文档库 最新最全的文档下载
当前位置:文档库 › siRNA 脂质纳米输送载体的研究进展

siRNA 脂质纳米输送载体的研究进展

siRNA 脂质纳米输送载体的研究进展
siRNA 脂质纳米输送载体的研究进展

中药制剂纳米技术研究进展

中药制剂纳米技术研究进展 中药学:张生杰 104753091411 摘要:纳米中药是指运用纳米技术制造的、粒径小于100nm的中药有效成分、有效部位、原药及其复方制剂,具有增加药物对血脑屏障或生物膜的穿透性等特点。本文详细介绍了纳米中药的定义、特点,同时介绍了纳米中药制剂技术方面的进展。指出了纳米中药制剂存在的问题,并作了展望。 关键词:纳米技术;中药制剂;中药现代化 1.前言 纳米即十亿分之一米,相当于10个氢原子排成直线的长度。纳米技术(nanotechnology)是指在纳米尺度下对物质进行制备、研究和工业化,以及利用纳米尺度物质进行交叉研究和工业化的一门综合性的技术体。纳米技术作为高新技术,可广泛应用于材料学、电子学、生物学、医药学、显微学等多个领域,并起着重要的作用。1998年,徐辉碧教授等[2]率先提出了“纳米中药”的概念,进行了卓有成效的探索。纳米中药是指运用纳米技术制造的、粒径小于lOOnm的中药有效成分、有效部位、原药及其复方制剂。因纳米材料和纳米产品在性质上的奇特性和优越性,将增加药物吸收度,建立新的药物控释系统,改善药物的输送,替代病毒载体,催化药物化学反应和辅助设计药物等研究引入了微型、微观领域,为寻找和开发医药材料、合成理想药物提供了强有力的技术保证。运用纳米技术的药物克服了传统药 物许多缺陷以及无法解决的问题。将纳米技术应用于中药领域是中药现代化发展的重要方向之一。 中药作用的物质基础来自于中药中的活性成分,这些化学成分可能是某单一化合物(即有效成份),也有可能是所提取的某一有效部位或有效部位群,有些中药甚至以全药入药。对于从中药中提取的单一有效成份如紫杉醇、喜树碱等而言,其纳米化制备类似于合成药,因而其研究在技术上相对较易实现。纳米载药系统在这方面的应用已有一些报道,目前这类药物已有多种制剂进入临床研究阶段。从目前的情况来看,可以大量获得单一有效成份的中药并不多,这就意味着纳米载药系统在这一层次上的应用受到一定限制。中药有效部位为主要活性成份的制剂占有相当比例,这一方面体现了中药多成份、多靶点的特点,同时具有原料较有效成份容易获得,成本相对低廉的特点。因此,以有效部位作为纳米载药系统在中药研究中的切入点无疑具有更现实的意义。对于中药有效部位,由于其组成的多样性其纳米化制备是较复杂的,要研究的问题还很多。利用其结构或性质相近的特点选择适当的辅料和工艺,使其多组分同时实现纳米化,可能是解决问题的途径之一。对于中药(植物、动物和矿物)的全药,由于组成复杂且性质差异较大,实现纳米化的方法除超细粉碎以外有待进一步开发。总之纳米技术应用于中药制剂还处于起步阶段,但前景是很好的。 2.纳米中药的制备 2.1超细粉碎 粉碎是中药材加工最常用的方法之一。随着科学技术的进步,新的粉碎机械不断涌现,粉碎所能达到的粒度越来越小,使中药粉末的粒度由细粉的尺度10μm-1000μm进入到超细粉的尺度0.1μm-10μm。经过超细粉碎的中药材,最直接的效应就是由于表面积增大而导致的药物吸收增加,相应地生物利用度得到提高,服用剂量减小,资源的利用率提高。 但是,超细粉碎在中药研究中的应用还存在一些问题,首先,中药材的超细粉碎虽然

纳米药物载体构建哪家好

纳米药物载体构建哪家好 纳米药物载体构建哪家好?这是大家想了解的问题。纳米级药物载体是一种属于纳米级微观范畴的亚微粒药物载体输送系统。可以将药物包封于亚微粒中,可以调节释药的速度,增加生物膜的透过性、改变在体内的分布、提高生物利用度等。先丰纳米推出的纳米药物载体构建服务可以很好满足客户的需求。下面就简单的介绍纳米药物载体构建。 客户可以选择上述载体递送药物,从而实现药物递送研究。这些纳米药物载体可以借助肿瘤EPR(增强的渗透于滞留)效应实现肿瘤靶向给药,同时还可以在表面修饰靶向配体而实现主动靶向递送,还可以结合成像单元构建具有靶向诊疗一体化功能的纳米药物。 基于高分子材料的纳米药物载体构建,如:脂质体载药,聚合物胶束载药,聚合物(蛋白)纳米粒载药,磁性脂质纳米颗粒载药,纳米颗粒(球形颗粒、金纳米棒、金纳米笼)载药,纳米石墨烯载药等。 脂质体、聚合物胶束与聚合物纳米粒载药体系

案例:磁性脂质纳米颗粒药物递送 如果想要了解给更多关于纳米药物载体构建的内容,欢迎立即咨询先丰纳米公司。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

纳米载药囊的研究进展

摘要 纳米囊作为一种新型的纳米级药物载体系统,具有小粒子特征,可以穿越生物膜屏障和网状内皮组织系统到达人体特定部位。本文对纳a米载药囊研究进展进行了综述,对于纳米囊制备方法、载药种类、囊材选取以及生物学评价等进行了着重介绍,并对未来进行了展望。随着近年来对于纳米载药囊的进一步研究和科学技术的发展,将纳米载药囊的发展推向了新的阶段。 关键词:纳米囊制备方法载药生物学评价

Abstract Nanocapsule is a kind of Nanoparticles drug delivery system , it can pass through biological membrane barrier and meshy endodermis system to reach certain parts of body. The progress of researches on drug-loaded nanoparticles was summarized in this review. The major emphasis was laid on the preparation of nanoparticles, type of drug-loaded, selection of nanoparticles and biocompatibility evaluation. Additionally, we made a perspective of the development in this field. With further research of drug-loaded nanoparticles and development of science and technology, it will push the application of drug-loaded nanoparticles in new field. Key words: Nanocapsule Preparation Drug-loaded Biocompatibility evaluation

纳米生物医用材料的进展研究样本

生物医用材料的研究进展 生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料, 它是研究人工器官和医疗器械的基础, 己成为材料学科的重要分支, 特别是随着生物技术的莲勃发展和重大突破, 生物材料己成为各国科学家竞相进行研究和开发的热点。研究动态 迄今为止 ,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。当前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料, 具体体现在以下几个方面: 1. 提高生物医用材料的组织相容性 途径不外乎有两种, 一是使用天然高分子材料, 例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表示; 二是在材料表面固定有生理功能的物质, 如多肽、酶和细胞生长因子等, 这些物质充当邻近细胞、基质的配基或受体 ,使材料表面形成一个能与生物活体相适应的过渡层。 2. 生物医用材料的可降解化 组织工程领域研究中 ,一般应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。其中组织工程材料除了具备一定的机械性能外, 还需具有生物相容性和可降解性。 英国科学家创造了一种可降解淀粉基聚合物支架。以玉米淀粉为基本材料, 分别加入乙烯基乙烯醇和醋酸纤维素 ,再分别对应加入不同比例的发泡剂 (主要为羧酸 ), 注塑成型后就能够获得支撑组织再生的可降解支架。 3. 生物医用材料的生物功能化和生物智能化 利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面 ,经过表面修饰构建新一代的分子生物材料 ,来引发我们所需的特异生物反应 ,抑制非特异性反应。例如将一种名叫玻璃粘连蛋白 (VN)的物质固定到钛表面, 发现固定VN的骨结合界面上有相对多的蛋白存在。4.开发新型医用合金材料

纳米药物载体构建厂家

纳米药物载体构建厂家 纳米药物载体构建厂家哪个好?纳米级药物载体是一种属于纳米级微观范畴的亚微粒 药物载体输送系统。将药物包封于亚微粒中,可以调节释药的速度,增加生物膜的透过性、改变在体内的分布、提高生物利用度等。先丰纳米作为专业的纳米药物载体构建厂家,下 面就简单的介绍纳米药物载体构建服务。 基于高分子材料的纳米药物载体构建,如:脂质体载药,聚合物胶束载药,聚合物(蛋白)纳米粒载药,磁性脂质纳米颗粒载药,纳米颗粒(球形颗粒、金纳米棒、金纳米笼)载药,纳米石墨烯载药等。 客户可以选择上述载体递送药物,从而实现药物递送研究。这些纳米药物载体可以借 助肿瘤EPR(增强的渗透于滞留)效应实现肿瘤靶向给药,同时还可以在表面修饰靶向配体而实现主动靶向递送,还可以结合成像单元构建具有靶向诊疗一体化功能的纳米药物。 纳米药物载体可经过血液循环进入毛细血管,还可透过内皮细胞间隙,进入病灶,被 细胞以胞饮的方式吸收,实现靶向用药,提高了药物的生物利用率。 纳米载体粒径较小,拥有较高的比表面,可以包埋疏水性药物,提高其溶解性,减少 常规用药中助溶剂的副作用。 纳米药物载体经靶向基团修饰后可实现靶向药物给药,可减少用药剂量,降低其副作用,如叶酸修饰载药纳米粒、磁性载药纳米粒等。 纳米载体可延长药物的消除半衰期(t1/2β),提高有效血药浓度时间,提高药效, 降低用药频率,减少其毒副作用。 纳米载体可透过机体屏障对药物作用的限制,如血脑屏障、血眼屏障及细胞生物膜屏 障等,使药物到达病灶,提高药效。

如果想要了解更多关于纳米药物载体构建的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

长循环脂质体的研究

长循环脂质体的研究 《中国医药报》 2007-9-25 平安健康网 脂质体为一种新型药物载体,形状为球形,直径大小约为几十纳米到几十微米。脂质体在血液中的稳定性是发挥药物载体作用的关键。血液中有多种破坏因素:高密度脂蛋白(HDL)是破坏脂质体的主要成分,载脂蛋白A-1(apoA-1)易从HDL上脱落并与脂质体磷脂结合,且HDL和脂质体易发生apoA-1与磷脂的互换,脂质体膜形成孔洞;同时脂质体在血液中激活补体系统,最终形成攻膜复合体,脂质体膜出现亲水性通道,引起药物渗漏和水、电解质的大量进入,最终渗透裂解脂质体;血清白蛋白与脂质体磷脂结合形成复合物,降低其稳定性;血液中的磷脂酶可水解磷脂,该反应强弱由磷脂结构决定;脂质体进入循环系统后,未经修饰的脂质体大部分运转至肝脏和脾脏等单核吞噬细胞系统(MPS)丰富的部位,少量被肺、骨髓及肾摄取;肝细胞膜受体对直接暴露于表面的磷脂负电基进行识别,因而脂质体首先被肝枯否细胞吞噬。这些因素综合使传统脂质体的半衰期仅十几分钟。改变脂质体的组成、粒径、形态和表面电荷,将减少MPS的摄取。还可预先注射空白脂质体使MPS摄取呈饱和状态,然后再给予药物脂质体以增加非MPS摄取,延长药物的半衰期,但该法可能引起MPS的毒性反应。 长循环脂质体的研制给脂质体药物传输系统注入了新的活力和希望,但长循环脂质体最初的研究是从仿生学角度出发的。人们早就发现,体循环中的红细胞具有所有哺乳类动物细胞的共同特征,即具有含有数个唾液酸残基的糖蛋白和糖脂的多糖蛋白质复合物。红细胞膜磷脂分布不对称,其外层主要含有卵磷脂、鞘磷脂和胆固醇。因而进入20世纪80年代后,出现了一种新型脂质体———仿红细胞脂质体,延长了脂质体在血循环中的滞留半衰期。虽然仿红细胞脂质体具有较长的半衰期,但由于神经节苷脂价格昂贵,合成和提取都较困难,因此人们开始寻找其他途径来制备长循环脂质体。

固体脂质纳米粒的制备及在化妆品领域的应用

Material Sciences 材料科学, 2020, 10(4), 192-200 Published Online April 2020 in Hans. https://www.wendangku.net/doc/0118857417.html,/journal/ms https://https://www.wendangku.net/doc/0118857417.html,/10.12677/ms.2020.104025 Preparation of Solid Lipid Nanoparticles and Its Applications in Cosmetics Mingjiao Cheng, Chenguang Liu* Ocean University of China, Qingdao Shandong Received: Mar. 26th, 2020; accepted: Apr. 10th, 2020; published: Apr. 17th, 2020 Abstract Solid lipid nanoparticles (SLNs) are particulate colloidal systems comprised of solid core lipids, which are stabilized by surfactants. SLNs show various distinctive features such as prolonged drug release, drug targeting, low toxicity, excellent biocompatibility, biodegradability and enhancing bioavailability and stability of drugs. Some of the delivery systems based on SLNs have been used in the development of cosmetics. This literature review describes the preparation techniques of SLNs, the applications and prospects of SLNs in cosmetics. Keywords Solid Lipid Nanoparticles, Delivery Systems, Preparation Techniques, Application 固体脂质纳米粒的制备及在化妆品领域的应用 程明娇,刘晨光* 中国海洋大学,山东青岛 收稿日期:2020年3月26日;录用日期:2020年4月10日;发布日期:2020年4月17日 摘要 固体脂质纳米粒(SLNs)是由表面活性剂所稳定的以固态的形式存在的胶体系统,具有缓释、靶向性、低毒性、良好的生物相容性、生物可降解性以及可以提高药物生物利用度和稳定性等特点。SLNs作为一种递送载体,目前已开始被用于化妆品的制造。本文总结了SLNs常用的制备方法,介绍了SLNs在化妆品领域的应用,并对其应用前景进行了展望。 *通讯作者。

纳米粒子在药物载体中的应用

纳米粒子在药物载体中的应用

纳米粒子在药物载体的研究进展 摘要::纳米粒子作为一种新型的药物载体, 由于它的超微小体积, 能穿过组织间隙并被细胞吸收, 通过人体最细的毛细血管, 还可透过血脑屏障, 显现出极大的潜力并被广泛研究, 具有广阔的发展前景。本文从不同分类的纳米粒子着手,综述其在药物载体中的应用. 关键词:纳米粒子、药物载体、控制释放 纳米粒子( nanoparticle) 也叫超微粒子,尺寸在1—1 000 nm 之间,通常由天然或合成高分子材料制成,目前无机材料也研究得比较多。主要通过静电吸附、共价连接将药物结合在其表面,或者直接将药物分子包裹在其中,然后通过靶向分子与细胞表面特异性受体结合,在细胞摄取作用下进入细胞内,实现安全有效的靶向药物输送和基因治疗。纳米控释系统作为独特的药物新剂型得到越来越广泛的关注。本文通过从不同类别的纳米粒子着手综述对其在药物载体中的应用。 1、有机纳米粒 纳米粒使用的载体材料目前多为天然或者合成的可降解的高分子化合物。天然高分子及其衍生物可分为蛋白类(白蛋白、明胶和植物蛋白)和多糖类(纤维素和淀粉及其衍生物、海藻酸盐、壳聚糖等)。合成高分子主要有聚乳酸、聚己类酯等。 1.1天然化合物 1.1.1环糊精 环糊精是一种来自于淀粉的环状材料,其结构是葡萄糖单体通过1,4α连接的环状分子。在水相中,通过分子内氢键作用形成稳定的桶状结构,外围是亲水性表层而易溶于水溶液中,内部是疏水性的空腔,可以有效地包含疏水性的小分子,而形成主客体作用(环糊精称为主体,包含的小分子称为客体,这种通过疏水性作用的结合成为主客体作用)。李媛[1]等采用α-环糊精(α-CD)穿入两端带有可光交联基团的改性PEG链形成包含复合物,通过疏水性端基的自组装形成纳米粒子,并将抗肿瘤药物阿霉素负载到纳米粒子中,结果显示超分子纳米粒子具有很好的生物相容性和药物缓释作用,载药纳米粒子对肿瘤细胞具有很好的杀伤效果。 张先正等制备了由α-环糊精及其经马来酸酐改性的衍生物与聚(ε-己内酯)(PCL)通过主客体包合作用形成的超分子纳米胶束,并研究了这种胶束的药

长循环脂质体

长循环脂质体 脂质体在血液中的稳定性是发挥药物载体作用的关键。血液中有多种破坏因素:高密度脂蛋白(BCD)是破坏脂质体的主要成分,载脂蛋白易从BCD上脱落并与脂质体磷脂结合,且BCD和脂质体易发生, 与磷脂的互换,脂质体膜形成孔洞;同时脂质体在血液中激活补体系统,最终形成攻膜复合体,脂质体膜出现亲水性通道,引起药物渗漏和水、电解质的大量进入,最终渗透裂解脂质体;血清白蛋白与脂质体磷脂结合形成复合物,降低其稳定性;血液中的磷脂酶可水解磷脂,该反应强弱由磷脂结构决定;脂质体进入循环系统后,未经修饰的脂质体大部分运转至肝脏和脾脏等单核吞噬细胞系统丰富的部位,少量被肺、骨髓及肾摄取;肝细胞膜受体对直接暴露于表面的磷脂负电基进行识别,因而脂质体首先被肝细胞吞噬。这些因素综合使传统脂质体的半衰期仅十几分钟。因而进入20世纪80年代后,出现了一种新型脂质体———仿红细胞脂质体,延长了脂质体在血循环中的滞留半衰期。虽然仿红细胞脂质体具有较长的半衰期,但由于神经节苷脂价格昂贵,合成和提取都较困难,因此人们开始寻找其他途径来制备长循环脂质体。 长循环脂质体的分类 现阶段的长循环脂质体有两类:含神经节苷脂的仿红细胞脂质体和聚乙二醇衍生物修饰的PEGs脂质体。含神经节苷脂增强膜刚性,降低血液成分破坏,减少MPS的摄取,脂质体在血液中的滞留量与被MPS摄取量的比值高于传统脂质体几十倍],但含神经节苷脂难以大量获得,具有一定的免疫毒性。1990年Blume 等研制出PEGs 脂质体,该脂质体表面含聚乙二醇(二硬脂酰基磷脂酰乙醇胺衍生物(PEG-DSPE)。PEG-DSPE是两亲线型聚合物,它们在脂质体表面交错覆盖成致密的构象云,形成较厚的立体位阻层,阻碍了MPS的作用(因此又称为立体稳定脂质体)。而且PEG-DSPE有很长的极性基团,增强脂质体的溶剂化作用,有效阻止其表面的调理作用,降低MPS对脂质体的亲和力\。正是PEGs 脂质体使盐酸多柔比星脂质体上市成为可能 长循环脂质体的作用机制

纳米生物材料研究进展

纳米生物材料研究进展 学院:建筑工程学院专业:土木工程 姓名:李春波学号111401140 生物材料又称生物工艺学或生物技术。应用生物学和工程学的原理,对生物材料、生物所特有的功能,定向地组建成具有特定性状的生物新品种的综合性的科学技术。生物工程学是70年代初,在分子生物学、细胞生物学等的基础上发展起来的,包括基因工程、细胞工程、酶工程、发酵工程等,他们互相联系,其中以基因工程为基础。只有通过基因工程对生物进行改造,才有可能按人类的愿望生产出更多更好的生物产品。而基因工程的成果也只有通过发酵等工程才有可能转化为产品,而今天,就让我带领你走进微小,但不失奇妙的纳米生物材料。 纳米,其实是长度单位,原称毫微米,就是10亿分之一米,即100万分之一毫米。如同厘米、分米和米一样,是长度的度量单位。相当于4倍原子大小,比单个细菌的长度还要小。举个例子来说,假设一根头发的直径是0.05毫米,把它径向平均剖成5万根,每根的厚度大约就是一纳米。也就是说,一纳米大约就是0.000001毫米.纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。 在过去几年中,生物纳米材料的理论与实验研究已成为人们关注的焦点,特别是核酸与蛋白质的生化、生物物理、生物力学、热力学与电磁学特征及其智能复合材料已成为生命科学与材料科学的交叉前沿。目前,纳米生物芯片材料、仿生材料、纳米马达、纳米复合材料、界面生物材料、纳米传感器与药物传递系统等方面已取得很大进展。 1.纳米生物芯片材料 纳米生物芯片材料是一个正在发展的技术,它首先利用生物智能全数字癫痫定位仪查出致痫病灶,并进行精确定位,运用生物芯片技术进行植入病灶顶部,运用生物芯片调节神经兴奋及异常发作的微小电流,芯片植入后(就是出现发作人体也感应不到,因为电流被芯片吸收,就不会出现电流刺激神经和脑细胞,各种肢体抽搐等异常症状即刻消失)。而治疗系统中另一项需同时进行的血液磁化技术,它是依据生物物理学、生物磁学、生物光学、生物化学的原理,将磁、光、氧有机结合形成磁共振作用,以血液为媒介调节机体代谢实现对机体的治疗,它能感应和影响人体电流分布、电荷微粒的运动、膜系统的通透性和生物高分子的磁矩取向等,清除大脑异常电流,稳定神经细胞膜,提高神经细胞兴奋阈,抑制大脑神经元高频放电和冲动的传播。在脑部形成稳定的生物磁场,使异常放电的神经元电位趋于平衡,调整神经网路电失衡。对神经细胞功能失调有整合作用,对缺氧破损的神经细胞有修复作用,可以增进神经细胞的重新生长,针对性的修复受损的神经细胞,从而产生镇静、解痉作用,激发神经自身保护功能,促使神经

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

生物纳米药物的现状和发展

纳米药物的现状和发展 一、背景 纳米药物指以纳米微粒作为载体系统,与药效粒子以一定的方式结合在一起后制成的药物,其粒径可能超过100 nm但通常小于500 nm。自20世纪90年代初期这一概念被首次提出起,它就一直是发达国家研究的热点领域之一。纳米药物的粒径使它具有特殊的表面效应和小尺寸效应等,与常规药物相比,它颗粒小、表面反应活性高、活性中心多、催化效率高、吸附能力强[1],由此导致的以下优点正是其一直受到青睐和寄予极大期望的原因。 1.改善药物稳定性 一些药物为蛋白质或多肽大分子,口服会被消化系统破坏。传统采用注射等方法给药,而如将维他命12或叶酸修饰过的纳米粒再与药物结合,不仅能避免口服时药物在肠道中发生蛋白水解,还能使药物在体内循环时间增加,从而大大增加了药物的吸收度[1]。 2.提高药物的作用效率 将一般的小分子药物装载在纳米粒子上后,药物的总表面积大大增加,药物的溶出速率随之提高,与给药部位接触面积增大,提高了单位面积药物浓度。同时由于载药纳米粒较好的黏附性及小粒径,药物与吸收部位的接触时间延长,增加了药物在吸收部位上皮组织黏液层中的浓度,并延长了药物的半衰期,因此提高了药物的生物利用度。载药纳米粒子还可以改变膜运转机制,增加药物对生物膜的通透性,药物有可能通过简单扩散或渗透形式进入生物膜 ,使溶解度增加[3] 。 3.靶向作用 靶向作用主要有三类:被动靶向、主动靶向和物理化学靶向。 被动靶向指人体自然将纳米药物驱赶到其需要作用的部位,如载药纳米粒进入体内后作为异物而被巨噬细胞吞噬,到达网状内皮系统(RES) 分布集中的肝、脾、肺、骨髓、淋巴等靶部位。 主动靶向指利用抗原、抗体或配体-受体结合使药物到达靶部位。 物理化学靶向使用的方法包括热导向、磁导向、pH导向等。有些靶组织的透过性对热敏感,给药同时结合热疗即可使纳米药物粒子更好地作用于组织[3]。 4.提高控释效果 普通制剂有“峰谷现象”,而纳米药物的特殊结构使得药物可以恒速释放作用于器官或组织,从而使体内药物浓度保持平稳,减少给药次数,提高药效和安全度。一般是通过调节纳米粒子表面的性质,如亲水性、电荷等来调整其在体内服役时间长短

纳米生物材料的研究进展

纳米生物材料的研究进展 摘要:纳米生物材料是指具有纳米量级的超微粒构成的固体物质。纳米颗粒具有稳定的物理化学性质,较高的物理强度,较好扩散和渗透能力、吸附能力和化学活性,以及良好生物降解性等特点。使得纳米生物材料在医学领域得到了广泛的应用。纳米生物材料包括了组织工程与再生医学材料、高性能生物诊断纳米材料、生物相容性界面材料、智能纳米药物基因传递材料。然而,那么纳米生物材料作为人体外来物,必然或多或少地会引起人体的各种不适症状,甚至是对人体存在着毒性。对纳米生物材料安全性进行评价的深入研究已经成为当务之急。 关键词:纳米生物材料特点分类安全性毒性 1. 前言 纳米科技是20世纪80年代末,90年代初发展起来的前沿、交叉新兴学科领域的新技术。所谓“纳米技术”是指量度范围在1-100nm内的物质或结构的制造技术,即纳米级的材料。设计、制造、测量和控制技术。其最终目标是,人们将按照自己的意愿直接操纵单个原子、分子或原子团、分子团(小于10nm),制造具有特定功能的产品。纳米材料,又称纳米粒,由于其微小的尺寸,是它们具有了一些独特的效应,表现出特殊的光学、热学、力学和磁学等特性。[1] 正是如此,纳米材料不仅在传统材料领域得到广泛的应用和发展,在生物医学领域更是一枝独秀。纳米材料在本世纪很可能成为生物医用材料的核心材料,这是因为生物体的骨骼、牙齿、肌腱等都发现有纳米结构存在;贝壳、甲虫壳、珊瑚等天然材料具有特异的力学性能,据分析,它们是由某种有机粘合剂连接的有序排列的纳米碳酸钙颗粒构成的。从仿生的观点来看,纳米生物医用材料是重要的发展方向。[2]纳米微粒的尺寸一般比生物体内的细胞小得多,这就为生物学研究提供了一个新的研究途径,利用纳米生物技术操纵生物大分子,被认为有可能引发第二次生物学的革命。[3] 2. 纳米生物材料 2.1 纳米生物材料的特点 纳米生物材料是指具有纳米量级的超微粒构成的固体物质。纳米颗粒具有稳定的物理化学性质,较高的物理强度,较好扩散和渗透能力、吸附能力和化学活性,以及良好生物降解性等特点。[4] 2.1.1 纳米生物材料的粒径较小

纳米药物载体系统解析

纳米药物载体系统 年级: 2012级 专业: 材料科学与工程 姓名: 俞 学号: 3**

摘要: 着科技的发展,纳米生物技术越来越受到关注,物技术是国际生物技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。本文着重介绍纳米药物载体系统。纳米药物载体的属性纳米药物载体种类纳米药物载体的制备方法及纳米生物技术的发展前景。 关键词:纳米生物技术纳米药物载体纳米粒子 纳米技术是一种新兴的科技,它的基本涵义是在纳米尺寸(10-9~10-7m)范围内认识和改造自然,通过直接操作和安排原子、分子创制新物质。由于物理空间的改变,物质的理化特性、生物学特性发生令人惊奇的变化,其在药学领域中的应用,已成为本世纪崭新的前沿科学[1] 纳米药物载体是指粒径大小在10~1000nm的一类新型载体,通常由天然或合成高分子材料制成。它是以纳米颗粒作为药物载体,将药物治疗分子包裹在纳米颗粒之中或吸附在其表面,通过靶向分子与细胞表面特异性受体结合,在细胞摄取作用下进入细胞内,实现安全有效的靶向药物输送和基因治疗。纳米 载体技术是纳米生物技术的重要发展方向之一[2] 一、纳米药物载体的性质 作为药物载体的纳米材料,是粒径大小介于10~1000nm的固态胶体颗粒,包括纳米粒子、纳米囊、纳米胶束和纳米乳剂等。 其中较常见的是纳米粒子,一般指由天然或合成的高分子材料制成的、粒度在纳米级的固态胶体颗粒。 纳米粒子表面的亲水性与亲脂性将影响纳米粒子与调理蛋白吸附结合力的大小,从而影响吞噬细胞对其吞噬的快慢。一般而言,纳米粒子的表面亲脂性越大,则其对调理蛋白的结合力越强,吞噬细胞对其吞噬的速度越快。所以要延长纳米粒子在体内的循环时间,需增加其表面的亲水性,这是对纳米粒子进行表面修饰时选择材料的一个必要条件[3] 二、纳米药物载体的属性 1 具有较高的载药量 2 具有较高的包封率

纳米生物传感器研究进展及其应用

纳米生物传感器研究进展及其应用

纳米生物传感器的研究进展及其应用 张雯歆 【摘要】:随着纳米技术在生物传感器领域的不断引入,纳米生物传感器在灵敏度的提高,检测限的降低,线性检测范围的拓宽以及响应时间的缩短等方面的性能得到了很好的改善。本文主要对纳米颗粒、纳米纤维、纳米管以及纳米量子生物传感器在酶、免疫以及DNA等生化领域检测方面应用的研究进展进行简单的概述。 【关键词】:纳米材料生物传感器应用 Advances of Research on application of Nano-materials in biosensors 【Abstract】:With the development of nanotechnology , the unique properties of nano-materials realize an objective to improve sensitive sensor with a wide linear range, a highly reproducible response, long-term stability and so on. The application of nano-materials (such as nanoparticle, nanofiber, nanotube) in biosensor fields introduced. The development of this field prospected in the future. 【Keywords】:nano-materials; biosensors; application 纳米技术和生物技术是21世纪的两大领先技术,在这两者之间存在着许多技术交叉,其中,纳米生物传感技术已然引起了研究领域的广泛关注。 生物传感器是一类特殊形式的传感器,由固定化的生物敏感材料作为识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能器及信号放大装置构成,具有接受器与转换器的功能,从而能够检测多种生命和化学物质。纳米技术主要是针对尺度为1 nm~100 nm之间的分子世界的一门技术。该尺寸处在原子、分子为代表的微观世界和宏观物体交界的过渡区域,因此有着独特的化学性质和物理性质,如表面效应、微尺寸效应、量子效应和宏观量子隧道效应等,呈现出常规材料不具备的优越性能。纳米技

纳米生物传感器研究进展及其应用重点

纳米生物传感器的研究进展及其应用张雯歆 【摘要】 :随着纳米技术在生物传感器领域的不断引入, 纳米生物传感器在灵敏度的提高, 检测限的降低, 线性检测范围的拓宽以及响应时间的缩短等方面的性能得到了很好的改善。本文主要对纳米颗粒、纳米纤维、纳米管以及纳米量子生物传感器在酶、免疫以及 DNA 等生化领域检测方面应用的研究进展进行简单的概述。 【关键词】:纳米材料生物传感器应用 Advances of Research on application of Nano-materials in biosensors 【 Abstract 】 :With the development of nanotechnology , the unique properties of nano-materials realize an objective to improve sensitive sensor with a wide linear range, a highly reproducible response, long-term stability and so on. The application of nano-materials (such as nanoparticle, nanofiber, nanotube in biosensor fields introduced. The development of this field prospected in the future. 【 Keywords 】 :nano-materials; biosensors; application 纳米技术和生物技术是 21世纪的两大领先技术, 在这两者之间存在着许多技术交叉,其中,纳米生物传感技术已然引起了研究领域的广泛关注。 生物传感器是一类特殊形式的传感器,由固定化的生物敏感材料作为识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质与适当的理化换能器及信号放大装置构成 , 具有接受器与转换器的功能 , 从而能够检测多种生命和化学物质。纳米技术主要是针对尺度为 1 nm~100 nm之间的分子世界的一门技术。该尺寸处在原子、分子为代表的微观世界和宏观物体交界的过渡区域,因此有着独特的化学性质和物理性质,如表面效应、微尺寸效应、量子效应和宏观量子隧道效应等, 呈现出常规材料不具备的优越性能。纳米技术引入生物传感器领域后, 提高了生物传感器的灵敏度和其它性能, 并促发了新型的生物传感器的发展。但纳米生物传感器还正处于起步阶段, 目前仍有具有很大的研究

相关文档