高功率极限可以通过发电机装设性能良好的励磁调节器以提高发电机电势、增加并联运行线路回路数或串联电容补偿等手段以减少系统电抗、受端系统维持较高的运行电压水平或输电线采用中继同步调相

机或中继电力系统以稳定系统中继点电压等手段实现。 三、实验项目和方法 (一)无调节励磁时功率特性和功率极限的测定 1.网络结构变化对系统静态稳定的影响(改变x) 在相同的运行条件下(即系统电压U x、发电机电势保持E q保持不变,即并网前U x=E q),测定输电线单回线和双回线运行时,发电机的功一角特性曲线,功率极限值和达到功率极限时的功角值。同时观察并记录系统中其他运行参数(如发电机端电压等)的变化。将两种情况下的结果加以比较和分析。 实验步骤: (1)输电线路为单回线; (2)发电机与系统并列后,调节发电机使其输出的有功和无功功率为零; (3)功率角指示器调零; (4)逐步增加发电机输出的有功功率,而发电机不调节励磁; (5)观察并记录系统中运行参数的变化,填入表4-1中; (6)输电线路为双回线,重复上述步骤,填入表4-2中。 表4-1 单回线 表4-2 双回线 注意: (1)有功功率应缓慢调节,每次调节后,需等待一段时间,观察系统是否稳定,以取得准确的测量数值。

电路基础-实验3 动态电路暂态过程(仿真实验)

图9-1 一阶RC 电路 实验三 一阶动态电路暂态过程的研究 [实验目的] (1)研究一阶RC 电路的零输入响应、零状态响应和全响应的变化规律和特点。 (2)研究一阶电路在阶跃激励和方波激励情况下,响应的基本规律和特点。测定一阶电路的时间常数t ,了解电路参数对时间常数的影响。 (3)掌握积分电路和微分电路的基本概念。 (4)学习用示波器观察和分析电路的响应。 [实验原理与说明] (1电路,为一阶电路。图9-1所示为一阶RC 电路。首先将开关S 置于1使电路处于零状 态。在t=0时刻由1扳向2,电路对激励U s 的响应为零状态响应,有 RC t s s c e U U t u --=)( 这一暂态过程为电容充电的过程,充电曲线如图12-2(a )所示。电路的零状态响应与激励成正比。 若开头S 首先置于2使电路处于稳定 状态,在t=0时刻由2扳向1,电路为零输 入响应,有 RC t s c e U t u -=)( 这一暂态过程为电容放电过程,放电曲线如图9-2(b)所示。电路的零输入响应与初始状态成正比。 动态电路的零状态响应与零输入响应之和称为全响应。全响应与激励不存在简单的线性关系。 (a )充电曲线 (b)放电曲线 图9-2 一阶RC 电路的电容电压的充放电曲线及时间常数 (2)动态电路在换路以后,一般经过一段时间的暂态过程后便达到稳态。由于这一过程不是重复的,所以不易用普通示波器来观察其动态过程。可由方波激励实现一阶RC 电路重复出现的充放电过程。其中方波激励的半周期T/2与时间常数τ(=RC)之比保持在5:1左右的关系,可使电容每次充、放电的暂态过程基本结束,再开始新一次的充、放电暂态过程(图9-3)。其中充电曲线对应图9-1所示电路的零状态响应,放电曲线对应该电路的零输入响应。

电力系统暂态稳定分析实验

电力系统暂态稳定分析实验 姓名:辛晓峰 学号:08291089 老师:夏明超 实验3 暂态稳定分析实验 一、实验目的 ①进一步认识电力系统暂态失稳过程,学会绘制摇摆曲线; ②掌握影响电力系统暂态稳定的因素,掌握故障切除时间(角)对电力系统暂态稳定的 影响; ③掌握提高电力系统暂态稳定的方法。 二、实验内容 ①电力系统暂态失稳实验; ②故障类型对电力系统暂态稳定的影响; ③电力系统暂态稳定的影响因素实验。 三、实验使用工程文件及参数 ①工程文件名:暂态稳定分析实验,输入参数(如图15-6): G1:300+j180MVA(PQ节点) 变压器B1:Sn=360MVA,变比=18/242KV,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;变压器B2:Sn=360MVA,变比=220/18KV,Uk%=10.5%,Pk=128KW,P0=40.5KW,I0/In=3.5%;固定频率电源S:Un=18 KV(平衡节点); 线路L1、L2:长度:100km,电阻:0.02Ω/km,电抗:0.3256Ω/km,电纳:2.74×10-6S/km。 四、实验方法和步骤 ①电力系统暂态失稳实验 打开名为“暂态稳定分析实验”的工程文件。该工程中有一个双回线网络,并带有一个故障点,模拟电力系统发生故障后的暂态失稳现象。网络结构图如图15-6所示,输入给定参数,完成实验系统建立。 图15-6 带故障点双回路网络结构图 运行仿真,在输出图页上观察故障前系统稳定运行时的电压、电流波形,以及在发生故障后,系统失稳状态的电压、电流波形,并将电压电流波形记录到图15-7和图15-8(仿真时间:15秒;故障时刻:第5秒;故障持续时间:0.5秒;故障距离:50%;故障类型:三相短路)。 故障前 故障后 ②故障类型对电力系统暂态稳定的影响 实验模型①中,在故障点设置不同类型短路,按表15-6运行仿真,观察结果,记录波形。(故障跳闸:仿真时间:15秒;故障时刻:第5秒;故障持续时间:0.5秒;故障距离:50%;断路器第一次动作时间(分闸):5.5秒;

一阶电路暂态过程的研究

U87一阶电路暂态过程的研究 一、实验目的: 1.研究RC 一阶电路的零输入响应、零状态响应的基本规律和特点。 2.学习用示波器观察一阶电路的响应和测量时间常数,了解电路参数对时间常数的影响,理解时间常数与响应变化速度的关系。 3.掌握微分电路的基本概念。 4.熟悉示波器的主要技术特征,掌握其正确使用方法。 二、实验原理: 1.一阶动态电路:电容器是一种储能原件,在含有电容器的电路中,当电源通、断换接时电路中就会产生暂态过程,电路接通时,电容器充电,电源断开时,电容器通过电阻放电,如果电路仅含一个动态文件,则可以用戴维南定理或诺顿定理把该动态文件以外的电阻电路化简,变换为RC 电路或RL 电路,这种电路称为一阶动态电路。 2.RC 一阶电路的时域响应:用一阶微分方程描述的电路称为一阶电路,一阶电路通常由一个动态原件电感L 或电容C 和若干个电阻原件构成。 (1)RC 一阶电路的零状态响应:RC 一阶电路开关S 与开关1(导线)连接时,0c U =电容器上初始储能为零。当开关有位置1打向2时即S 与S U 连接时,直流电源通过电阻R 向电容C 充电,此时电路的响应为零状态响应,电容器上的电压为()(1)t t C s se s U t U U U e ττ-=-=-,()C U t 变化曲线如书上15-2所示,当C U 上升到0.632S U 所需时间称为时常数τ,且RC τ= (2)RC 一阶电路的零输入响应:在S 位置2电路稳定后,再合向位置1时,

电容器C 通过电阻R 放电,()C U t 称为零输入响应,电容器上的电压()t c se U t U τ-=,变化曲线如图15-3所示,当C U 下降到0.368S U 所需的时间称为时间常数I ,同理I=RC 。 3.测量RC 一阶电路时间常数:使用双踪示波器观察电路电压C U ,便可观察到稳定的指数曲线。如图15-5所示,在荧光屏上测得电容电压最大值()cm U a cm =,b=0.632a(cm),与指数曲线焦点对应时间t 轴的x 点,则根据时间t 轴比例尺,该电路的时间常数()t x cm cm τ=? 三、实验仪器、设备、用具及其规范 双踪示波器、信号源(方波输出)、实验元件箱二(含电阻电容) 规范: 1.调节遗弃各旋钮时,动作不要过猛,实验前需熟读双踪示波器的使用说明,特别是观察双踪时,要特别注意开关旋钮的操作与调节。 2.调节示波器时,要注意触发源开关和触发电平调节旋钮的配合使用,使显示波形稳定。 3.信号源的接地端与示波器的接地端要连在一起,以防外界干扰而影响测量的准确性。 4.示波器的灰度不应过亮,尤其是光点长期停留在荧光屏上不动时,应将灰度调暗,以延长示波器的使用寿命。 四、试验方法: 1.调节实验所需的方波信号:将信号源的“波形选择”开关置于方波信号位置上,信号源的信号输出端与示波器探头连接,接通信号源电源,调节信号源的频率旋

电力系统实验报告 暂态稳定分析实验

Beijing Jiaotong University 电力系统分析 暂态稳定分析实验 学院:电气工程学院 班级:xxxxxxxx 学号:xxxxxxxxx 姓名:xxxxxxxx

实验3 暂态稳定分析实验 一、实验目的 (1)进一步认识电力系统暂态失稳过程,学会绘制摇摆曲线; (2)掌握影响电力系统暂态稳定的因素,掌握故障切除时间(角)对电力系统暂态稳定的影响; (3)掌握提高电力系统暂态稳定的方法。 二、实验内容 (1)电力系统暂态失稳实验; (2)故障类型对电力系统暂态稳定的影响; (3)电力系统暂态稳定的影响因素实验。 三、实验使用工程文件及参数 工程文件名:暂态稳定分析实验,输入参数(如图15-6): G1:300+j180MV A(PQ节点) 变压器B1:Sn=360MV A,变比=18/242 KV,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%; 变压器B2:Sn=360MV A,变比=220/18KV,Uk%=10.5%,Pk=128KW,P0=40.5KW,I0/In=3.5%; 固定频率电源S:Un=18 KV(平衡节点); 线路L1、L2:长度:100km,电阻:0.02Ω/km,电抗:0.3256Ω/km,电纳: 2.74×10-6S/km。

四、实验方法和步骤 1、电力系统暂态失稳实验 打开名为“暂态稳定分析实验”的工程文件。该工程中有一个双回线网络,并带有一个故障点,模拟电力系统发生故障后的暂态失稳现象。网络结构图如图15-6所示,输入给定参数,完成实验系统建立。 图15-6 带故障点双回路网络结构图 运行仿真,在输出图页上观察故障前系统稳定运行时的电压、电流波形,以及在发生故障后,系统失稳状态的电压、电流波形,并将电压电流波形记录到图15-7和图15-8(仿真时间:15秒;故障时刻:第5秒;故障持续时间:0.5秒;故障距离:50%;故障类型:三相短路)。 建立仿真模型如下图:

试验17RC串联电路的暂态过程

实验17 RC 串联电路的暂态过程 一、 实验目的 1. 了解RC 串联电路的暂态过程,加深对电容特性的认识; 2. 进一步掌握示波器的使用方法。 二、 实验仪器 电容;电阻箱;信号发生器;示波器;导线 三、 实验原理 RC 电路在接通或断开电源的短暂时间内,电路从一个平衡态转变到另一个平衡态,这个转变过程称为暂态过程。本实验研究暂态过程中的电压与电流变化的规律。 图l 是一个RC 串联的电路。当开关K 合向1时,电流E 通过R 对电容C 充电。在电容C 充电后,把开关由l 合向2,电容C 将通过R 放电。这两个过程是RC 电路暂态过程最简单的例子。 (一)充电过程 由电路理论有:C V iR E += 又:C dV dQ i C dt dt = = 得电路方程:11 C C dV V E dt RC RC += (1) 考虑到初始条件t =0时,V C = 0,得到方程(1)的解: ///(1)t RC C t RC R t RC V E e V Ee E i e R ---ì =-??=í??=? (t ≥0) (2) 下面具体地讨论一下上述结果: 1.由式(2)可知: 当t =RC 时, 11(1)0.6320.3680.368 C R V E e E V Ee E E i R --=-==== 这个计算结果表明,当充电的时间等于乘积RC 时,电容器的电荷或电压都上升到最终值的63.2%,充电电流或R 的端电压都是减小到初始值的36.8%。所以RC 乘积的大小反映充电速度的快慢。通常用一个称为时间常数的符号τ=RC 来代替,(见图2)。 2.设电容器被充电至最终电压(或电荷)值的一半时所需时间为T 1/2,充电电流(或R 的端电压)减小到初始值的一半时所需时间为1/ 2T ¢,由式(2)得 当t =T 1/2时,

实验报告2:电力系统暂态稳定性仿真

《电力系统暂态分析》课程实验报告 姓名:学号: 一、实验目的 1、掌握PSS/E软件的使用,能够熟练地在仿真环境中建立仿真模型, 并导入数据; 2、掌握暂态仿真步骤和故障设置方法; 3、能够分析仿真数据,利用等面积定则原理总结故障切除时间对暂态稳 定的影响。 二、实验内容及步骤 1.在PSS/E软件中搭建如图1所示仿真模型。其详细数据见文件 1mach1bus.raw。 图1 仿真模型示意图 2.导入数据文件。打开PSS/E程序,加载数据文件1mach1bus.raw; 3.计算潮流。点击Power flow→Solution→Solve(……),点击Solve按钮, Close退出; 4.显示潮流结果。点击Power flow→Reports→Bus based reports,点击Go 按钮,Close退出;潮流结果截图如图2所示。

图2 潮流计算结果 5.转换发电机类型。点击Power flow→Convert loads and generators,选择 Generators,再选Use Zsorce,点击Convert按钮即可,Close退出; 6.导入动态数据。点击File→Open,导入1mach1bus.dyr,点击OK退出; 7.设置仿真步长。点击Dynamics→Simulation→Solution parameters,在 Simulation parameters下面的Delta中填写步长为0.01,在Freq. filter 中填写频率增量最大值为0.02,点击OK即可; 8.设置要输出的变量。点击Dynamics→Define simulation output(CHAN) →Machine quantity,选择母线1和4上发电机的相应Angle变量即可; 9.选择输出文件,初始化并且运行到故障起始时刻。点击Dynamics→ Simulation→Perform simulation(STRT/RUN),在Channel output file中选择要输出到的out文件,比如选择a20(默认为a20.out)。在Run to 框中填写故障起始时刻,通常为0。再点击Initialize,然后点击Run,即可完成,Close退出。初始化结果截图如图3所示。 图3 初始化结果 10.设置故障。点击Disturbance设置,比如选择Line fault,在From bus 框中填写2,在to bus框中3,在Admittance的R框中填写2E9,在X

RLC串联电路的暂态过程实验报告

RLC 串联电路的暂态过程实验报告 【实验目的】 1、研究当方波电源加于RC 、RL 串联电路时产生的暂态放电曲线及用示波器测量电路半衰期的方法,加深对电容充、放电规律的认识。 2、观察当方波电源加于RLC 串联电路时产生的阻尼衰减振荡的特性及测量方法。 【试验仪器】 信号发生器、双踪数字存储示波器、电阻、电感、电容、导线若干、面包板 【实验原理】 1. 数字示波器可以观察由信号发生器产生的波形. 2. 在由电阻R 及电容C 组成的直流串联电路中,暂态过程即是电容器的充 放电过程.充电时)1(τt c e E U --=;放电时,τt c e E U -=·.其中,τ为时间常数,且RC =τ.取对数作出相关图像拟合直线可以求得τ. 3. 在由电阻R 、电容C 及电感L 组成的直流串联电路中,根据电阻R 阻值的不同,暂态过程有三种状态,即:欠阻尼、临界阻尼和过阻尼. 【实验步骤】 1、RC :(1)选择合适的R 和C 值,根据时间常数,选择合适的方波频率,一般要求方波的周期T >10 ,这样能较完整地反映暂态过程,并且选用合适的示波器扫描速度,以完整地显示暂态过程。 (2)把方波信号发生器、电阻R 、电容C ,示波器按图1接线。 (2)选取不同的电阻R ,观察UC 的波形。并记录二组电阻和电容取不同值时UC 的波形(可拍照反映其差别)。 (4)测量相应的二组半衰期T1/2,求出τ和R 的实验值,并与理论值R 进行比较。 2、RLC :(1)根据实验选用的电容和电感的值,算出临界电阻的阻值 。 (2)按图3接线,观测欠阻尼状态和过阻尼状态下电容上Uc 的波形。(拍照) 五、实验结果

电力系统分析暂态稳定分析实验 实验报告

北京交通大学Beijing Jiaotong University 电力系统分析暂态稳定分析实验实验报告 姓名: *** 学号: ***(1005班) 任课老师:夏*** 指导老师:郝*** 实验日期: 2013.5.30(16—18)

目录 一实验目的 (2) 二实验内容 (2) 三实验使用工程文件及参数 (2) 四实验方法和步骤 (2) ?电力系统暂态失稳实验 (2) ?故障类型对电力系统暂态稳定的影响 (3) ?电力系统暂态稳定的影响因素实验 (4) 四思考题 (7)

实验3 暂态稳定分析实验 一、实验目的 (1)进一步认识电力系统暂态失稳过程,学会绘制摇摆曲线; (2)掌握影响电力系统暂态稳定的因素,掌握故障切除时间(角)对电力系统暂态稳定的影响; (3)掌握提高电力系统暂态稳定的方法。 二、实验内容 (1)电力系统暂态失稳实验;(2)故障类型对电力系统暂态稳定的影响; (3)电力系统暂态稳定的影响因素实验。 三、实验使用工程文件及参数 工程文件名:暂态稳定分析实验,输入参数(如图15-6):G1:300+j180MVA(PQ节点)变压器B1:Sn=360MVA,变比=18/242 KV,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;变压器B2:Sn=360MVA,变比=220/18KV,Uk%=10.5%,Pk=128KW,P0=40.5KW,I0/In=3.5%;固定频率电源S:Un=18 KV(平衡节点);线路L1、L2:长度:100km,电阻:0.02Ω/km,电抗:0.3256Ω/km,电纳:2.74×10-6S/km。 四、实验方法和步骤 (1)电力系统暂态失稳实验 打开名为“暂态稳定分析实验”的工程文件。该工程中有一个双回线网络,并带有一个故障点,模拟电力系统发生故障后的暂态失稳现象。网络结构图如图15-6所示,输入给定参数,完成实验系统建立。 运行仿真,在输出图页上观察故障前系统稳定运行时的电压、电流波形,以及在发生故障后,系统失稳状态的电压、电流波形,并将电压电流波形记录到图15-7和图15-8(仿真时间:15秒;故障时刻:第5秒;故障持续时间:0.5秒;故障距离:50%;故障类型:三相短路)。 建立仿真模型如下图:

长江大学物理实验报告RC,RLC电路的暂态过程

大学物理 课题RC、RLC电路的暂态过程 教学目的 1、观察RC电路的暂态过程,理解时间常数τ的意义。 2、观察RLC串联电路的暂态过程及其阻尼震荡规律。 重难点 1、观察RC电路的暂态过程,理解时间常数τ的意义;学 会测量RC暂态过程半衰期的方法,并由此求出时间常数τ。 观察RLC串联电路的暂态过程及其阻尼震荡规律。 2、理解当L、C一定时,R值的不同导致RLC电路出现三种 不同的阻尼震荡的原因。 教学方法讲授与实验演示相结合。 学时 3学时。 一.前言 RC串联电路与直流电源相接,当接通电源或断开电源的瞬间将形成电路充电或放电的瞬态变化过程,这瞬态变化快慢是由电路内各元件量值和特性决定的,描述瞬态变化快慢的特性参数就是放电电路的时间常数或半衰期。 本实验主要研究当方波电源加于RC串联电路时产生的RC瞬态放电曲线及用示波器测量电路半衰期的方法;同时还要了解方波电源加于RLC串联电路时产生的阻尼衰减震荡的特性及测量方法。 二.实验仪器 FB318型RLC电路实验仪,双踪示波器。 三.实验原理 1、RC电路的瞬态过程 电阻R与纯电容C串联接于内阻为r的方波信号发生器中,用示波器观

察C上的波形。在方波电压值为U0的半个周期时间内,电源对电容C 充电,而在方波电压为零的半个周期内,电容器捏电荷通过电阻(R+r) 放电。充放电过程如图所示,电容器上电压U C随时间t的变化规律为 U C= U0[1-e-t/(R+r)c] (充电过程) (1) 测RC充放电电路 t RC放电曲线 U C= U0e-t/(R+r)c(放电过程)(2)式中,(R+r)c称为电路的时间常数(或弛豫时间)。当电容C上电压

相关文档
相关文档 最新文档