文档库 最新最全的文档下载
当前位置:文档库 › 高中数学必修2综合测试题

高中数学必修2综合测试题

高中数学必修2综合测试题
高中数学必修2综合测试题

正视图

侧视图

俯视图

2

1

1

高中数学必修2综合测试题

文科数学

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.若直线1=x 的倾斜角为α,则=α( ).

A .0 B.3

π C .2π

D .π

2.已知直线1l 经过两点)2,1(--、)4,1(-,直线2l 经过两点)1,2(、)6,(x ,且21//l l ,则=x ( ). A .2 B .-2 C .4 D .1

3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).

A .π25

B .π50

C .π125

D .π200 4.若方程02

2

=++++k y x y x 表示一个圆,则k 的取值范围是( )

A.21>

k B.21≤k C. 2

1

0<

A.若//l α,//l β,则//αβ

B.若l α⊥,l β⊥,则//αβ

C.若βα//,l l ⊥,则βα//

D.若αβα//,l ⊥

,则β⊥l

6.如图6,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ). A .BD ∥平面CB 1D 1

B .A

C 1⊥BD

C .AC 1⊥平面CB 1

D 1

D .异面直线AD 与CB 1角为60°

7.某三棱锥的三视图如图7所示,则该三棱锥的体积是 ( ) A.

16 B. 13 C.2

3

D.1 8.直线20x y +-=与圆()()2

2

121x y -+-=相交于,A B 两点,则弦长AB =( )

A

B

D

9.点P (4,-2)与圆2

2

4x y +=上任一点连线的中点轨迹方程是 ( ) A.2

2

(2)(1)1x y -++= B.2

2

(2)(1)4x y -++= C.2

2

(4)(2)4x y ++-= D.2

2

(2)(1)1x y ++-=

(第6题)

(第7题)

10.设实数,x y 满足22

(2)3x y -+=,那么

y

x

的最大值是( )

A .

1

2

B .3

C .2 D

11.已知直线)(2R a a ay x ∈+=+与圆07222

2

=---+y x y x 交于M ,N 两点,则线段MN 的长的最小值为( )

A .

B .

C .2

D .

12.已知点),(y x P 在直线032=-+y x 上移动,当

y

x 42+取得最小值时,过点),(y x P 引圆

22111

()()242

x y -++=的切线,则此切线长为( )

A .

12 B .3

2

C D

第Ⅱ卷

二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)

13.直线过点)4,3(-,且在两坐标轴上的截距相等的直线一般式方程: ; 14.圆03422

2

=-+++y x y x 上到直线01=++y x 的距离为2的点共有 个;

15.曲线4)2(412+-=-+=x k y x y 与直线有两个交点,则实数k 的取值范围是 ; 16.已知在△ABC 中,顶点)5,4(A ,点B 在直线022:=+-y x l 上,点C 在x 轴上,则△ABC 的周长的最小值 .

三、解答题(解答应写出文字说明,证明过程或演算步骤)

17.(本小题满分10分)

已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3), (1)求AB 边所在的直线方程; (2)求AB 边的高所在直线方程.

18.(本小题满分12分)

如图,在直三棱柱111ABC ABC -中,1111AB AC =,D E ,

分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.

求证:(1)平面ADE ⊥平面11BCC B ;

(2)直线1//A F 平面ADE .

19.(本小题满分12分)

如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PD =2,M 为PD 的中点.

(1).证明:AD ⊥平面PAC ;

(2).求直线AM 与平面ABCD 所成角的正切值.

20.(本小题满分12分)

如图,直四棱锥1111D C B A ABCD -中,AB ∥CD ,AB AD ⊥,2=AB ,2=AD ,31=AA ,E 为

CD 上一点,3,1==EC DE (1)证明:⊥BE 平面C C BB 11 (2)求点1B 到平面11C EA 的距离

21.(本小题满分12分)

如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;

(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为6

3

,求该三棱锥的侧面积.

22.(本小题满分12分)

已知过点)1,0(A 且斜率为k 的直线l 与圆C :()()1322

2

=-+-y x 交于M ,N 两点. (1)求k 的取值范围;

(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |.

16.(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC 。 又∵AD ?平面ABC ,∴1CC AD ⊥。 又∵1AD DE CC DE ⊥?,,平面111

BCC B CC DE E =,,∴AD ⊥平面11BCC B 。

又∵AD ?平面ADE ,∴平面ADE ⊥平面11BCC B 。 (2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥。

又∵1CC ⊥平面111A B C ,且1A F ?平面111A B C ,∴11CC A F ⊥。 又∵111 CC B C ?,平面11BCC B ,1

111CC B C C =,∴1A F ⊥平面111A B C 。

由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD 。

又∵AD ?平面1, ADE A F ?平面ADE ,∴直线1//A F 平面ADE 略

17.(1)如图,连结DD 1.

在三棱柱ABC-A 1B 1C 1中,

因为D,D 1分别是BC 与B 1C 1的中点, 所以B 1D 1∥BD ,且B 1D 1=BD, 所以四边形B 1BDD 1为平行四边形, 所以BB 1∥DD 1,且BB 1=DD 1. 又因为AA 1∥BB 1,AA 1=BB 1, 所以AA 1∥DD 1,AA 1=DD 1,

所以四边形AA 1D 1D 为平行四边形,所以A 1D 1∥AD.

又A 1D 1?平面AB 1D,AD ?平面AB 1D, 故A 1D 1∥平面AB 1D.

(2)方法一:在△ABC 中,因为AB=AC ,D 为BC 的中点,所以AD ⊥BC. 因为平面ABC ⊥平面B 1C 1CB ,交线为BC ,AD ?平面ABC , 所以AD ⊥平面B 1C 1CB ,即AD 是三棱锥A-B 1BC 的高.

在△ABC 中,由AB=AC=BC=4得AD=在△B 1BC 中,B 1B=BC=4,∠B 1BC=60°,

所以△B 1BC 的面积12

B BC

S

44

=

=. 所以三棱锥B 1-ABC 的体积,即三棱锥A-B 1BC 的体积,

1B BC

11

V S

AD 83

3

=?=?=.

18.(1)连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点, 又M 为PD 的中点,所以PB ∥MO . 因为PB ?平面ACM ,MO ?平面ACM , 所以PB ∥平面ACM .

(2)因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC ,又PO ⊥平面ABCD ,AD ?平面ABCD ,所以PO ⊥AD ,而AC ∩PO =O ,所以AD ⊥平面PAC .

(3)取DO 中点N ,连接MN 、AN ,因为M 为PD 的中点,所以MN ∥PO ,且MN =1

2PO =1.

由PO ⊥平面ABCD ,得MN ⊥平面ABCD , 所以∠MAN 是直线AM 与平面ABCD 所成的角. 在Rt △DAO 中,AD =1,AO =1

2

所以DO =

52,从而AN =12DO =54

, 在Rt △ANM 中,tan ∠MAN =

MN AN =15

4

=45

5, 即直线AM 与平面ABCD 所成角的正切值为45

5

高中数学必修2测试题附答案

数学必修2 一、选择题 1、下列命题为真命题的是( ) A. 平行于同一平面的两条直线平行; B.与某一平面成等角的两条直线平行; C. 垂直于同一平面的两条直线平行; D.垂直于同一直线的两条直线平行。 2、下列命题中错误的是:( ) A. 如果α⊥β,那么α内一定存在直线平行于平面β; B. 如果α⊥β,那么α内所有直线都垂直于平面β; C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β; D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ. 3、右图的正方体ABCD-A ’B ’C ’D ’ 中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’ 中, 二面角D ’-AB-D 的大小是( ) A. 300 B.450 C. 600 D. 900 5、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=-5; C.a=-2,b=5 D.a=-2,b=-5 6、直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=0 8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.3 a π; B. 2 a π; C.a π2; D.a π3. A B D A ’ B ’ D ’ C C ’

高中数学必修2综合测试题

正视图 侧视图 俯视图 2 1 1 高中数学必修2综合测试题 文科数学 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若直线1=x 的倾斜角为α,则=α( ). A .0 B.3 π C .2π D .π 2.已知直线1l 经过两点)2,1(--、)4,1(-,直线2l 经过两点)1,2(、)6,(x ,且21//l l ,则=x ( ). A .2 B .-2 C .4 D .1 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ). A .π25 B .π50 C .π125 D .π200 4.若方程02 2 =++++k y x y x 表示一个圆,则k 的取值范围是( ) A.21> k B.21≤k C. 2 1 0<

高中数学必修1测试题及答案

高中数学必修1测试题 一、选择题 1.设集合{}012345U =,,,,,,{}035M =,,,{}145N =,,,则()U M C N ?=( ) A .{}5 B .{}0,3 C .{}0,2,3,5 D .{}0,1,3,4,5 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5} 3、计算:9823log log ?= ( ) A 12 B 10 C 8 D 6 4、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( ) 6、函数y =的定义域是( ) A {x |x >0} B {x |x≥1} C {x |x≤1} D {x |0<x≤1} 7、把函数x 1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --= B 1x 1x 2y ---= C 1x 1x 2y ++= D 1 x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶函数,g(x)是奇函数

高中数学必修综合测试题人教版

高中数学必修2综合试题 一、选择题(本大题共2道小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1、下图(1)所示的圆锥的俯视图为 ( ) 2 、直线:30l y ++=的倾斜角α为 ( ) A 、30o ; B 、60o ; C 、120o ; D 、150o 。 3、边长为a 正四面体的表面积是 ( ) A 、 34a ; B 、312a ; C 、24 a ; D 2。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为 ( ) A 、1 2-; B 、12; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。若AC BD a ==, 且AC 与BD 所成的角为60o ,则四边形EFGH 的面积为 ( ) A 2a ; B 2; C 2 a ; D 2。 8、已知圆2 2 :260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) 图(1) A B C D

A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径r =; C 、圆心()1,3P -,半径10r =; D 、圆心()1,3P -,半径r = 9、下列叙述中错误的是 ( ) A 、若P αβ∈I 且l αβ=I ,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =I ,则直线a 与b 能够确定一个平面; D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都不对。 12、四面体P ABC -中,若PA PB PC ==,则点P 在平面ABC 内的射影点O 是ABC V 的 ( ) A 、外心; B 、内心; C 、垂心; D 、重心 二、填空题(本大题共4道小题,每小题4分,共16分。把答案填在题中横线上) 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14、命题:一条直线与已知平面相交,则面内不过该交点的直线与已知直线为异面直线。 用符号表示为 ; 15、点()2,1M 直线0l y --=的距离是 ; 16、已知,a b 为直线,,,αβγ为平面,有下列三个命题: (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α?//,则a α//; (4) ,a b a α⊥⊥,则b α//;

高中数学必修2模块测试试卷

高中数学必修2模块测试试卷 考号 班级 姓名 一、选择题 1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( ) B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 3. 下列说法不正确的.... 是( ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直. 4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) A . B . C . D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( ) A.一定是异面 B.一定是相交 C.不可能平行 D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( ) (A )①和② (B )②和③ (C )③和④ (D )①和④ 8. 圆22 (1)1x y -+= 与直线y x = 的位置关系是( ) A .相交 B. 相切 C.相离 D.直线过圆心 9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为

高中数学必修1综合测试题

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共50分) 一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2} 2. 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B .(-1,-1 2) C .(-1,0) D .(1 2,1) 3.在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A .f (x )=x -1,g (x )=x -1 x -1 B .f (x )=|x +1|,g (x )=? ???? x +1,x ≥-1 -x -1,x <-1 C .f (x )=x +2,x ∈R ,g (x )=x +2,x ∈Z D .f (x )=x 2,g (x )=x |x | 4.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =(x +1) 5.函数y =ln x +2x -6的零点,必定位于如下哪一个区间( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 6.已知f (x )是定义域在(0,+∞)上的单调增函数,若f (x )>f (2-x ),则x 的取值范围是( ) A .x >1 B .x <1 C .0y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 8.设0

高一数学必修二测试题及答案

A C 1 即墨实验高中高一数学周清自主 检 测 题 命题人:吴汉卫 审核人:金文化 时间:120分钟 №:08 一、选择题:(本大题共12小题,每小题5分,共60分) 1 .已知直线l 的斜率为2,且过点 ),3(),2,1(m B A --,则m 的值为 ( ) A .6 B .10 C .2 D .0 2 .正方体的内切球与外接球的半径之比为 ) A .3∶1 B .3∶2 C . 1∶3 D .2∶3 3 .平行线0943=-+y x 和 0286=++y x 的距离是 ( ) A .5 8 B .2 C .5 11 D .5 7 4 .设l ,m 是两条不同的直线,α是一个 平面,则下列命题正确的是 ( ) A .若l m ⊥,m α?,则l α⊥ B .若l α⊥, l m //,则m α⊥ C .若l α//,m α?,则l m // D .若l α//,m α//,则l m // 5 .若直线l 过点3 (3,)2 -- 且被圆2225x y +=截得的弦长为8,则直线l 的方程是 ( ) A .3x =- B .332 x =-=-或y C .34150x y ++= D .340x y +x=-3或 6 .已知直线02)1(:1=-++y x a l 与直 线01)22(:2=+++y a ax l 互相垂直,则实数a 的值为 ( ) A .-1或2 B .-1或-2 C .1或2 D .1或-2 7 .无论m,n 取何实数值,直线 (3m-n)x+(m+2n)y-n=0都过定点P,则P 点坐标为 A .(-1,3) B .)2 3,21(- C .)3,1(- 8 .已知三棱锥的三视图如 图所示,其中侧视图为直角三角形, 俯视图为等腰直角三角形,则此三棱锥的体积等于 ( ) A .3 B C D 9.圆1C :22 2880x y x y +++-=与圆 2C :224420x y x y +-+-=的位置 关系是 A .相交 B .外切 C .内切 10.若使得方程 0162=---m x x 有 实数解,则实数m 的取值范围为 11.如图,已知长方体1111ABCD A B C D -中, 14,2 AB BC CC ===,则直线1BC 和平面 11DBB D 所成的正弦值等于 A .2 B .2 C . 5 D 正视 俯视

高中数学必修一测试题

2012届锐翰教育适应性考试数学试卷 满分150分,考试时间:120分钟 一. 选择题(每题4分,共64分): 1. 若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是( d ) A. 1 B. 2 C. 7 D. 8 2.方程062=+-px x 的解集为M,方程062=-+q x x 的解集为N,且M ∩N={2},那么p+q 等于( ) A.21 B.8 C.6 D.7 3. 下列四个函数中,与y=x 表示同一函数的是( ) A.()2x y = B.y=33x C.y=2x D.y=x x 2 4.已知A={x|y=x,x ∈R},B={y|2x y =,x ∈R},则A ∩B 等于( ) A.{x|x ∈R} B.{y|y ≥0} C.{(0,0),(1,1)} D.? 5. 32)1(2++-=mx x m y 是偶函数,则)1(-f ,)2(-f ,)3(f 的大小关系为( ) A. )1()2()3(->->f f f B. )1()2()3(-<-=0,30,log )(2x x x x f x ,则)] 41 ([f f 的值是( ) A. 91 B. 9 C. 9- D. 91 - 7. 已知A b a ==53,且2 1 1=+b a ,则A 的值是( ) A. 15 B. 15 C. 15± D. 225 8、f(x)=(m-1)x 2+2mx+3为偶函数,则f(x)在(2,5)上是( ) A.增函数 B.减函数 C.有增有减 D.增减性不确定 9.函数 f(x)=x 2-4x+5在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( ) A . ),2[+∞ B .[2,4] C .(]2,∞- D. [0,2]

高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。 一、选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为() A.3 B.-2 C. 2 D. 不存在 2.过点且平行于直线的直线方程为() A. B.C.D. 3. 下列说法不正确的 ....是() A.空间中,一组对边平行且相等的四边形是一定是平行四边形; B.同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直. 4.已知点、,则线段的垂直平分线的方程是() A. B. C. D. 5. 研究下在同一直角坐标系中,表示直线与的关系 6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()

A.一定是异面 B.一定是相交 C.不可能平行 D.不可能相交 7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题: ①若,,则②若,,,则 ③若,,则④若,,则 其中正确命题的序号是( ) (A)①和②(B)②和③(C)③和④(D)①和④ 8. 圆与直线的位置关系是() A.相交 B.相切 C.相离 D.直线过圆心 9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为() A.-1 B.2 C.3 D.0 10. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( ) A.点P必在直线AC上 B.点P必在直线BD上 C.点P必在平面DBC内 D.点P必在平面ABC外 11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是( C ) A.MN∥β B.MN与β相交或MNβ C. MN∥β或MNβ D. MN∥β或MN与β相交或MNβ

人教版高中数学必修二测试卷

高中数学必修二检测题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间90分钟. 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1 、一个棱锥被平行于底面的平面所截,若截面面积与底面面积之比为4∶9,则此棱锥的侧棱被分成上下长度两部分之比为( ) A .4∶9 B .2∶1 C .2∶3 D .2∶5 2 、 如果实数x ,y 满足22 (2)3x y -+=,那么y x 的最大值是( ) A 、3 B 、3- C 、33 D 、33 - 3 、已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 4 、 如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9 5 、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为( ) 俯视图 主视图 侧视图 A.24πcm 2,12πcm 3 B.15πcm 2,12πcm 3 C.24πcm 2,36πcm 3 D.以上都不正确 6 、棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是( ) A .平行 B .相交 C .平行或相交 D .不相交

7 、直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1) 8 、 两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B C D 9、 直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)2 2 (B)4 (C)2 4 (D)2 10、在正方体1111ABCD A B C D -中,下列几种说法正确的是 A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与1B C 成60角 11 、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ?M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 12 、点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( ) (A) 11<<-a (B) 10<-

高一数学必修二测试题及答案

C D A 1 D 1 B 1 C 1 A 命题人:吴汉卫 审核人:金文化 时间:120分钟 №:08 一、选择题:(本大题共12小题,每小题5分,共60分) 1 .已知直线l 的斜率为2,且过点),3(),2,1(m B A --,则m 的值为 ( ) A .6 B .10 C .2 D .0 2 .正方体的内切球与外接球的半径之比为 ( ) A .3∶1 B .3∶2 C . 1∶3 D .2∶3 3 .平行线0943=-+y x 和0286=++y x 的距离是 ( ) A . 5 8 B .2 C . 5 11 D . 5 7 4 .设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α?,则l α⊥ B .若l α⊥,l m //,则m α⊥ C .若l α//,m α?,则l m // D .若l α//,m α//,则l m // 5 .若直线l 过点3(3,)2 --且被圆22 25x y +=截得的弦长为8,则直线l 的方程是 ( ) A .3x =- B .332 x =-=- 或y C .34150x y ++= D .34150x y ++=x=-3或 6 .已知直线02)1(:1=-++y x a l 与直线01)22(:2=+++y a ax l 互相垂直,则实数a 的 值为 ( ) A .-1或2 B .-1或-2 C .1或2 D .1或-2 7 .无论m,n 取何实数值,直线 (3m-n)x+(m+2n)y-n=0都过定点P ,则P 点坐标为 ( ) A .(-1,3) B .)2 3,21(- C .)5 3,51(- D .)7 3,71(- 8 .已知三棱锥的三视图如图所示,其中侧视图为直角三角形, 俯视图为等腰直角三角形,则此三棱锥的体积等于 ( ) A .23 B .3 C .223 D .23 9.圆1C :2 2 2880x y x y +++-=与圆2C :2 2 4420 x y x y +-+-=的位置关系是 ( ) A .相交 B .外切 C .内切 D .相离 10.若使得方程 0162=---m x x 有实数解,则实数m 的取值范围为 2424.≤≤-m A 244.≤≤-m B 44.≤≤-m C 244.≤≤m D 11.如图,已知长方体1111ABCD A B C D -中, 14,2AB BC CC ===,则直线1BC 和平面11DBB D 所成 的正弦值等于 ( ) A . 32 B .52 C . 105 D .10 10 12.若直线4=+by ax 与圆4:22=+y x C 有两个不同交点,则点),(b a P 与圆C 的位置关 系是 ( ) A .在圆外 B .在圆内 C .在圆上 D .不确定 二、填空题(每小题4分,共16分) 13.经过点A(-3,4),且在两坐标轴上的截距相等的直线方程为_________________. 14.若一个正三棱柱的三视图及其尺寸如图所示(单位:cm), 则该几何体的体积是 ________________cm 3. 15.以点(-3,4)为圆心且与直线5x y +=相切的圆的标准方 程是________. 16.已知m 、n 是两条不重合的直线,α、β、γ是三个两两 不重合的平面,给出下列命题: ①若m ∥β,n ∥β,m 、n ?α,则α∥β; ②若α⊥γ,β⊥γ,α∩β=m ,n ?γ,则m ⊥n ; ③若m ⊥α,α⊥β,m ∥n ,则n ∥β; ④若n ∥α,n ∥β,α∩β=m ,那么m ∥n ; 其中所有正确命题的序号是 . 三、解答题(共74分) 17.已知直线l 经过直线3420x y +-=与直线220x y ++=的交点P ,且垂直于直线 正视 俯视 1 3

高中数学必修2综合测试题

高中数学必修2综合测试题 一、选择题 1、下图(1)所示的圆锥的俯视图为 ( ) 2 、直线:30l y ++=的倾斜角α为 ( ) A 、30; B 、60; C 、120; D 、150。 3、边长为a 正四面体的表面积是 ( ) A 、 34; B 、312a ; C 、24 ; D 2 。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或 异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为 ( ) A 、1 2 -; B 、12; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。若AC BD a ==,且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( ) A 2a ; B 2; C 2; D 2 。 8、已知圆2 2 :260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) 图(1) A B C D

A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径r =; C 、 圆心()1,3P -,半径10r =; D 、圆心()1,3P -,半径r =。 9、下列叙述中错误的是 ( ) A 、若P αβ∈且l αβ=,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =,则直线a 与b 能够确定一个平面; D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都 不对。 12、四面体P ABC -中,若PA PB PC ==,则点P 在平面ABC 内的射影点O 是ABC 的 ( ) A 、外心; B 、内心; C 、垂心; D 、重心。 二、填空题(本大题共4道小题,把答案填在题中横线上) 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14、命题:一条直线与已知平面相交,则面内不过该交点的直线与已知直线为异面直线。 用 符 号 表 示 为 ; 1 5 、 点 () 2,1M 直线 l y --=的距离 是 ; 16、已知,a b 为直线,,,αβγ为平面,有下列三个命题: (1) a b αβ////,,则a b //;

高中数学必修综合测试题附答案

数学必修1 一、选择题 1.设集合{}012345U =,,,,,,{}035M =,,,{}145N =,,,则()U M C N ?=( ) A .{}5 B .{}0,3 C .{}0,2,3,5 D .{}0,1,3,4,5 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5} 3、计算:9823log log ?= ( ) A 12 B 10 C 8 D 6 4、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬 行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到 终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点… 用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故 事情节相吻合是 ( ) 6、函数12 log y x = 的定义域是( ) A {x |x >0} B {x |x ≥1} C {x |x ≤1} D {x |0<x ≤1} 7、把函数x 1y -=的图象向左平移1个单位,再向上平移2个 单位后,所得函数的解析式应为 ( ) A 1 x 3x 2y --= B 1 x 1x 2y ---= C 1 x 1x 2y ++= D 1 x 3 x 2y ++- = 8、设x x e 1 e )x (g 1x 1 x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇 函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶 函数,g(x)是奇函数

高中数学必修1和必修2测试题及参考答案

高中数学必修1和必修2测试题 选择题:本大题共10小题,每小题5分,满分50分?在每小题给出的四个选项中?只有 B . :— 5,+ a ) C . (— 5, 0) D . (— 2, 0) 6.已知A (1,2), B (3,1),则线段AB 的垂直平分线的方程是( ) A.4x 2y 5 B.4x 2y 5 C.x 2y 5 D.x 2y 5 7.下列条件中,能判断两个平面平行的是() A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 8. 如图,在 Rt △ ABC 中,/ ABC=90 0 , P ABC 所在平面外一点 PA 丄平面ABC ,则四面体 P-ABC 中共有( )个直角三角形。 A 4 B 3 C 2 D 1 9. 如果轴截面为正方形的圆柱的侧面积是 4 ,那么圆柱的体积等于( A B 2 C 4 D 8 一项是符合题目要求的. 1 .设集合 A {x| 3 0},B={x|-1 3测 A n B=( C . :0,3] ) A . :-1,0] B . : -3,3] 2.下列图像表示函数图像的是( y ) D ? [ -3,-1] 「X X 3.函数 f (X )x 5 lg (2X 1)的定义域为 ( 4. 已知a b 0,则3a ,3b ,4a 的大小关系是( ) A . 3a 3 b 4a B . 3b 4 a 3a C . 3b 3 a 4a 5. 函数f (x ) X 3 x 3的实数解落在的区间是( ) D . 3a 4a A 0,1 B. 1,2 C. 2,3 D. 3,4 A . (— 5,+ a) C

高中数学必修1综合测试题

刘老师辅导·高中数学必修1综合测试题 姓名 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共50分) 一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2} 2. 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B .(-1,-1 2) C .(-1,0) D .(1 2 ,1) 3.在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A .f (x )=x -1,g (x )=x -1 x -1 B .f (x )=|x + 1|,g (x )=??? ?? x +1,x ≥-1 -x -1,x <-1 C .f (x )=x +2,x ∈R ,g (x )=x +2,x ∈Z D .f (x )=x 2,g (x )=x |x | 4.下列函数中,在区间(0,+∞)上为增函数的是( )

A.y=x+1 B.y=(x-1)2 C.y=2-x D.y=log0.5(x+1) 5.函数y=ln x+2x-6的零点,必定位于如下哪一个区间( ) A.(1,2) B.(2,3) C.(3,4) D.(4,5) 6.已知f(x)是定义域在(0,+∞)上的单调增函数,若f(x)>f(2-x),则x的取值范围是( ) A.x>1 B.x<1 C.0y1>y2B.y2>y1>y3 C.y1>y2>y3D.y1>y3>y2 8.设0

高中数学必修5测试题附答案

高一数学必修5试题 一.选择题本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.由11a =,3d =确定的等差数列{}n a ,当298n a =时,序号n 等于 ( ) A.99 B.100 C.96 D.101 2.ABC ?中,若?===60,2,1B c a ,则ABC ?的面积为 ( ) A . 21 B .2 3 C.1 D.3 3.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 101 4.已知0x >,函数4y x x =+的最小值是 ( ) A .5 B .4 C .8 D .6 5.在等比数列中,112a =,12q =,132 n a =,则项数n 为 ( ) A. 3 B. 4 C. 5 D. 6 6.不等式20(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a ?≥ D. 0,0a >?> 7.设,x y 满足约束条件12x y y x y +≤??≤??≥-? ,则3z x y =+的最大值为 ( ) A . 5 B. 3 C. 7 D. -8 8.在ABC ?中,80,100,45a b A ?===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解 9.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 ( ) 2A.3 2B.-3 1C.-3 1D.-4 10.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 二、填空题(本大题共4小题,每小题5分,共20分。) 11. .在ABC ?中,0601,,A b ==面积为3, 则a b c A B C ++=++sin sin sin . 12.已知等差数列{}n a 的前三项为32,1,1++-a a a ,则此数列的通项公式为________ . 13.不等式21131 x x ->+的解集是 . 14. .已知数列{}n a 满足23123222241n n n a a a a ++++=- 则{}n a 的通项公式 。 三、解答题 15. (10分)已知等比数列{}n a 中,4 5,106431= +=+a a a a ,求其第4项及前5项和.

(完整版)高中数学必修一必修二经典测试题100题

A C P B 高中数学必修一必修二经典测试题100题(二) 一、填空题:本题共25题 1、设集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)A B =I ,则:a= b= 2、对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的 倍 3. 已知函数2log (0)()3 (0)x x x f x x >?=?≤?,则1 [()]4f f 的值是 4. 设1,01,x y a >><<则下列关系正确的是 ○ 1a a y x -->○2 ay ax <○3y x a a <○4 y x a a log log > 5. 函数()23x f x =-的零点所在区间为: 6. 函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在(,)a b 上是 函数(增或减) 7. 在x 轴上的截距为2且倾斜角为135°的直线方程为 8. 设点M 是Z 轴上一点,且点M 到A (1,0,2)与点B (1,-3,1)的距离相等,则点M 的坐标是 9、如图所示,阴影部分的面积S 是h (0)h H ≤≤的函数,则该函数的图象 是 . 10. 将直线:210l x y +-=向左平移3个单位,再向上平移2个单位得到直线l ',则直线l l '与之间的距离为 11. 函数2 ()lg(21)5 x f x x -= +++的定义域为 12. 已知0>>b a ,则3,3,4a b a 的大小关系是 13.函数3 ()3f x x x =+-的实数解落在的区间是 14.已知(1,2),(3,1),A B 则线段AB 的垂直平分线的方程是 15. 下列条件中,能判断两个平面平行的是 a 一个平面内的一条直线平行于另一个平面; b 一个平面内的两条直线平行于另一个平面; c 一个平面内有无数条直线平行于另一个平面; d 一个平面内任何一 条直线都平行于另一个平面 16. 如图,在Rt △ABC 中,∠ABC=900 ,P 为△ABC 所在平面外一点 PA ⊥平面ABC ,则四面体P-ABC 中共有 个直角三角形。 17.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于 18 .在圆2 2 4x y +=上,与直线43120x y +-=的距离最小的点的坐标为 19.用符号“∈”或“?”填空

高中数学必修2综合测试题__人教A版

高中数学必修2综合测试题 试卷满分:150分 考试时间:120分钟 卷I 一、选择题(本大题共2道小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1、下图(1)所示的圆锥的俯视图为 ( ) 2 、直线:30l y ++=的倾斜角α为 ( ) A 、30 ; B 、60 ; C 、120 ; D 、150 。 3、边长为a 正四面体的表面积是 ( ) A 、 34; B 、312a ; C 、24 ; D 2 。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为 A 、1 2-; B 、12; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。若 图(1) A B C D

AC BD a ==, 且AC 与BD 所成的角为60 ,则四边形EFGH 的面积为 ( ) A 2; B 2; C 2; D 2。 8、在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点, 则异面直线AC 和MN 所成的角为( ) A .30° B .45° C .90° D . 60° 9、下列叙述中错误的是 ( ) A 、若P αβ∈ 且l αβ= ,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A = ,则直线a 与b 能够确定一个平面; D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都不对。 12、给出下列命题 ①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 1 A

相关文档
相关文档 最新文档