文档库 最新最全的文档下载
当前位置:文档库 › 具有显著的温控效应和共振效应

具有显著的温控效应和共振效应

具有显著的温控效应和共振效应

具有显著的温控效应和共振效应,它易被物体吸收并转化为物体的内能。远红外线被人体吸收后,可使体内水分子产生共振,使水分子活化,增强其分子间的结合力,从而活化蛋白质等生物大分子,使生物体细胞处于最高振动能级。由于生物细胞产生共振效应,可将远红外热能传递到人体皮下较深的部分,以下深层温度上升,产生的温热由内向外散发。这种作用强度,使毛细血管扩张,促进血液循环,强化各组织之间的新陈代谢,增加组织的再生能力,提高机体的免疫能力,调节精神的异常兴奋状态,从而起到医疗保健的作用

红外线是在所有太阳光中最能够深入皮肤和皮下组织的一种射线。由于远红外线与人体内细胞分子的振动频率接近,“生命光波”渗入体内之后,便会引起人体细胞的原子和分子的共振,透过共鸣吸收,分子之间摩擦生热形成热反应,促使皮下深层温度上升,并使微血管扩张,加速血液循环,有利于清除血管囤积物及体内有害物质,将妨害新陈代谢的障碍清除,重新使组织复活,促进酵素生成,达到活化组织细胞、防止老化、强化免疫系统的目的。所以远红外线对于血液循环和微循环障碍引起的多种疾病均具有改善和防治作用。此外,对人体内的一些有害物质,例如食品中的重金属和其它有毒物质、乳酸、游离脂肪酸、脂肪和皮下脂肪、钠离子、尿酸、积存在毛细孔中化妆品残余物等,就能够借助代谢的方式,不必透过肾脏,直接从皮肤和汗水一起排出,可避免增加肾脏的负担。

远红外线则不然,由于波长较长,能量相对较低,所以使用时相对较少烫伤之危害。

高一物理共振现象

第六章C共振现象 一、教学目标 1.知识和技能领域: 1)知道阻尼振动、受迫振动; 2)知道共振现象和共振的条件。 2.方法和过程领域: 1)感受对物理现象进行观察、分析和归纳的过程。 3.情感、态度、价值观领域: 1)激发学习物理的兴趣,培养学生求知和探究进取的精神;2)增强理论联系实际的自觉性。 二、教学重点 共振现象及共振产生的条件 三、教学难点 共振现象及共振产生的条件 四、教学准备 弹簧振子 五、教学设计思路及教学流程 情景引入 ↓↓ 演示实验: 固有振动,受迫振动 ↓ 阻尼振动、受迫振动 固有振动与固有频率 ↓ 自主活动: 观察共振现象 ↓ 共振现象 共振产生的条件 ↓

STS 微波炉加热原理 六、教学过程 引入: 历史上曾发生这几件事,第一件事发生在拿破仑率领法导入侵西班牙时,有一支部队从铁链悬桥上经过时,土兵门跨着整齐而有力的步伐,突然轰隆一声响,桥的一头跌入了大河,把所有的土兵和军官都抛进了水里。 还有一件事发生的俄国圣彼得堡,一只部队在经过丰坦卡河上的大桥时,也是跨着有节奏的步伐,同样发生了桥坠人之的事件。 教材P128,1940年,美国的全长860m的塔柯姆大桥因大风引起的振动而塌毁 [图 6-13(a)],尽管当时的风速还不到设计风速限值的1/3。 [图 6-13(a)] [ 图 6- 13(b)] 上世纪中叶,法国昂热市附近一座长102m的桥,因一队士兵在桥上齐步走,引起桥梁坍塌,死亡226人。 持续发出的某种频率的声音会使玻璃杯破碎 [ 图 6- 13(b)] 。 这是什么原因呢? 认识物理是我们解释、利用和改造自然的工具,激发学习物理知识的热情和兴趣,产生好奇心,激起求知欲。 新课: 一.教材P128“大家谈”(学生讨论) 1. 重新观察实际弹簧振子的振动过程,发现有什么现象? 弹簧振子在阻力作用下振幅越来越小. 2. 简谐运动是理想情况还是实际情况?为什么?

表面等离子体共振实验

表面等离子体共振实验 姚付强 2012326690046 应用物理学12(2)班 实验目的: 1. 了解全反射中消逝波的概念。 2. 观察表面等离子体共振现象,研究共振角随液体折射率的变化关系。 3. 进一步熟悉和了解分光计的调节和使用。 实验原理: 当光线从光密介质照射到光疏介质,在入射角大于某个特定的角度(临界角)时,会发生全反射现象。但在全反射条件下光的电场强度在界面处并不立即减小为零,而会渗入光疏介质中产生消逝波。若光疏介质很纯净,不存在对消逝波的吸收或散射,则全反射的光强并不会衰减。反之,若光疏介质中存在能与消逝波产生作用的物质时,全反射光的强度将会被衰减,这种现象称为衰减全反射。 如果在这两种介质界面之间存在几十纳米的金属薄膜,那么全反射时产生的消逝波的P 偏振分量将会进入金属薄膜,与金属薄膜中的自由电子相互作用,激发出沿金属薄膜表面传播的表面等离子体波。表面等离子体共振原理如图所示。 对于某一特定入射角,消逝波平行于金属(电介质)界面的分量与表面等离子体波的波矢(或频率)完全相等,两种电磁波模式会强烈地耦合,消逝波在金属膜中透过并在金属膜与待测物质界面处发生等离子体共振,导致这部分入射光的能量被表面等离子体波吸收,能量发生转移,反射光强度显著降低,这种现象被称为表面等离子体波共振。 当发生共振时,表面等离子体共振角与液体折射率的关系由以下公式表示 2 2 122 10Re Re )sin(n n n sp +=εεθ 其中 sp θ 为共振角, 0n 为棱镜折射率,2n 为待测液体折射率,1Re ε 为金属介电

常数的实部。 实验仪器 表面等离子体共振实验仪器装置如图所示。主要由分光计、激励光源、偏振片、硅 光电池、光功率计、半圆柱棱镜(内充液体介质)。 实验内容 1. 调整分光计 2. SPR传感器中心调整 3. 测量某一液体的共振角 数据处理 最大光强为126 光强126 121 115 107 97 92 91 83 86 87 88 89 93 1.0 0.96 0.91 0.85 0.77 0.73 0.72 0.66 0.68 0.69 0.70 0.71 0.74 相对光 强 63 65 66.5 68 69.5 71 72.5 73 73.5 74 75.5 77 78.5 入射角 (°)

(共振现象及其应用)的开题报告

毕业设计开题报告

共振现象及其应用 班级:08级物理师范(2)班姓名:学号: 一、课题的目的及意义 任何物体产生振动后,由于其本身的构成、大小、形状等物理特性,原先以多种频率开始的振动,渐渐会固定在某一频率上振动,这个频率叫做该物体的“固有频率”,因为它与该物体的物理特性有关。当人们从外界再给这个物体加上一个振动(称为策动)时,如果策动力的频率与该物体的固有频率正好相同,物体振动的振幅达到最大,这种现象叫做“共振”。物体产生共振时,由于它能从外界的策动源处取得最多的能量,往往会产生一些意想不到的后果。研究共振现象的目的和意义如下: 目的:对共振现象的条件以及结论进行理论推理,综述防振减振技术及共振现象的应用。 意义:物体发生共振时,由于它能从外界的策动源处取得最多的能量,往往会产生一些意想不到的后果。通过对共振现象的条件以及结论进行理论推理,对共振有充分的认识,巧妙利用,消除危害。那么,共振就能成为我们开发自然的最好的工具。 二、国内外研究概况 共振是物理学上的一个运用频率非常高的专业术语。共振的定义是驱动力的频率接近物体的固有频率时,受迫振动的振幅增大的现象。 超声振动检测法是使被检测物体受激产生振动,通过对其振动特性(主要是振动系统的等效力阻抗Z )的测量从而检测物体的缺陷或特性。实现振动检测的 M 具体方法很多,其中之一是共振法。共振法是利用换能器激发被测物体共振, 又利用换能器测量此共振频率(即Z ,中力抗X=O时的频率)以实现检测【1】。 M 世界上最早进行共振实验是在11世纪,我国宋代科学家沈括,剪一个小纸人放在弦线先上,弹动发生振动的弦,纸人就跳跃颤动,弹动别的弦,纸人却不动。这个实验比欧洲所做的同样的实验早好几个世纪。15世纪,意大利的达·芬奇才开始做共振实验,直到17世纪,牛津的诺布耳和皮戈特才以所谓的“纸游码”

表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用 李智豪 1.表面等离子体共振的物理学原理 人们对金属介质中等离子体激元的研究, 已经有50多年的历史。1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。 1.1 基本原理[1] 光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。 等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。 金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场

有趣的共振现象

有趣的共振现象 学生:严晓雯 指导老师:殷光香 唐朝的时候,洛阳的一座寺院里出了一件怪事。寺院的房间里有一口铜铸的磬,没人敲它,常常自己“嗡嗡”地响起来,这里是什么原因呢? 原来,这口磬和饭堂的一口大钟,它们在发声时,每秒种的振动次数——频率正好相同。每当小和尚敲响大钟时,大钟的振动使得周围的空气也随着振动起来,当声波传到老和尚房内的磬上时,由于磬的频率跟声波频率相同,磬也跟着振动起来。发出了“嗡嗡”的响声。这就是发生振动的共振现象,也叫共鸣。 你注意过吧,胡琴的下端都有一个不小的“肚子”——蒙上蛇皮的竹筒。当你兴致勃勃地拉起胡琴时,琴弦的振动通过蛇皮会引起“肚子”中空气的共鸣,使发出来的琴声不仅响亮,而且音乐丰满,悠扬动听。人们把这种“肚子”叫做共鸣箱。你瞧,扬琴、琵琶、提琴、钢琴等乐器,不都有各种形状,大小不一的共鸣箱吗? 除了共鸣箱之外,人们利用共振现象来做的好事还不少呢。 建筑工人在造房子的时候,不论是浇灌混凝土的墙壁或地板,为了提高质量,总是一面灌混凝土,一面用振荡器进行震荡,使混凝土由于振荡更紧密、结实。 大街上的行人,车辆的喧闹声,机器的隆隆声——这些连绵不断的噪声不仅影响人们正常生活,还会损害人的听力。有一种共振性的消声器,是由开有许多小孔的孔板和空腔所构成。当传来的噪声频率与共振器的固有频率相同时,就会跟小孔内空气柱产生剧烈共振。这样,声音能在共振时转变为热能,使相当一部分噪声被“吞吃”掉。 此外,粉碎机,测振仪,电振泵等,也都是利用共振现象进行工作的。

但在某些情况下,共振现象也可能造成危害。例如:当军队过桥的时候,整齐的步伐能产生振动。如果它的频率接近于桥梁的固有频率,就可能使桥梁共振,以致到了断裂的程度。因此,部队过桥要用便步。 在我国西北一带,山头终年积雪。每当春暖花开,山上冰雪融化,雪层会离开原来的地方滑动。往往一次偶然的大吼声,厚厚的雪层就会因为共振而崩塌下来,因此规定攀登雪山的勘察队员,登山队员不能大声说话。 我们要将共振充分运用到各个科学领域,还要防止共振现象给生活、工作、环境带来危害。这就需要我们不断去研究、探索。

表面等离激元共振实验

表面等离激元共振法测液体折射率实验 实验目的: 1、了解全反射中倏逝波的概念 2、观察表面等离激元共振现象,研究其共振角随折射率的变化 3、进一步熟悉和了解分光计的调节和使用 4、了解和掌握共振角测量的方法,以及计算折射率的原理和方法 实验简介: 早在1902年Wood就在光学实验中首次发现了表面等离激元共振(Surface Plasmon Resonance,SPR)现象,1941年Fano根据金属和空气界面上电磁波的激发解释了这一SPR现象,随后就提出了体积等离子体子(激元)的概念,认为这是金属中体积电子密度的一种纵向波动。Ritchie注意到当高能电子通过金属薄片时,不仅在体积等离子体子频率处有能量损失峰,在更低频率处也有能量损失峰,并认为这与金属薄膜的界面有关。1959年Powell和Swan通过实验验证了Ritchie理论。1960年Stern和Farrell研究了此种模式产生共振的条件并首次提出了表面等离子体子(SP)的概念。1971年Kretschmann为SPR传感器结构技术奠定了基础,1983年Liedburg将SPR用于IgG与其抗原的反应测定,1987年Knoll等人开始了SPR成像的研究,1990年Biocare AB公司开发出首台商品化SPR仪器。表面等离激元共振技术终于在20世纪90年代成功发展起来,成为应用SPR原理检测生物传感芯片上配位体与分析物作用的一种新技术。 表面等离激元共振是一种能够适合探测金属表面的分子相互作用的量子光电现象。理论上,一个表面全内部反射的光诱发从表面延伸的倏逝波,平行于正常的波。这个倏逝场是由于光的波性质和强度随着表面距离增加而呈指数递增。在波导/金属表面相交处,从波导延伸的倏逝场能够以具体的入射角耦合到电磁表面波,这个角称为表面等离激元共振(SPR)角。在这个角,光能量能够转换到传导金属膜片,因为共振频率是一样的,因此创建了一个表面等离激元。因为能量被吸收了,光的反射强度显示了在表面等离激元共振(SPR)发生的角的地方下降。倏逝场起着表面的探测杆作用,因为表面等离激元共振(SPR)角对于折射率的变化相当敏感。表面等离激元共振(SPR)角的转换因此用于探测表面

高转速时有共振现象是怎么回事

高转速时有共振现象是怎么回事? 读者林先生问:汽车在转数达到3000转的时候,出现共振现象,这是怎么回事? 回复:首先要区别共振的具体表现,大概有2钟,一种表现为车身的抖动,一种表现为有明显的共鸣噪音。大部分的车型在大约3000转时,都会有明显的共鸣噪音,但是没有车身的抖动感。这是汽车的常有现象 手刹拉起就放不下怎么回事? 读者谢先生问:最近自己的汽车的手刹拉起来后就再也放不下去了,请问这是怎么回事? 回复:如果手刹车不能正常使用的话,车辆就不能再开,如果继续使用的话,会将汽车的刹车片烧坏,造成车辆安全隐患。从你所表述来看,可能是手刹棘轮机构失效导致。建议开到4S店或是维修店做进一步的检查。 “抖车”的原因解析小问题可能藏大隐患 [日期:2013-1-18 9:17:50 ][来源: 网络] [阅读次数:110 ] 新车用了一段时间,有的车主会发现车身有些小抖动,却不知道哪里出了问题。“车身抖动”是一个信号,告诉车主车子已出现了问题。专业人士余兵师傅告诉我们,车身抖动看似小事,如果不注意检测,会引发大故障隐患。那么,车身抖动是由什么问题引起的呢?普通车主该如何判断和解决? 行驶时发现车身抖动 如果在行车过程中,发现车身有轻微的抖动或偏移,一般是轮胎引起的故障。首先可能是轮胎平衡状况不佳,需要车主尽快去做一个四轮定位和动平衡,如果车辆不跑偏做一下轮胎动平衡即可。 外一种状况则较为严重,可能是因为钢圈变形所致,这就需要车主去专业的维修店检查。这种状况一般发生在使用年限较长的车辆身上。一般汽车更换新轮胎、新钢圈时都要做一次轮胎平衡,否则配重不平均时方向盘就容易发生抖动的现象。车身抖动对行车舒适感和操控判断都会有所影响。 第三种情况是因为传动轴变形不平衡引起,一般这种情况出现在底盘碰撞过的车比较多。 怠速时的车身抖动 怠速车身抖动是很多车主常遇到的状况。如果车主在启动车辆或将车辆停驶未关闭发动机情况下,如果发现车身抖动明显,那么可能意味着车辆存在下面三种状况: 1、发动机积碳严重

谈谈共振的应用及其危害

谈谈共振的应用及其危害 摘要:本文就日常生活中共振的现象进行了分析与探讨,探究其存在的物理本质,进而深入研究了共振的形成条件、现象、应用及其危害。 引言:在现实生活中,我们经常能够看到或者听见玻璃窗在载重车驶过时抖动;风吹高压电线发出尖啸声;美妙动人的歌声从人们歌喉里飘出;钢琴、小提琴等乐器演奏出绝妙的音响效果;树木在大风的吹过后轰然倒下等等。那么,为什么会有这么奇妙的事情发生呢?共振真的有那么大的魔力吗?共振带来的都是好事吗? 共振概述:任何物体产生振动后,由于其本身的构成、大小、形状等物理特性,原先以多种频率开始的振动,渐渐会固定在某一频率上振动,这个频率叫做该物体的"固有频率"。当人们从外界再给这个物体加上一个振动(称为驱动)时,如果驱动力的频率与该物体的固有频率正好相同,物体振动的振幅达到最大,这种现象叫做"共振"。 从能量角度来看,在共振过程中,驱动力始终对物体做正功,所以物体能从外界的驱动源处取得最多的能量,往往会产生一些意想不到的效果。 共振的应用: 1.声音的共鸣:共振在声学中亦称“共鸣”,它指的是物体因共振而发声的现象,如两个频率相同的音叉靠近,其中一个振动发声时,另一个也会发声。 早在战国初期,当时的人就发明了各种各样的共鸣器,用来侦探敌情。《墨子·备穴》记载了其中的几种:在城墙根下每隔一定距离挖一深坑,坑里埋置一只容量有七八十升的陶瓮,瓮口蒙上皮革,这样,实际上就做成了一个共鸣器。让听觉聪敏的人伏在这个共鸣器上听动静,遇有敌人挖地道攻城的响声,不仅可以发觉,而且根据各瓮瓮声的响度差可以识别来敌的方向和远近。另一种方法是:在同一个深坑里埋设两只蒙上皮革的瓮,两瓮分开一定距离,根据这两瓮的响度差来判别敌人所在的方向。 我国古时还发明出了另一种更加轻巧、简便、实用的共鸣器。如唐代的军队中就有一种用皮革制成的叫做“空胡鹿”的随军枕,让听觉灵敏和睡觉警醒的战士在宿营时使用,“凡人马行在三十里外,东西南北皆响闻”。当声音通过地面传播到空穴时,在空穴处产生交混回响,于是就能知道敌人的多寡远近。 2.核磁共振成像:在电学中,振荡电路的共振现象称为“谐振”。

表面等离子体

LSPs和PSPs的区别 局域表面等离子体(Localized Surface plasmons, LSPs)和传播型表面等离子体(Propagating surface plasmons. PSPs)同属于表面等离子体(SPs)1。 表面等离子体(SP)是存在于金属与电介质截面的自由电子的集体振荡2。SPR是由于入射激光在特殊波长处局域电磁场增强,物理机制是表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)和尖端增强拉曼散射(Tip-enhanced Raman scattering, TERS)。 入射光的电场分量诱导球形金属粒子的表面等离子体共振的原理分析(即图1的解读)3。 当入射光照射到贵金属(如:金、银,见脚注1、3)时,在纳米颗粒表面形成一种振荡电场,纳米颗粒中的自由传导电子在振荡电场的激发下集体振荡,入射光子频率与金属纳米颗粒的自由电子云的集体振动频率相等(入射光波长一定)时,发生局域表面等离子体共振(LSPR)。亦可解释为入射光在球形颗粒表面产生电场分量,电子的共谐振荡与激发其的振荡电场频率相同时发生共振,诱导产生LSPR 3。 对于LSPs而言,颗粒内外近场区域的场强会被极大增强,原因是:纳米粒子的尺寸远小于入射光波长,使得电子被束缚在纳米粒子周围局域振荡,导致场强增大。 对于PSPs(部分文章中称为:SPPs4,金属与介质界面上的电子集体激发振荡的传播型表面电磁波),其表面等离子激元(即TM模式)如上图所示。在SPPs 的情况下,沿金属介质界面,等离子体在X和Y方向上传播,在Z方向上衰减, 1等离激元学[M]. 东南大学出版社, 2014. 2 Zhang Z, Xu P, Yang X, et al. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2016, 27:100-112. 3邵先坤, 郝勇敢, 刘同宣,等. 基于表面等离子体共振效应的Ag(Au)/半导体纳米复合光催化剂的研究进展[J]. 化工进展, 2016, 35(1):131-137. 4王五松, 张利伟, 张冶文. 表面等离子波导及应用[J]. 中国光学, 2015(3):329-339.

(完整word版)表面等离激元

表面等离子体共振波长 1.共振波长的基本求解思路 表面等离激元(SP)是指在金属和电介质界面处电磁波与金属中的自由电子藕合产生的振动效应。它以振动电磁波的形式沿金属和电介质的界面传播,并且在垂直离开界面的方向,其振幅呈现指数衰减。表面等离激元的频率与波矢可以通过色散关系联系起来。其垂至于金属和电解介质界面方向电磁场 可表达为: 式中表示离开界面的垂直距离,当时取+,时取一。式中为虚数,引起电场的指数衰减。波矢平行于方向,,其中为表面等离子体的共振波长。由表达式可见,当时,电磁场完全消失,并在时为最大值。 函数,以及电介质的介电常数来求解表面等离激元的的色散关系,由公式: ,可得到等离激元色散关系式为: ,如果假设和都为实数,且 ,则可获得一个较为复 杂的色散关系式 其中, (从实部可以计算SPPs 的波长 '2/x SPP K λπ=,SPPs 的传播距离SPP δ主要决定于虚部''2SPP SPPs k δ=

2. 金属表面等离体子频率的求解 当波矢较大或者时,的值趋向于21P SP ωωε=+ 对于自由电子气,,是金属体电子密度,是电子有效质 量,是电子电荷。因此,随增大而减小。 (1) 具有理想平面的半无限金属 全空间内电势分布满足拉普拉斯方程:由于在方向上介质和金属都是均匀的,所以可令解的形式为得拉普拉斯方程的解 由以及边界条件: 可以得到介质与金属相对电容率之间的关系: ,假设介质的相对电容率为与

频率无关的常数,由金属相对电容率的表示式可知因此金属表面等离体子频率为当介质为真空时,得到金属表面等离体子频率为 (2)金属中存在着大量的价电子,它们可以在金属中自由地运动.由于价电子的自由移动性及电子间存在着库仑相互作用,所以在金属内部微观尺度上必然存在着电子密度的起伏.由于库仑作用的长程性,导致电子系统既存在集体激发(即等离体子振荡),也存在个别激发(即准电子).而在小波矢近似下只存在集体激发,故可以将电子密度的傅里叶分量作为集体坐标来描述这种关联,在k 一0的极限下,有式中为单位体积内的电子数.由此方程可以得到金属内等离体子振荡频率 从以上讨论及推导可以看出,金属等离体子振荡实际上是在库仑作用参与下的高粒子数密度系统中电子的集体运动,等离体子就是电子集体振荡的能量量子.由于库仑势场是纵场,因此等离体子是纵振动的量子.以上所讨论的情况没有考虑到金属边界的影响,即认为金属是无限大的,计算得到的频率为块状金属中的体相等离体子频率. 3.金属介电常数的求解 (1)另外,根据Drude 自由电子气模型,理想金属的介电方程可写为: 22()1p i ωεωωτω =-- ,p ω是等离子体振荡频率,,τ是散射速率描述电子运动遭遇散射而引起的损耗, 161311.210/, 1.4510p rad s s ωτ-=?=?对于银,。 (2)球状金属的SP 介电常数可由以下公式给出: 式中为金属周围环境的介电常数。从公式可以得到无限多的模式,在 时得到最低阶介电模式。由于光子通过这些介电模式藕合进入SP ,

共振现象利弊的分析

共振现象利弊的分析 创新自1101班张旭1111560129 众所周知,共振现象在我们的生活中广泛的存在着,小到乐器的演奏,大到桥梁的倒塌,就连我们“电厂热力设备及运行”一课都讲到要防止汽轮机由于应力变形引起共振。对于共振的探究,我先对涉及到的名词进行了查找。 所谓共振,是指激振频率接近机器结构固有频率时的一种工作状态。而固有频率是指一旦振动频率达到这个值结构就会发生共振,而如果振动频率稍一变化共振就会消失。 共振现象最有名的例子就是18世纪中叶,一座桥因大队士兵齐步走产生的频率正好与大桥的固有频率一致,使桥的振动加强,最终断裂。其实就算是人们注意了人为因素,建筑物还是要经受共振现象的考验,比如风。1940年,美国塔柯姆大桥因大风引起的共振,尽管当时的风速不及设计风速限值的1/3,可是因为这座大桥的实际的抗共振强度没有过关,所以导致事故而塌毁。大风中大楼剧烈摇晃也不是“风吹的”,而是因大风造成的共振而剧烈摇摆。更极端的例子地震波引发的共振就更不用说了。 由于人体柔软的特性,人也会遭受共振的威胁。我记得我在看《小崔说事》采访战地记者的一集里,战地记者说如果手榴弹在附近爆炸,卧倒的同时一定要把心脏离开地面,否则心脏就有受到振动波而被震碎的危险。 当然,共振现象也为科技发明者们广泛应用。我查到一个咋一看

用不到共振的例子,微波炉。以前我只是知道微波炉利用的是水分子振动,通过查找资料我才知道微波是具有2500赫兹左右频率的电磁波。食物中水分子的振动频率也在这附近,为了达到共振,微波炉加热食品时,炉内产生很强的振荡电磁场,使食物中的水分子作受迫振动,这是一个能量转化的过程,电磁辐射能转化为热能,从而使食物的温度迅速升高。微波路通过对物体内部的整体加热,完全不同于以往的从外部对物体进行加热的方式,极大地提高了加热效率。 我个人还有听广播的爱好,只不过我是用手机自动搜索,老式收音机的旋钮就是使收音机电路和广播台发射的信号达到共振,进而起到放大信号的作用。这和我们模拟电子电路课学到的知识相同。 结合我们课上讲的宇宙的内容,我还查了关于轨道共振的资料,在天体力学中,轨道共振发生在两个天体的运行轨道的公转周期成简单整数比关系,它们之间互相受到周期性引力影响。这使它们的轨道在引力扰乱中保持稳定。比如冥王星与其它一些类似冥王星的天体的轨道与海王星的轨道成3:2的共振,保持了它们轨道的稳定性,这与短片里讲到行星轨道能保持稳定是很多因素共同作用的结果的观点一致。 和其他物理现象一样,共振有利有弊。记得第一节课上讲过《庄子?天下》文曰: “判天地之美,析万物之理。”化用仓央嘉措的诗,你认或不认,共振就在那里。我们要做的正是利用而不是试图改变自然的规律,让共振使生活更美好。

表面等离子体共振

表面等离子共振技术(Surface
张颖娱 综述
Plasmon Resonance SPR)
学号 10281036
生物物理系
摘要 : SPR 是一种物理光学现象,而且 SPR 对金属表面附近的折射率的变化极为敏感,利用这一性 质,将一束平面单色偏振光以一定角度入射到镀有薄层金膜的玻璃表面发生全反射时,若入射光的波向量与 金膜内表面电子的振荡频率匹配,光线即耦合入金膜引发电子共振,即表面等离子共振。以 SPR 原理设计的 生物传感器近来引起广泛的重视。 关键词 表面等离子共振 生物传感器 薄膜
1900 年,由 Wood 发现了光波通过光栅后,光频谱发生了小区域损失,这是关于 SPR 这一电磁场效应的最 早记载。1941 年,FanoU 发现这种“Wood 异常”是由于等离子波造成的。1958 年,Turbader 首先对金属薄膜 采用光的全反射激励的方法,观察表面等离子共振现象。 此后,至 60 年代 Otto 以及 1971 年 Kretschmann 分别 发表了里程碑性质的文章,激发了人们应用 SPR 于传感机制的热情,而 Kretschmann 结构也为 SPR 型传感器 奠定了基础。目前 SPR 被尝试用于测量各种物质的结构、特性及其的相互作用等。 1 SPR 生物传感器的基本原理: (如图 2 所示) 表面等离子振动是金属表面自由电子的一种集团运动,代表了一种表面带电的量子振动。在激励 SP 的 通常方法中,光入射在金属薄膜上,产生衰减场,衰减场的穿透深度 dp 为:
(1) 通常要求金属薄膜小于 60mm,达到衰减场中的 TM(横磁波)极化能量耦合并激发等离子态,耦合的数 量、 等离子体的强度受到了金属两侧材料的影响,如果在金属薄膜一侧加一层待测物质,试样与金属薄膜的耦 联影响了结构的折射率,从而影响了反射光、衰减以及等离子体共振。所以,可以把 SPR 型传感器看作等离 子体耦联效率的度量计。基原理如图 2 所示, 其中:
上述两个公式分别为沿表面传播的波矢量,其中:λ为入射光波长,εm 为金属介电常数 的实部,εd 为金属外介质的介电常数,np 为透镜的折射率,θ为入射光与表面法线的夹角。发生共振时,入射 光与法线的临界角为:
θ=arcsin[εmεd(εm+εd)εg]1/2
(4)
显然,共振角受到折射率(或介电常数)的影响,此时,金属膜外侧的衰减场为:

在非对称等离激元纳米颗粒组成的二聚体中耦合的光学共振讲解

在非对称等离激元纳米颗粒组成的二聚体中耦合的光学共振 摘要 等离激元共振的纳米颗粒之间的电磁耦合遵循分子杂交的原理,即粒子等离激元杂交形成一个低能量的结合等离激元模式和一个高能量的反键等离激元模式。相同粒子之间的耦合(同型二聚体),同相模式是在亮场下的,而反相模式是在暗场下的,这是因为没有考虑等效偶极矩。我们探测时,使用偏振散射光谱,在一对不同粒子中的耦合(银/金纳米颗粒异质聚体)令我们观察到的同相和反相等离激元模式。杂交模式提出假设,结合模式会随着金粒子的等离激元共振红移,而反键模式会随着银粒子的等离激元共振蓝移。而实践证明,反键模式是随着银粒子的等离激元共振红移。这种反常的变化是由于银粒子的等离激元共振与金的带间跃迁的准连续的耦合,它主导了银粒子等离激元共振的光谱域。这种杂交模型,只考虑了金属内自由电子的行为,而没有考虑到这种耦合。 关键词:表面等离激元共振,等离激元耦合,杂交模式,纳米颗粒二聚体 金属纳米结构的光学性质主要是由其局域表面等离子体共振决定的,即金属纳米结构中的传导电子的集体相干振荡。单个金属颗粒局域表面等离子体共振的频率、强度和质量很大程度取决于尺寸、几何形状、金属位置以及周围环境的折射率。此外,金纳米颗粒的表面等离激元共振对它附近的金属纳米粒子以及有机分子或量子点的存在特别敏感。在一系列相接近的金属纳米颗粒集合中,LSPR 很大程度上受到单个粒子共振的近场耦合的影响。这种纳米颗粒间的等离激元耦合对调整光谱,强度,以及空间分布和该纳米结构周围的局部电场偏振提供了一个独特的战略。例如,一对金属纳米颗粒间的等离子体耦合被用来在对子交界处产生一个强有力的限制增强的电场来允许强烈的表面拉曼散射,从而实现共振对附近环境灵敏度的改善,以及光子的传播和导波。近场耦合,可由耦合距离调节,也用来设计等离子体尺测量纳米颗粒间的间距以及金属纳米壳/盒在可见-近红外调节的吸收和散射。为了光学的设计和利用近场,等离子体激元耦合的基础研究一直是许多研究的主题,仍然是一个激烈的当前利益的话题。 已经建立的等离激元耦合模型已经从电动力学理论和集合纳米结构LSPR光

表面等离激元

表面等离激元介绍 定义及原理: 当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。 性质: 表面等离激元是外界光场与金属中自由电子相互作用的电磁模,在这种相互作用下外界光场被集体振荡的电子俘获,构成了具有独特性质的SPPs 。在平坦的金属/介质界面,SPPs 沿着表面传播,由于金属中欧姆热效应,它们将逐渐耗尽能量,只能传播到有限的距离,大约是纳米或微米数量级。只有当结构尺寸可以与SPPs 传播距离相比拟时,SPPs 特性和效应才会显露出来。随着工艺技术的不断进步,现今已经可以制作特征尺寸为微米和纳米级的电子元件和回路,在这个领域的研究也迅速开展起来。 表面等离激元主要具有如下的的基本性质: 1. 在垂直于界面的方向场强呈指数衰减; 2. 能够突破衍射极限; 3. 具有很强的局域场增强效应; 4. 只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。 表面等离激元的激发: 由于表面等离激元在界面附近的电场方向与界面垂直,要激发表面等离激元,光波必须具有与界面垂直的电场分量。此外,在激发表面等离激元的过程中,还需要满足波矢匹配条件。相同频率下,金属与介质界面的表面等离激元与光波的波矢关系可以表示为:2/12 1210)(εεεε+=k k spp ,其中spp k 是表面等离激元波矢,0k 是光波波矢。一般来说,对于介质01>ε;而对于金属,212;0εεε<<且。相同频率时,表面等离激元的波矢大于光波波矢,所以用平面光波无法直接激发出表面等离激元。要想实现光激发,就必须通过特殊方法来补偿光波损失,使波矢匹配条件成立。目前主要通过全反射和散射波矢补偿两种方法。

对单摆演示共振现象的研究

对单摆演示共振现象的研究 (福建省莆田六中 施建军) 高中物理课本用单摆来演示共振现象,简单易行,充分利用好该装置让学生观察现象,讲解好产生现象的原因,可使学生更深刻地认识共振现象,更可激发学生的学习热情,养成科学的观察与思考问题的习惯。但这一实验往往不被重视,没有达到其应有的演示效果。本文试从以下几方面对该演示作分析,阐述。 如图一,实验前可引导学生观察: 1.观察共振现象,说明单摆的共振条件。 2.观察共振的 B 、D 小球的相位关系。 3.观察共振的 B 、D 小球的振幅变化。 以下从力和能两方面来认识共振现象。(D 摆提供策动力) 1.B 小球生的振幅最大,即产生共振。说明当两个摆的摆长相等时(即 固有周期与策动力周期相等),产生共振现象。 2.当D 摆通过绳OO /策动B 摆时,D 摆的振动比B 摆的振动超前л/2。 由于D 摆的运动超前B 摆л/2,故力对B 摆始终做正功,这样B 摆的振幅 越来越大,同时D 摆由于对做功而自身的能量(机械能)越来越小,振幅 越来越小,直至停止振动,而后B 摆反过来对 D 摆提供策动力 ,这样D 摆的振幅又逐渐增大,而B 摆的振幅开始减小。如此往复,最终因空气阻 力而停止运动。这也正说明了矛盾双方是可以相互转换的。 3.而其它各摆(A 、C 、E 摆)跟B 摆不同,因它们的固有周期与 D 摆不 同,D 摆对它们所施加的力一会儿使它们加速(做正功),一会儿使它们减速(做负功)。或者说,策动力的变化与运动情况不合拍,步调不一致,从而无法形成共振。 4.为使B 、D 摆相位、振幅关系更便于观察,可采用图二,撤去其它 摆球,只留下B 、D 摆。这样现象更明显。 2001年9月10日 / /

表面等离子体共振传感器剖析

表面等离子体共振传感器 程玉培 1433591 摘要:表面等离子体子共振(SPR) 技术是一种简单、直接的传感技术。它通过测量金属表面附近折射率的变化, 来研究物质的性质。表面等离子体子共振传感器已经成为生物传感器研究领域的热点。 关键词表面等离子体子共振传感器生物分子间相互作用 前言 生物化学是运用化学的理论和方法研究生命物质的边缘学科。其任务主要是了解生物的化学组成、结构及生命过程中各种化学变化。化学的核心是化学键,即分子间的相互作用,而要研究生命过程中的各种化学变化,归根到底就是要研究生物分子之间的相互作用。生物分子之间的相互作用是生命现象发生的基础,研究生物分子之间的相互作用可以阐明生物反应的机理,揭示生命现象的本质。近年来,研究生物分子之间相互作用的技术不断出现,其中表面等离子体共振(Surface Plasmon Resonance,SPR)在生物学以及相关领域的研究应用取得了很大进展,SPR技术可以现场,实时地测定生物分子间的相互作用而无需标记,可以连续监测吸附和解离过程,并可以进行多种成分相互作用的研究。 1 表面等离子体共振传感器概述 1.1 表面等离子体共振传感器简介 表面等离子体子共振( surface plasmon resonance , SPR) 是一种物理光学现象。利用光在玻璃界面处发生全内反射时的消失波, 可以引发金属表面的自由电子产生表面等离子体子。在入射角或波长为某一适当值的条件下, 表面等离子体子与消失波的频率和波数相等,二者将发生共振, 入射光被吸收, 使反射光能量急剧下降, 在反射光谱上出现共振峰(即反射强度最低值) 。当紧靠在金属薄膜表面的介质折射率不同时, 共振峰位置将不同。 1.2 表面等离子体共振传感器研究背景及现状 表面等离了体共振效应的发现可以追溯到上世纪初。关于SPR效应的最早记载是源于1902年Wood发现光波通过光栅后,光频谱出现小区域内的能量损失现象。1941年,Fano针对这一现象根据金属和空气界面上表面的电磁波理论和边界条件进行了详尽的解释。1957年,当高能电了通过金属薄膜时,Ritchie发现能量损耗不仅发生在体积等离了体频率处,在更低频率处也发生了,于是认为这与金属薄膜界面特性有关。1958年,Turbader为了观察SPR现象,对金属薄膜采用光的全反射激励的方法。 1960年,Stern和Farrell首次提出了表面等离

第四章 表面等离子体共振技术总结

第四章表面等离子体共振技术 --学习总结通过表面等离子体共振技术的学习,我主要掌握了以下的一些基本知识: 一、金属表面的等离子体振动 表面等离子体振动,其角频率ωs与体积等离子体的不同,它们之间存在以下关系: 则这种特殊表面的等离子体振动的角频率ωms为:Array 二、产生表面等离子体共振的方法 面等离子体波(Surface plasma wave,SPW) 质中逐渐衰减。表面等离子体波是TM极化波,即横波,其磁场矢量与传播方向垂直,与界面平行,而电场矢量则垂直于界面。 在半无穷电介质和金属界面处,角频率为 式中c是真空中的光速,εm和εa分别是金属和电介质的介电常数。表面等离 εm=εmr+iεmi)。金属的εmr/εmi 电磁波在真空中的速度c与在不导电的均匀介质中的速度v之比称为电介质的折射率n: 则:Array 频率为ω 要使光波和 (ka)总是在ω( 从不交叉,即ω( 因此, 要设法移动ω( 的。

场在金属与棱镜的界面处并不立即消失,而是向金属介质中传输振幅呈指数衰减的消失 kev为: 通过调节θ 共振,有: 由上式可见,若入射光的波长一定,即ωa一定时,ns 条件;若θ0一定时,ns改变,则必须改变ωa 波长λ来实现。此时θ0和λ分别称为共振角和共振波长。 右图为典型的SPR光谱 三、SPR传感器 1、基本原理 表面等离子体子共振的产生与入射光 的角度θ、波长λ、金属薄膜的介电 常数εs及电介质的折射率ns有关, 发生共振时θ和λ分别称为共振角度 和共振波长。对于同一种金属薄膜, 如果固定θ,则λ与ns有关;固定λ, 则θ与ns有关。 如果将电介质换成待测样品,测出共 振时的θ或λ,就可以得到样品的介 电常数εs或折射率ns;如果样品的化 学或生物性质发生变化,引起ns的改 变,则θ或λ也会发生变化,这样, 检测这一变化就可获得样品性质的变 化。 固定入射光的波长,改变入射角,可 得到角度随反射率变化的SPR光谱;同样地,固定入射光的角度,改变波长,可得到波长随反射率变化的SPR光谱。SPR光谱的改变反映了体系性质的变化。 2、基本结构 一般来说,一个SPR传感器的包括:光学系统、敏感元件、数据采集和处理系统。 敏感元件主要指金属薄膜及其表面修饰的敏感物质,用于将待测对象的化学或生物信息转换成折射率的变化,是SPR传感器的关键。从SPR的原理可知,实际上是样品的折射率的变化引起SPR光谱的变化。 4种检测方式: 1.角度调制:固定λin,改变θin 2.波长调制:固定θin ,改变λin 3.强度调制:固定θin 、λin,改变光强 4.相位调制:固定θin 、λin,测相差 3、应用 用SPR可获得的信息: 1.两个分子之间结合的特异性 2.目标分子的浓度 3.结合以及解离过程的动力学参数

共振问题 (DEMO)

共振问题 一、共振的定义 对一系统施加激励(包括直接的或通过空气传播),当激振频率达到某一频率时,系统振动的幅值达到最大的现象,称为系统共振。 共振频率的特点是不依赖于转速明显改变,带宽较宽,幅值大小与带宽有关。(所以可以通过改变转速的方法来判断系统是否发生了共振) 随机和冲击虽然均属于宽频激励,如果覆盖系统的某阶固有频率,均会引起共振。但因前者的随机激励能力很小其振动效应轻微,而后者的激励能量甚大,共振效应强烈。 二、固有频率的测定方法 目前、频谱分析比较广泛用于测定结构的固有频率,即通过对结构的随机激励、瞬态激励或天然脉动等各种状态测得结构的振动信号,经功率谱或幅值谱分析,由谱图中的尖峰分量来确定结构的固有频率。这种方法快速、准确、还可以用于运转设备的在线测量分析。利用频谱分析的细化技术可以实现对频率的精确测量。 测量结构共振要注意结构刚度对振幅的影响,刚度较小的结构容易激励结构的共振。在查找共振频率测量时,选择窗函数因注意选择频率分辩率较高的窗函数。 k/ 自由振动的固有频率ω= m (弹性系统的振动固有频率与系统质量m的开方成反比关系) k—刚度;m—质量; 三、机械共振概念 1.当零部件自然频率和强迫振动频率相一致时,会发生共振。 2.当轴的转速通过共振频率时,相位发生180°变化。 3.系统共振发生将产生高的振幅。 4.实际中当强迫振动频率在自然频率±30℅范围内就有可能产生共振。

集中质量将使固有频率下降,如电机的转子; 如果悬臂梁发生了故障,其上产生了裂纹,那么梁的弹性刚度K 就要发生变化,若事先已知道正常梁的ω值,根据测得的某个梁的ω值是否与正常梁的ω值相等就可判别被测梁是否有故障了。 机械振动是指表示机械设备在运动状态下,机器上某观测点的位移量围绕其均值或相对基准随时间不断变化的过程。 旋转机械振动情况可分成两大类,即稳态振动和随机振动。稳态振动是指在某一时间t 后,其振动波形的均值不变,方差在一定的范围内波动;而随机振动是指信号的均值和方差都是时间函数。 旋转机械在启停升降速过程中,往往在某个(或某几个)转速下出现振动急剧增大的现象,有时甚至在工作转速下振动也比较强烈。其振动原因往往是由于转子系统处于临界转速 附近产生共振。 在无阻尼的情况下,转子的临界转速等于其横向固有频率,因此转子的临界转速个数与转子的自由度相等。对实际转子来说,理论上有无穷多个临界转速,但由于转子的转速限制,往往只能遇见数个临界转速。 在有阻尼的情况下,转子的临界转速略高于其横向固有频率。 根据转子的工作转速n 与其第一阶临界转速1cr n 间的关系,可划分: n<0.51cr n 刚性转子 0.51cr n n<0.71cr n 准刚性转子

等离子振动吸收原理

张文俊论文: Ag 纳米晶的引入可使玻璃上转换蓝、红光由三光子吸收转变为双光子吸收。由于局域场表面等离子体共振增强以及Ag 与Tm3 + 之间的能量转移,使得含Ag 纳米晶玻璃的荧光强度比不含Ag 纳米晶的玻璃提高了约5 倍; 当玻璃中引入Ag 纳米晶后,上转换机理除了Tm3 + 和Yb3 + 离子之间的能量传递之外,Ag 纳米晶的局域表面等离子体共振( LSPR) 也势必对荧光发射机理产生影响[2]。首先,Ag 纳米晶利用LSPR 方式将980 nm 泵浦激光能量转移到Tm3 + 的激发态3H5能级,再通过无辐射衰减到亚稳态3F4能级,同时Tm3 + 的1G4→3F4所产生的辐射跃迁能量通过ET 过程传递给Ag 纳米晶,再通过LSPR 又将能量传递到Tm3 + 的亚稳态3F4能级,最终产生3F4→1G4能级跃迁。由此可见,整个跃迁过程为双光子吸收过程。这与图8( b) 上转换发光强度与抽运功率的关系也是一致的。此外,据相关文献报道,Ag 纳米晶对荧光增强的作用不仅针对980 nm 泵浦有效,而且在1 050 nm激光泵浦下的掺Tm 碲锌玻璃[7] 上转换发光强度的原因有以下3 点: ( 1) Ag 纳米颗粒SPR 带局域场增强。( 2) Ag 纳米颗粒向Tm3 + 离子的能量转移。由于金属银纳米颗粒的SPR 带延伸至近红外区,因此Ag 纳米颗粒会吸收部分980 nm 抽运光并向Tm3 + 离子转移[13]。 ( 3) Tm3 + 离子向Ag 纳米颗粒的SPR 能量传递。 通常,提高荧光输出的主要方式是靠提高局域场来实现,同时Ag 纳米颗粒与Tm3 + 离子之间的能量传递也是提高荧光强度的另一有效途径。因为Ag 纳米颗粒可提高Tm3 + 离子附近的光密度,这相当于改变了Tm3 + 离子光子吸收的数量。因此,Ag 纳米颗粒到Tm3 + 离子的能量传递,可理解为金属发射出弱的光致发光所致。 某硕士论文: 由于荧光物质的暗毒性限制了活细胞内荧光分子的浓度,荧光分子浓度低将导致活细胞中单分子荧光信号较弱,提高荧光信号强度需要增大激发光强度,但较高的激发光强度又会引起较快的光漂白使得荧光分子光稳定性下降,且弱的荧光信号容易受到背景或拉曼信号的干扰。金属表面增强荧光是指分布于金属 纳米结构表面或粒子附近的荧光分子的发射强度较之在自由空间的信号明显增强的现象。荧光分子邻近于金属纳米材料表面,将提高荧光分子的荧光强度[10,11】,在不改变仪器的信噪比条件下,使得分子荧光检测更加容易实现[12,13】。 人们已经在褶 皱金属表面【21,22】、粗糙金属表面【231、光滑金属表面【241、金属纳米粒子表面实现的金属表面增强荧光,并随着人们发现表面增强荧光的激发态寿命减小,伴随着光降解减弱而受到越来越多重视。 2006年Krishanu Ray通过改变银岛膜纳米粒子与荧光分子问LB单层膜的厚度,实现不同的荧光增强倍数,无LB膜,荧光强度得到最大为32倍的增大,当膜后为90nm时的得到最小为4倍的荧光增强,增强倍数随膜厚衰减变化的规律,与理论计算符合【391。同时发现随着膜厚的增加,荧光寿命也逐渐增加 荧光寿命被定义为从激发态到基态的平均弛豫时间。 表面等离子体(Surface Plasmon,SP)是指金属表面沿着金属介质界面传播的电子疏密波。 当光的波长与金属表面的等离子振动频率相当时,产生局域表面等离子共振(LSPR)。 表面等离子体共振简单的说是金属表面电子在光的照射下与光波之间产生的共振现象。 对于粗糙的金属表面或是金属纳米粒子,则存在另一种非传播模式的自由电子集体振荡模式——局域表面等离子体共振(LSPR)。

相关文档
相关文档 最新文档