文档库 最新最全的文档下载
当前位置:文档库 › 椭球面参数方程的推导详解

椭球面参数方程的推导详解

椭球面参数方程的推导详解
椭球面参数方程的推导详解

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (2 2 0220=-+-的参数方程是???α +=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α +=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 y x 2 2(20π <α<), 22b a 4+, 例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+ ?+α=++=cos 82110 21cos 12211x 21x x B A 3sin 42 119 21sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值

例3 设点P (x ,y )在椭圆19y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则55 53arcsin sin 534|5sin 4cos 3|d 22-??? ? ? +α= +-α+α=。 当5 3 arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 P , π),A (a ,0)。 解得1cos =α(舍去),或2 22 b a b cos -=α。 因为1cos 1<α<-,所以1b a b 1222<-<-。可转化为1e e 112 2<-<-,解得21e 2 > ,于是1e 22<<。故离心率e 的取值范围是? ?? ? ??122,。 [截距法]解线性规划问题 由于线性规划的目标函数:z ax by b =+≠()0可变形为y a b x z b =- +,则z b 为直线y a b x z b =-+的纵截距,那么我们在用线性规划求最值时便可以得到如下结论: (1)当b >0时,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,便是z 取得最大值的点;反之,使纵截距取得最小值的点,就是z 取得最小值的点。 (2)当b <0时,与b >0时情形正好相反,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,是z 取得最小值的点;使纵截距取得最小值的点,便是z 取得最大值的点。

椭圆的参数方程(教案)

学习好资料欢迎下载 8.2椭圆的几何性质(5) ——椭圆的参数方程(教案) 齐鲁石化五中翟慎佳2002.10.25 一.目的要求: 1?了解椭圆参数方程,了解系数a b、「含义。 2. 进一点完善对椭圆的认识,并使学生熟悉的掌握坐标法。 3. 培养理解能力、知识应用能力。 二.教学目标: 1. 知识目标:学习椭圆的参数方程。了解它的建立过程,理解它与普通方 程的相互联系;对椭圆有一个较全面的了解。 2. 能力目标:巩固坐标法,能对简单方程进行两种形式的互化;能运用参 数方程解决相关问题。 3. 德育目标:通过对椭圆多角度、多层次的认识,经历从感性认识到理性 认识的上升过程,培养学生辩证唯物主义观点。 三.重点难点: 1. 重点:由方程研究曲线的方法;椭圆参数方程及其应用。 2. 难点:椭圆参数方程的推导及应用。 四.教学方法: 引导启发,计算机辅助,讲练结合。 五.教学过程: (一)引言(意义) 人们对事物的认识是不断加深、层层推进的,对椭圆的认识也遵循这一规律。 本节课学习椭圆的参数方程及其简单应用,进一步完善对椭圆认识。(二)预备知识(复习相关) 1. 求曲线方程常用哪几种方法? 答:直接法,待定系数法,转换法〈代入法〉,参数法。 2. 举例:含参数的方程与参数方程

2 “ x = 2t 例如:y =kx+1 (k 参数)含参方程'而I 十1 (t 参数) 3 ?直线及圆的参数方程?各系数意义? (三)推导椭圆参数方程 1. 提出问题(教科书例5) 例题.如图,以原点为圆心,分别以 a b (a>b>0)为半径作两个圆。 点B 是大圆半径OA 与小圆的交点,过点 A 作AN _0x ,垂足为N ,过 点B 作BM _AN ,垂足为M 。求当半径0A 绕点0旋转时点M 的轨迹 的参数方程。 2. 分析问题 本题是由给定条件求轨迹的问 题,但动点较多,不易把握。故采用 间接法 --- 参数法。 引导学生阅读题目,回答问题: (1) 动点M 是怎样产生的? M 与A 、B 的坐标有何联系? (2) 如何设出恰当参数? 设/ AOX=:为参数较恰当。 3. 解决问题(板演) 解:设点M 的坐标(x,y ),是以Ox 为始边,OA 为终边的正角, 取为参数,那么 x=ON=|OA|cos 「, y=NM=|OB|sin 「即 4. 更进一步(板演:化普通方程) -=cos? 分别将方程组①的两个方程变形,得t a 两式平方后相加, '=si n? 是参数方程。 J 5 *實 x = a cos? y =bsin ①引为点M 的轨迹参数方程,「为参数。

椭圆的参数方程中参数的几何意义

椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。 直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点

相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。 用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点。 此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:使用细铜丝最好,因为线的弹性较大画出来不一定准确。

(完整word版)椭圆的参数方程(含答案).doc

椭圆的参数方程 教学目标 : 1. 了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2. 通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3. 通过观察、探索、发现的创造性过程,培养创新意识。教学重点 :椭圆的参数方程。 教学难点 :椭圆参数方程中参数的理解 . 教学方式 :讲练结合,引导探究。 教学过程 : 一、复习 焦点在 x 轴上的椭圆的标准方程: x 2 y 2 1(a b 0) a 2 b 2 焦点在 y 轴上的椭圆的标准方程: y 2 x 2 1(a b 0) a 2 b 2 二、椭圆参数方程的推导 1. 焦点在 x 轴上的椭圆的参数方程 因为 ( x ) 2 ( y ) 2 1 ,又 cos 2 sin 2 1 a b 设 x cos , y sin ,即 x acos ,这是中心在原点 O,焦点在 x 轴上的椭圆的参数方程。 a b y bsin 2. 参数 的几何意义 问题 、如下图,以原点 O 为圆心,分别以 a , b ( a >b > 0)为半 径作两个圆。设 A 为大圆上的任意一点,连接 OA, 与小圆交于点 B 。过点 A 作 AN ⊥ ox ,垂足为 N ,过点 B 作 BM ⊥AN ,垂足为 M ,求当半径 OA 绕点 O 旋转时点 M 的轨迹参数方程 . 解:设以 Ox 为始边, OA 为终边的角为 ,点 M 的坐标是 (x, y) 。 那么点 A 的横坐标为 x ,点 B 的纵坐标为 y 。由于点 A,B 均在角 的终边上,由三角函数的定义有 x |OA |cos a cos , y | OB | sin b cos 。 当半径 OA 绕点 O 旋转一周时,就得到了点 M 的轨迹,它的参数方程是 x acos ( 为参数 ) y bsin 这是中心在原点 O,焦点在 x 轴上的椭圆的参数方程。 1

伯努利方程推导

根据流体运动方程P F dt V d ??+=ρ1 上式两端同时乘以速度矢量 ()V P V F V dt d ???+?=???? ??ρ 1 22 右端第二项展开—— () ()V P V P V F V dt d ???-???+?=???? ? ?ρρ1122 利用广义牛顿粘性假设张量P ,得出单位质量流体微团的动能方程 () E V div p V P div V F V dt d -+?+?=??? ? ?? ρρ1 22 右第三项是膨胀以及收缩在压力作用下引起的能量转化项(膨胀:动能增加<--内能减少) 右第四项是粘性耗散项:动能减少-->内能增加 热流量方程:用能量方程减去动能方程 反映内能变化率的热流量方程 ()() dt dq V P div V F V T c dt d +?+?=+ ρυ12/2 () E V div p V P div V F V dt d -+?+?=???? ? ? ρρ122 得到 ()()E V div p T c dt d dt dq dt dq E V div p T c dt d -+=++-= ρ ρυυ / 对于理想流体,热流量方程简化为: ()V d i v p T c dt d dt dq ρυ+= 这就是通常在大气科学中所用的“热力学第一定律”的形式。 由动能方程推导伯努利方程: 对于理想流体,动能方程简化为:() V div p V P div V F V dt d ρρ+?+?=??? ? ??122无热流量项。 又因为() V pdiv p V z pw y pv x pu V P div -??-=??? ???++-=???????)()()(故最终理想流体的动能方 程可以写成: p V V F V dt d ??-?=???? ? ?ρ 22 【理想流体动能的变化,仅仅是由质量力和压力梯度力对流体微团作功造成的,而与热能不 发生任何转换。】 假设质量力是有势力,且质量力位势为Φ,即满足:Φ-?=F 考虑Φ为一定常场,则有: dt d V V F Φ- =Φ??-=?

椭圆的参数方程(含答案)

椭圆的参数方程 教学目标: 1.了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2.通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3.通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:椭圆的参数方程。 教学难点:椭圆参数方程中参数的理解. 教学方式:讲练结合,引导探究。 教学过程: 一、复习 焦点在x 轴上的椭圆的标准方程:22221(0)x y a b a b +=>> 焦点在y 轴上的椭圆的标准方程:22 221(0)y x a b a b +=>> 二、椭圆参数方程的推导 1. 焦点在x 轴上的椭圆的参数方程 因为22()()1x y a b +=,又22 cos sin 1??+= 设cos ,sin x y a b ??==,即a cos y bsin x ??=??=? ,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 2.参数?的几何意义 问题、如下图,以原点O 为圆心,分别以a ,b (a >b >0)为半径 作两个圆。设A 为大圆上的任意一点,连接OA,与小圆交于点B 。 过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当 半径OA 绕点O 旋转时点M 的轨迹参数方程. 解:设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(x, y)。 那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点A,B 均在角? 的终边上,由三角函数的定义有 ||cos cos x OA a ??==, ||sin cos y OB b ??==。 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是 a cos y bsin x ??=??=? 这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 () ?为参数

椭圆参数方程教学设计

1 / 3 椭圆的参数方程教学设计 王丽萍 一、基本说明 1、教学内容所属模块:选修4-4 2、年级:高二 3、所用教材出版单位:人民教育出版社(A 版) 4、所属的章节:第二讲第二节第1课时 二、教学设计 (一)、内容分析 参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。本节知识以学生学习和了解了椭圆的普通方程和圆的参数方程为载体,从另一个角度认识椭圆。在建立椭圆方程过程中,展示引进参数的意义和作用。以及根据椭圆的特点,选取适当的方程表示形式,体现解决有关椭圆问题中数学方法的灵活性,拓展学生的思路,开阔学生的视野。 (二)、教学目标 (1)理解椭圆的参数方程及其参数的几何意义。 (2)引导学生体验构造参数法的应用思想,探讨如何运用参数方程在解决与椭圆有关问题。 (3)会根据条件构造参数方程实现问题的转化,达到解题的目的。 (三)、教学重点、难点 重点:椭圆的参数方程及其参数的几何意义 难点:巧用椭圆的参数方程解题 (四)、学情分析: “坐标法 ”是现代数学最重要的基本思想之一。坐标系是联系几何与代数的桥梁,是数形结合的有力工具。虽然我们的学生已经学习和了解了椭圆的普通方程和圆的参数方程有关知识,但我们的学生对其了解甚少,再说椭圆参数方程的探求与应用,与代数变换、三角函数有密切联系,以及由学生独立获取椭圆参数方程中的参数的几何意义是极其困难的。因此我们必须从实际问题入手,由浅入深的帮助学生学习理解知识,通过“思考”、“探究”、“信息技术应用”等来启发和引导学生的数学思维,养成主动探索、积极思考的好习惯。 (五)、设计思路: 参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。教师首先应通过实例展示在建立椭圆方程过程中,引进参数的意义和作用。使学生体会到有时用参数方程表示曲线比用普通方程表示更方便,理解参数的几何意义。 根据本节课的教学内容和学生实际水平,本节课采用“复习导入发现法”。通过具体实例问题,引导和激发学生的探究热情,通过“师生”和“生生”的交流合作,掌握椭圆参数的深层实质。教学流程为:复习回顾圆的参数方程和三角函数知识→创设情境引入新知→实例探究启发思维→例题讲解运用新知→课堂实践巩固新知→归纳总结完善→课外强化提升能力。 (六)、教具准备: PowerPoint 课件、《几何画板》 (七)、教学过程: 一、复习回顾 1.圆的参数方程知识 圆心在原点,半径为r 的圆的标准方程:222r y x =+ 圆的参数方程是:????=?=θ θsin cos a y a x

(完整版)椭圆的参数方程(含答案)(可编辑修改word版)

+ = > > + = > > + ? ? 椭圆的参数方程 教学目标: 1. 了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2. 通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3. 通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:椭圆的参数方程。 教学难点:椭圆参数方程中参数的理解. 教学方式:讲练结合,引导探究。 教学过程: 一、复习 焦点在 x 轴上的椭圆的标准方程: x a 2 y 2 b 2 1(a b 0) 焦点在 y 轴上的椭圆的标准方程: y a 2 二、椭圆参数方程的推导 x 2 b 2 1(a b 0) 1. 焦点在 x 轴上的椭圆的参数方程 x y 因为( )2 ( )2 = 1,又cos 2 + sin 2 = 1 a b x y ?x = a c os 设 = cos , a b = sin ,即?y = bsin ,这是中心在原点 O,焦点在 x 轴上的椭圆的参数方程。 2. 参数 的几何意义 问题、如下图,以原点 O 为圆心,分别以a ,b (a >b >0)为半径作 两个圆。设 A 为大圆上的任意一点连,接 OA,与小圆交于点 B 。过点 A 作 AN ⊥ox ,垂足为 N ,过点 B 作BM ⊥AN ,垂足为 M ,求当半径 OA 绕点 O 旋转时点 M 的轨迹参数方程. 解:设以Ox 为始边,OA 为终边的角为 ,点 M 的坐标是(x, y)。 那么点 A 的横坐标为 x ,点 B 的纵坐标为 y 。由于点 A,B 均在角 的终边上,由三角函数的定义有 x =| OA | cos = a cos , y =| OB | sin = b cos 。 当半径 OA 绕点 O 旋转一周时,就得到了点 M 的轨迹,它的参数方程是 ?x = a c os ? y = bsin (为参数) 2 2

伯努利方程的推导

第八节伯努利方程 ●本节教材分析 本节属于选学内容,但对于一些生活现象的解释,伯努利方程是相当重要的.本节主要讲述了理想流体,理想流体的定常流动,然后结合功和能的关系推导出伯努利方程,最后运用伯努利方程来解释有关现象. ●教学目标 一、知识目标 1知道什么是理想流体,知道什么是流体的定常流动. 2知道伯努利方程,知道它是怎样推导出来的. 二、能力目标 学会用伯努利方程来解释现象. 三、德育目标 通过演示,渗透实践是检验真理的惟一标准的思想. ●教学重点 1.伯努利方程的推导. 2.用伯努利方程来解释现象. ●教学难点 用伯努利方程来解释现象. ●教学方法 实验演示法、归纳法、阅读法、电教法 ●教学用具 投影片、多媒体课件、漏斗、乒乓球、两张纸 ●教学过程 用投影片出示本节课的学习目标: 1.知道什么是理想气体. 2.知道什么是流体的定常流动. 3.知道伯努利方程,知道它是怎样推导出来的,会用它解释一些现象. 学习目标完成过程: 一、导入新课 1.用多媒体介绍实验装置 把一个乒乓球放在倒置的漏斗中间 2.问:如果向漏斗口和两张纸中间吹气,会出现什么现象? 学生猜想: ①乒乓球会被吹跑; ②两张纸会被吹得分开. 3.实际演示: ①把乒乓球放在倒置的漏斗中间,向漏斗口吹气,乒乓球没被吹跑,反而会贴在漏斗上

不掉下来; ②平行地放两张纸,向它们中间吹气,两张纸不但没被吹开,反而会贴近 4.导入:为什么会出现与我们想象不同的现象,这种现象又如何解释呢?本节课我们就来学习这个问题. 二、新课教学 1.理想流体 (1)用投影片出示思考题: ①什么是流体? ②什么是理想流体? ③对于理想流体,在流动过程中,有机械能转化为内能吗? (2)学生阅读课文,并解答思考题: (3)教师总结并板书 ①流体指液体和气体; ②液体和气体在下列情况下可认为是不可压缩的. a:液体不容易被压缩,在不十分精确的研究中可以认为液体是不可压缩的. b:在研究流动的气体时,如果气体的密度没有发生显著的变化,也可以认为气体是不可压缩的. ③a:流体流动时,速度不同的各层流体之间有摩擦力,这叫流体具有粘滞性. b:不同的流体,粘滞性不同. c:对于粘滞性小的流体,有些情况下可以认为流体没有粘滞性. ④不可压缩的,没有粘滞性的流体,称为理想流体.对于理想流体,没有机械能向内能的转化. 2 定常流动 (1)用多媒体展示一段河床比较平缓的河水的流动. (2)学生观察,教师讲解. 通过画面,我们可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化,河水不断地流走,可是这段河水的流动状态没有改变,河水的这种流动就是定常流动. (3)学生叙述什么是定常流动 流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫定常流动. (4)举例:自来水管中的水流,石油管道中石油的流动,都可以看作定常流动. (5)学生阅读课文,并回答下列思考题: ①流线是为了表示什么而引入的? ②在定常流动中,流线用来表示什么? ③通过流线图如何判断流速的大小? (6)学生答: ①为了形象地描绘流体的流动,引入了流线; ②在定常流动中,流线表示流体质点的运动轨迹; ③流线疏的地方,流速小;流线密的地方,流速大. 3.伯努利方程 (1)设在右图的细管中有理想流体在做定常流动,且流动 方向从左向右,我们在管的a1处和a2处用横截面截出一段流 体,即a1处和a2处之间的流体,作为研究对象.设a1处的横截面积为S1,流速为V1,高度

伯努利方程的推导及其实际应用

伯努利方程的推导及其实际应用总结 楼主:西北荒城时间:2015-03-03 14:08:00 点击:1091 回复:0 一,伯努利方程的推导 1726年,荷兰科学家丹尼尔·伯努利提出了描述理想流体在稳流状态下运动规律伯努利原理,并用数学语言将之精确表达出来,即为伯努利方程。伯努利方程是流体力学领域里最重要的方程之一,学习伯努利方程有助于我们更深刻的理解流体的运动规律,并可以利用它对生活中的一些现象作出解释。同时,作为土建专业的学生,我们将来在实际工作中,很可能要与水、油、气等流体物质打交道,因此,学习伯努利方程也有一定的实际意义。作为将近300岁高龄的物理定律,伯努利方程的理论是非常成熟的,因此不大可能在它身上研究出新的成果。在本文中,笔者只是想结合自己的理解,用自己的方式推导出伯努利方程,并应用伯努利方程解释或解决现实生活中的一些问题。 既然要推导伯努利方程,那么就首先要理解一个概念:理想流体。所谓理想流体,是指满足以下两个条件的流体:1,流体内部各部分之间无黏着性。2,流体体积不可压缩。需要指出的是,现实世界中的各种流体,其内部或多或少都存在黏着性,并且所有流体的体积都是可以压缩的,只是压缩的困难程度不同而已。因此,理想流体只是一种理想化的模型,其在现实世界中是不存在的。但为了对问题做简化处理,我们可以讲一些非常接近理想流体性质的流体视为理想流体。 假设有某理想流体在某细管中做稳定流动。如图,在细管中任取一面积为s1的截面,其与地面的相对高度h1,,流体在该截面上的流速为v1,并且该截面上的液压为p1。某一时刻,有流体流经s1截面,并在dt时间内发生位移dx1运动到新截面s2。由于细管中的水是整体移动的,现假设细管高度为h2处有一截面s3,其上流体在相同的时间内同步运动到了截面s4,流速为v2,共发生位移dx2。则有如下三个事实: 1:截面s1、s2之间流体的体积等于截面s3、s4之间流体的体积,即s1dx1=s2dx2 2:截面s1、s3之间流体的体积等于截面s2、s4之间流体的体积(由事实1可以推知) 3:细管中相应液体的机械能发生了变化。 事实1和事实2实际上是质量守恒的体现,事实3则须用能量守恒来解释,即外力对该段流体做功的总和等于该段流体机械能的变化。因截面s2、s3之间流体的运动状态没有变化,故全部流体机械能的变化实质上是截面s1、s2之间

2016_2017学年高中数学第二章参数方程2_3参数方程的应用第2课时圆椭圆的参数方程的应用学案苏

圆、椭圆的参数方程的应用 1.能用曲线的参数方程去研究曲线的性质. 2.会用参数法解决圆锥曲线中的最值、定值等问题. [基础·初探] 1.圆的参数方程 圆的参数方程的常见形式为? ?? ?? x =a +r cos α, y =b +r sin α(α为参数).其中,参数α的几何 意义是以圆心A (a ,b )为顶点,且与x 轴同向的射线按逆时针方向旋转到圆上一点P 所在半径成的角. 2.椭圆的参数方程 椭圆的参数方程的常见形式为? ?? ?? x =a cos θ, y =b sin θ(θ为参数). [思考·探究] 1.椭圆的参数方程与圆的参数方程有什么区别和联系? 【提示】 椭圆x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=r 2 普通方程都是平方和等于1的形式, 故参数方程都运用了三角代换法,只是参数方程的常数不同. 2.椭圆的参数方程中参数φ的几何意义是什么? 【提示】 从几何变换的角度看,通过伸缩变换,令????? x ′=1a x ,y ′=1 b y , 椭圆x 2a 2+y 2b 2=1可以变成圆x ′2+y ′2 =1.

利用圆x ′2+y ′2 =1的参数方程 ????? x ′=cos φ,y ′=sin φ (φ是参数)可以得到椭圆x 2a 2+y 2 b 2=1的参数方程??? ?? x =a cos φ,y =b sin φ (φ是参数).因此,参数φ的几何意义应是椭圆上任意一点M 所对应的圆的半径OA (或OB )的旋转角(称为离心角),而不是OM 的旋转角,如图. [质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________ 疑问3:_____________________________________________________ 解惑:_____________________________________________________ 疑问4:_____________________________________________________ 解惑:_____________________________________________________ 圆的参数方程的应用 在圆x 2 +2x +y 2 =0上求一点,使它到直线2x +3y -5=0的距离最大. 【自主解答】 圆的方程x 2 +2x +y 2 =0可化为(x +1)2 +y 2 =1,所以设圆的参数方程为 ? ?? ?? x =-1+cos θ, y =sin θ. 设P (-1+cos θ,sin θ),则点P 到直线2x +3y -5=0的距离为 d = |2 -1+cos θ+3sin θ-5| 22+3 2 = |2cos θ+3sin θ-7| 13 = |13sin θ+α-7|13 (其中sin α=213 13, cos α=313 13 ). 当sin(θ+α)=-1,θ+α=3π 2 ,

伯努利方程

伯努利方程 伯努利方程就是能量守衡定律在流动液体中的表现形式。 (动能定理) 1、理想液体的运动微分方程 在微小流束上,取截面积为dA,长为ds的微元体,现研究理想液体定常流动条件下在重力场中沿流线运动时其力的平衡关系。 微元体的所受的重力为-ρgdAds,压力作用在两端面上的力为 微元体在定常流动下的加速度为 微元体的力平衡方程为 上式简化后可得

p,z,u只是s的函数,进一步简化得 上式即为重力场中,理想液体沿流线作定常流动时的运动方程,即欧拉运动方程。 2、理想液体的伯努利方程 沿流线对欧拉运动方程积分得 上式两边同除以g 得 以上两式即为理想液体作定常流动的伯努利方程。 伯努利方程推导简图 物理意义: 第一项为单位重量液体的压力能称为比压能(p/ρg ); 第二项为单位重量液体的动能称为比动能(u2/2g );

第三项为单位重量液体的位能称为比位能(z)。 由于上述三种能量都具有长度单位,故又分别称为压力水头、速度水头和位置水头。三者之间可以互相转换,但总和(H,称为总水头)为一定值。 3.实际液体流束的伯努利方程 实际液体都具有粘性,因此液体在流动时还需克服由于粘性所引起的摩擦阻力,这必然要消耗能量,设因粘性二消耗的能量为hw',则实际液体微小流束的伯努利方程为 4.实际液体总流的伯努利方程 将微小流束扩大到总流,由于在通流截面上速度u是一个变量,若用平均流速代替,则必然引起动能偏差,故必须引入动能修正系数。于是实际液体总流的伯努利方程为 式中hw---由液体粘性引起的能量损失; α1,α2---动能修正系数,一般在紊流时取α=1,层流时取α=2。 5.伯努利方程应用举例

椭圆的参数方程及其应用

椭圆的参数方程及其应用 中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情况: ① 椭圆22 221x y a b +=(a >b>0)的参数方程是 cos ,(2sin x a y b θθθπθ=?≤>的参数方程是cos ,(,02).sin x b y a θθθπθ =?≤

椭圆的参数方程

椭圆的参数方程 (1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程是? ????x =a cos φy =b sin φ(φ 是参数),规定参数φ的取值范围是[0,2π). (2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2 b 2=1(a >b >0)的参数方程是? ????x =b cos φy =a sin φ(φ 是参数),规定参数φ的取值范围是[0,2π). (3)中心在(h ,k )的椭圆普通方程为 (x -h ) 2 a 2 + (y -k ) 2 b 2 =1,则其参数方程为 ? ????x =h +a cos φ y =k +b sin φ(φ是参数). 1.椭圆? ????x =sin θ 2y =cos θ(θ为参数)的一个焦点坐标为( ) A.? ????22,0 B .? ? ???0,22 C.? ?? ?? 32,0 D .? ?? ??0, 32 解析:选C.椭圆的普通方程为x 2 +(2y )2 =1,即x 21+y 2 14=1.c 2=a 2-b 2 =1-14=34 ,焦点 为? ?? ?? ± 32,0.故选C. 2.曲线C :???x =3cos φy =5sin φ ,(φ为参数,0≤φ<2π)的离心率为( ) A.23 B .35 C.32 D . 53 解析:选A.由???x =3cos φ y =5sin φ得?????x 3=cos φy 5=sin φ , 所以x 29+y 2 5=1,所以a =3,b =5,c =2,e =2 3 .

3.曲线? ????x =2cos θ y =sin θ(θ为参数)上的点到原点的最大距离为( ) A .1 B .3 C .2 D .4 解析:选C.曲线? ????x =2cos θ,y =sin θ(θ为参数)上的点到原点的距离为4cos 2θ+sin 2 θ= 1+3cos 2 θ≤2,当且仅当cos θ=±1时,取得最大值.故选C. 4.椭圆x 24+y 2 2=1的参数方程是____________;椭圆(x -1)225+(y +1) 2 16=1的参数方程是 ____________. 解析:因为x 2a 2+y 2 b 2=1(a >b >0)的参数方程是? ????x =a cos φy =b sin φ(φ为参数,φ∈[0,2π)), 所以x 24+y 2 2=1的参数方程是???x =2cos φ y =2sin φ (φ为参数,φ∈[0,2π)), 同样可知(x -1)2 25+(y +1)2 16=1的参数方程是? ????x =1+5cos φy =-1+4sin φ(φ为参数,φ∈[0, 2π)). 答案:???x =2cos φ y =2sin φ (φ为参数,φ∈[0,2π)) ? ????x =1+5cos φy =-1+4sin φ(φ为参数,φ∈[0,2π)) 利用椭圆的参数方程求最值 (2016·高考全国卷丙)在直角坐标系xOy 中,曲线C 1的参数方程为?? ?x =3cos α y =sin α (α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ? ????θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程; (2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. [解] (1)C 1的普通方程为x 2 3 +y 2 =1,C 2的直角坐标方程为x +y -4=0. (2)由题意,可设点P 的直角坐标为()3cos α,sin α.因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,

椭圆的参数方程的几点应用(精)

椭圆的参数方程的几点应用椭圆的参数方程是(α是参数,)。 特别地,以点()为圆心,半径是r的椭圆的参数方程是(α是参数,r>0)。下面就应用做一些归纳。 1.参数方程在求最值上的应用 例1 求椭圆 的内接矩形的面积及周长的最大值。 分析:此题可以设矩形长为x,然后代入椭圆方程解出宽。但因为有参数a,b,所以把式子列出后都很难解答。而考虑椭圆的参数方程可以迎刃而解。 解:如图,设椭圆的内接矩形在第一象限的顶点是A()( ),矩形的面积和周长分别是S、L。 , 当且仅当时, ,此时α存在。, 点评:利用参数方程后,再利用三角函数性质可以简化求解的过程和降低求解的难度。 例2 设点P(x,y)在椭圆 大值和最小值。 ,试求点P到直线的距离d的最 分析:此题可以设点P(x,y),然后代入椭圆方程(1),然后利用点到直线的距离公式把d表示出来。但仍然很难继续解答。而考虑椭圆的参数方程却可以树立解决此问题。 解:点P(x,y)在椭圆 上,设点P()(α是参数且), 则 。

当时,距离d有最小值0,此时椭圆与直线相切;当 时,距离d有最大值2。 点评:在求解最值问题时,尤其是求与圆锥曲线有关的函数的最值时,我们可以考虑利用参数方程降低难度。 2.参数方程在求与离心率有关问题上的应用 例3 椭圆与x轴的正向相交于点A,O为坐标原点,若这个椭圆上存在点P,使得OP⊥AP。求该椭圆的离心率e的取值范围。 分析:如果按常规设p(x,y),OP2+AP2=OA2,展开,与离心率没有明显的联系,但用参数方程就非常容易。 解:设椭圆 α≠π),A(a,0)。 上的点P 的坐标是()(α≠0且 则 。而OP⊥AP, 于是,整理得 解得 (舍去),或。 因为,所以。可转化为,解得,于是 。故离心率e的取值范围是。 点评:有关离心率入手比较困难的问题时我们可以考虑应用参数方程求解。

椭圆离心率及参数方程

椭圆离心率与最值专题 一.最值: 例1.若动点(y x ,)在曲线)0(1422 2>=+b b y x 上变化,则y x 22+的最大值为 ( ) A .?????≥<<+)4(2),40(442b b b b B .?? ???≥<<+)2(2),20(4 42 b b b b C .44 2+b D .2b 练习:.已知实数y x ,满足12 42 2=+y x ,求x y x -+22的最大值与最小值 例2. ①设(,)P x y 是椭圆22 16436 x y +=上一点,那么22x y -的最大值是 .22x y +的 最大值是 最小值是 ②椭圆19 162 2=+y x 上的点到直线:l 09=-+y x 的距离的最小值为___________. 练习:1.椭圆2 2 7428x y +=上的点到直线:32160l x y --=的距离最短. 2.椭圆 19 162 2=+y x 的内接矩形的面积的最大值为

例3.①已知椭圆22 143 x y +=的右焦点为F ,(3, 2)M ,点P 在椭圆上,则|||| PM PF +的最小值是 ;||||PM PF -的最大值是 . ②给定点A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是右焦点,当5 3 AB BF +取得 最小值时,试求B 点的坐标。 练习:1.已知定点)1,2(A ,)0,1(F 是椭圆18 2 2=+y m x 的一个焦点,P 是椭圆上的点,求 ||||PF PA +的最大值与最小值。 2. 已知112 16,)3,2(2 2=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最 小值,并求出此时点M 的坐标。 思考题:1.定长为d d b a ≥?? ???22的线段AB 的两个端点在椭圆x a y b a b 222 210+=>>()上 移动,求AB 的中点M 到椭圆右准线l 的最短距离。 2.12F F 、是椭圆22 142 x y +=的左右焦点,l 是椭圆的准线,点P l ∈,求12F PF ∠的最大值. 3.若点(,)x y 在椭圆2 2 44x y +=上,求 1 2 y x --最大值为_____ _,最小值为___ __

(完整word版)椭圆的参数方程(含答案)

椭圆的参数方程 教学目标: 1.了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2.通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3.通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:椭圆的参数方程。 教学难点:椭圆参数方程中参数的理解. 教学方式:讲练结合,引导探究。 教学过程: 一、复习 焦点在x 轴上的椭圆的标准方程:22 221(0)x y a b a b +=>> 焦点在y 轴上的椭圆的标准方程:22 221(0)y x a b a b +=>> 二、椭圆参数方程的推导 1. 焦点在x 轴上的椭圆的参数方程 因为22()()1x y a b +=,又22 cos sin 1??+= 设cos ,sin x y a b ??==,即a cos y bsin x ??=??=? ,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 2.参数?的几何意义 问题、如下图,以原点O 为圆心,分别以a ,b (a >b >0)为半 径作两个圆。设A 为大圆上的任意一点,连接OA,与小圆交于点 B 。过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为 M ,求当半径OA 绕点O 旋转时点M 的轨迹参数方程. 解:设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(x, y)。 那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点A,B 均在角? 的终边上,由三角函数的定义有 ||cos cos x OA a ??==, ||sin cos y OB b ??==。 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是 a cos y bsin x ??=??=? 这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 () ?为参数

椭圆方程和韦达定理

1椭圆的第二定义、参数方程、直线与椭圆的位置关系 [知识点] 1. 第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数 椭圆的准线,常数e是椭圆的离心率。 注意: ②e的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 2. 焦半径及焦半径公式: 椭圆上一个点到焦点的距离叫做椭圆上这个点的焦半径。 3. 椭圆参数方程 问题:如图以原点为圆心,分别以a、b(a>b>0)为半径作两个圆,点B是大圆半径OA 与小圆的交点,过点A作AN⊥Ox,垂足为N,过点B作BN⊥AN,垂足为M,求当半径OA绕O旋转时点M的轨迹的参数方程。

解: 参数。 说明:<1> 对上述方程(1)消参即 <2>由以上消参过程可知将椭圆的普通方程进行三角变形即得参数方程。 4. 补充 5. 直线与椭圆位置关系: (1)相离 ②求椭圆上动点P(x,y)到直线距离的最大值和最小值,(法一,参数方程法;法二,数形结合,求平行线间距离,作l'∥l且l'与椭圆相切)

③关于直线的对称椭圆。 (2)相切 ①弦长公式: 【典型例题】 例1. |MA|+2|MF|取最小值时,求点M的坐标。

分析: 这里|MP|、|AP|分别表示点A到准线的距离和点M到准线的距离。 解: 例2. 时,点P横坐标的取值范围是_______________。(2000年全国高考题)分析:可先求∠F1PF2=90°时,P点的横坐标。 解:法一 法二 小结:本题考查椭圆的方程、焦半径公式,三角函数,解不等式知识及推理、计算能力。 2韦达定理: 一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2

相关文档