文档库 最新最全的文档下载
当前位置:文档库 › 实体建模是利用一些基本体素

实体建模是利用一些基本体素

实体建模是利用一些基本体素

简述特征建模与实体建模的关系和区别

特征是一种综合概念,它作为"产品开发过程中各种信息的载体"除了包含零

件的几何拓扑信息外,还包含了设计制造等过程所需要的一些非几何信息,如材料

信息、尺寸、形状公差信息、热处理及表面粗糙度信息和刀具信息等.因此特征

包含丰富的工程语义,他是在更高层次上对几何形体上的凹腔、孔、槽等的集成

描述.

实体建模是利用一些基本体素,如长方体、圆柱体、球体、锥体、圆环体以及扫描体、放样体、旋转体、拉伸体等,通过集合运算(拼合或布尔运算,如求和、求差、求交)生成复杂形体的一种建模技术。

实体建模主要包括两部分内容,即体素的定义与描述、以及体素之间的布尔

运算。这种模型能够进一步满足物性计算、有限元分析等应用的要求。体素是一些简单的几何形体,它们可以通过少量参数进行描述,例如长方体可以通过长、宽、高定义其形状。

一、实体建模原理

实体建模技术是20世纪70年代后期、80年代初期逐渐发展完善并推向市场的。实体建模是利用一些基本体素,如长方体、圆柱体、球体、锥体、圆环体以及扫描体、放样体、旋转体、拉伸体等,通过集合运算(拼合或布尔运算,如求和、求差、求交)生成复杂形体的一种建模技术。实体建模主要包括两部分内容,即体素的定义与描述、以及体素之间的布尔运算。体素是一些简单的几何形体,它们可以通过少量参数进行描述,例如长方体可以通过长、宽、高定义其形状。

实体模型存在许多不同的数据结构,在这些数据结构中有一个共同点,即数据结构不仅记录了全部的几何信息,而且还记录了所有的点、线、面、体的拓扑信息。这就是实体模型与线框模型或表面模型的根本区别。

实体建模: 1、通过一系列的连续性(continuity)和标识(identity)来从根本上定义的. 2、在一个对像的多种实现形态、多种存储形式与真实世界的参与者(如打电话的人)之间,必须具有匹配的(一至的)概念性标识,但是属性可以是不匹配的3、实体的基本概念就是一种抽象的连续性。这种连续性惯穿了对像的整个生命

周期,甚至要经历多种实现形式4、以标识作为其基本定义的对像称为“实体”. 实体建模:实体的最基本职责是保证连续性,以便使之具有清晰、可预见的行为。要有效地实现这个目的,我们必须保持实体的精简性。

特征建模技术被誉为CAD/CAM发展的新里程碑,它的出现和发展为解决CAD/CAPP/CAM集成提供了理论基础和方法.特征是一种综合概念,它作为"

产品开发过程中各种信息的载体"除了包含零件的几何拓扑信息外,还包含

了设计制造等过程所需要的一些非几何信息,如材料信息、尺寸、形状公差

信息、热处理及表面粗糙度信息和刀具信息等.因此特征包含丰富的工程语义,他是在更高层次上对几何形体上的凹腔、孔、槽等的集成描述.

由于从不同的应用角度研究特征,必然引起特征定义的不统一.根据产

品生产过程阶段不同而将特征区分为 :设计特征、制造特征、检验特征、

装配特征(位置关系,配合约束关系,连接关系,运动关系)等.根据描述

信息内容不同而将特征区分为:形状特征、精度特征、材料特征、技术特征等.

三维实体建模与设计

三维实体建模与设计 课程编码:202561课程英文译名:3D Solid Design and Construction 课程类别:学科基础选修课 开课对象:机械工程机自动化专业开课学期:5 学分:2学分;总学时:328学时;理论课学时:16学时; 上机学时:16学时 先修课程:工程图学、机械原理、机械设计 教材:Solid Works 2005机械设计及实例解析.胡仁喜等.北京:机械工业出版社,2005 参考书:【1】机械设计课程设计图册.龚溎义等.北京:高等教育出版社,1989,第三版.【2】SolidWorks 原厂培训手册实威科技.北京:中国铁道出版社,2004 一、课程的性质、目的和任务 本课程是面向机械工程等各专业开设的一门课程,是学习利用三维CAD软件进行零部件造型设计及制图的实践性课程。课程的目的是使学生掌握用Solid Works软件进行产品的零件造型设计、部件装配设计以及工程图绘制的基本技能,初步学习基于三维的产品开发设计,掌握自下而上的设计方法,自上而下的设计方法以及两种方法结合使用的设计过程。 课程的主要任务: 1.学习掌握三维CAD的特征造型方法; 2.学习掌握三维CAD下的零件造型与部件装配方法; 3.初步掌握三维CAD下基于装配的设计方法; 4.学习掌握三维CAD的二维工程图绘制方法; 5.初步学习利用三维CAD软件Solid Works进行产品设计的方法。 二、课程的基本要求 通过课堂讲授与上机实践,使学生: 1.了解三维CAD的发展历史、现状及软硬件配置条件; 2.了解三维CAD的发展历史、现状及软硬件配置条件; 3.了解利用三维CAD软件进行设计、制图的基本思路与方法; 4.掌握利用Solid Works进行三维立体造型设计的实现方法; 5.掌握利用Solid Works下的零件造型与部件装配方法; 6.初步掌握Solid Works下自上而下的设计方法以及自下而上和自上而下相结合 的方法; 7.掌握Solid Works的二维工程图绘制技术; 8.具有一定的实践体会和相关的应用能力。 三、课程的基本内容及学时分配 第一章Solid Works 2005 概述(1学时) 1.工作窗口 2.菜单简介 3.工具栏简介 第二章零件建模的特征分类(2学时) 1.基于特征的零件建模的基本过程 2.Solid Works的设计思想

Nurbs建模基础入门-建模案例学习

Nurbs建模学习 一、关于Nurbs Nurbs建模技术在设计与动画行业中占有举足轻重的地位,一直以来是国外大型三维制作公司的标准建模方式,如pixar,PDI,工业光魔等,国内部分公司也在使用Nurbs建模。他的优势是用较少的点控制较大面积的平滑曲面,以建造工业曲面和有组织的流线曲面见长。而且Maya在特效,贴图方面对nurbs的支持比较充分,使用nurbs模型在后续工作中会很方便。 不过nurbs对拓扑结构要求严格,在建立复杂模型时会比较麻烦,这需要我们耐心的学习。 二、Loft放样 作画时,固有色和环境色是两个非常重要的概念。物体真正的固有色只有在没有任何环境影响,无投影的白色柔和光照下,才能被我们确定。而我们平常所看到的物体大多被随意放置在一定的环境中,…… Loft是最常用的曲面工具之一,我们可以通过几条曲线描述物体的外形,然后放样生成表面。 Loft 放样。 创建一系列的曲线定义物体的形状,然后一起放样这此曲线就象在一个框架上蒙上画布一样。这些曲线可以是表面上的曲线、表面等位结构线或剪切曲线。使用放样来建立表面时,应该保证所有参加放样的截面曲线的CV点的数目一样,下就是当你建立完曲线后进行一次Surface/Rebuild将曲线重建使CV点统一,这样生成的曲面就会显得整齐,而且很方便以后调整外形。需要要注意一点就是在放样前,选择曲线的顺序,这个操作决定了你放样后形成的面。

Parameterization 改变放样参数,Uniform 结点距离,用使轮廓曲线与V 方向平等,结果表面U 方向上的参数值等间距,第一条轮廓曲线和表面上的U (0,0)处的等位结构线对应,第二条和U (1,0)对应以次类推。 Chord Length 间距,结果表面U 方向上的参数值会根据轮廓曲线起点间的距离而定。 Rebuild 后 Rebuild 前

Cad 所有命令和简写

Cad 所有命令和简写(献给初学者) 简写原命令 3A, *3DARRAY 3DMIRROR, *MIRROR3D 3DNavigate,*3DWALK 3DO, *3DORBIT 3DW, *3DWALK 3F, *3DFACE 3M, *3DMOVE 3P, *3DPOLY 3R, *3DROTATE A, *ARC AC, *BACTION ADC, *ADCENTER AECTOACAD, *-ExportToAutoCAD AA, *AREA AL, *ALIGN 3AL, *3DALIGN AP, *APPLOAD AR, *ARRAY -AR, *-ARRAY ATI, *ATTIPEDIT ATT, *ATTDEF -ATT, *-ATTDEF ATE, *ATTEDIT -ATE, *-ATTEDIT ATTE, *-ATTEDIT B, *BLOCK -B, *-BLOCK BC, *BCLOSE BE, *BEDIT BH, *HATCH BO, *BOUNDARY -BO, *-BOUNDARY BR, *BREAK BS, *BSAVE BVS, *BVSTATE C, *CIRCLE CAM, *CAMERA CH, *PROPERTIES -CH, *CHANGE CHA, *CHAMFER

CHK, *CHECKSTANDARDS CLI, *COMMANDLINE COL, *COLOR COLOUR, *COLOR CO, *COPY CP, *COPY CT, *CTABLESTYLE CYL, *CYLINDER D, *DIMSTYLE DAL, *DIMALIGNED DAN, *DIMANGULAR DAR, *DIMARC JOG, *DIMJOGGED DBA, *DIMBASELINE DBC, *DBCONNECT DC, *ADCENTER DCE, *DIMCENTER DCENTER, *ADCENTER DCO, *DIMCONTINUE DDA, *DIMDISASSOCIATE DDI, *DIMDIAMETER DED, *DIMEDIT DI, *DIST DIV, *DIVIDE DJL, *DIMJOGLINE DJO, *DIMJOGGED DL, *DATALINK DLI, *DIMLINEAR DLU, *DATALINKUPDATE DO, *DONUT DOR, *DIMORDINATE DOV, *DIMOVERRIDE DR, *DRAWORDER DRA, *DIMRADIUS DRE, *DIMREASSOCIATE DRM, *DRAWINGRECOVERY DS, *DSETTINGS DST, *DIMSTYLE DT, *TEXT DV, *DVIEW DX, *DATAEXTRACTION E, *ERASE ED, *DDEDIT EL, *ELLIPSE

模型的逆向工程实体建模技术

基于STL模型的逆向工程实体建模技术 内容摘要:摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP系统与通用CAD系统之间的快速集成,实现产品数据在不同系统之间顺畅传递。模型重建1逆向工程CAD技术与STL模型逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。 摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP系统与通用CAD系统之间的快速集成,

实现产品数据在不同系统之间顺畅传递。 关键词:STL;逆向工程;实体建模;模型重建 1 逆向工程CAD技术与STL模型 逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。由于测量方式的不同,数字化测量设备可以分为接触式和非接触式。随着测量技术的发展,不论何种测量方式,产生的测量数据都是非常多的,尤其是非接触式的激光测量,可以产生几十万甚至上百万测量点的测量数据。我们将这种数据称为“点云”数据。一般来说,数字化测量设备都带有数据处理软件。这个软件的主要功能是对测量设备输出的数据进行初步处理,如去除明显噪声点、多块数据拼合、数据格式转换等。一般的测量设备除了按照自定义格式输出数据外,都提供IGES 格式的数据输出。随着软件功能的加强,目前很多测量设备可以在输出测量数据的同时输出三角网格数据(即经过三角化以后的数据)或者STL格式数据。但是这些STL格式数据一般没有经过测试(如不保证封闭性,可能存在裂隙等),不能直接用于逆向工程建模或RP制造。由测量设备输出的STL数据必须经过修补、纠错处理,才能用来进行逆向工程CAD建模。因此,逆向工程中重要的一个环节就是数据的预处理。

CAD三维建模练习

【三维练习题29】

本题主要是介绍: 1、再次复习“拉升”命令的使用。 2、再介绍“剖切”命令的用法。 最近几题,都是介绍“剖切”命令,这个命令的重要性,仅次于“拉升”、“旋转”和“布尔运算”,也是一个比较重要、且经【三维练习题28】

本题主要是介绍: 1、还是复习“拉升”命令的使用。 2、再介绍“剖切”命令的多种用法。 最近几题,都是介绍“剖切”命令,这个命令的重要性,仅次于“拉升”、“旋转”和“布尔运算”,也是一个比较重要、且经常要【AutoCAD三维建模 36 】—习题(36)—三维旋转、差集、倒角 【三维练习题36】

本题主要是介绍: 1、本题用“三维旋转”命令旋转面域,以达到所要求的角度 2、再使用“拉伸”命令,拉伸成三个实体 3、利用“差集”命令,在两个实体减去一个小实体 4、运用“倒角”命令,使实体达到预期目标用到的命令。希望大家多多练习。常要用到的命令。希望大家多多练习。AutoCAD三维建模 35 】—习题(35)—三维旋转、拉伸、交集 【三维练习题35】

本题主要是介绍: 1、本题用两次“三维旋转”命令旋转面域,以达到所要求的效果。 2、再使用“拉伸”命令,拉伸成交合的两个实体 3、利用“交集”命令,使两个实体产【AutoCAD三维建模 1 】—习题(1)—拉升、倒角 从现在开始,我们逐步进入到AutoCAD的三维建模中去,我准备了大量的三维习题,由简而繁,一道一道地讲解绘图过程,使大家逐步熟悉CAD各个三维命令的使用,通过这一系列的讲解,大家应能熟练地进行三维建模。 在机械制造业,如能提供一幅三视图纸,附加一个形象的立体图,给加工者去制作, 那是很完美的事情。因此我觉得,学好三维建模,其实比学会渲染更重要。所以对广大的 初学者而言,一开始,应尽心尽力地先学好三维建模,只有能熟练地进行三维建模以后, 再搞些渲染,这样,不仅图画的正确清爽,而且效果上佳,这就更是锦上添花了。 三维建模的实体,可以在AutoCAD里快速生成三视图和消隐立体图,从而付之打印。我每次发的三维题目(三视图和实体图),就是用这个方法生成的。目前,这个方法,我正在 整理,待完善后发专贴告诉大家。以期望对大家的工作有所帮助,也要让大家知道,在CAD 中做三维建模也是一件很方便的事,包括从建模到出图。 我的这个系列,不讲究突飞猛进,不搞花花活,讲究的是循序渐进,从最基础的做起 。只有基础打结实了,这高楼大厦才能稳固,才能造得高。 一开始的题目,可能对有一些基础的人来讲,过于简单,因我也是刚开始学习CAD的三维建模,但这些都是基础,我觉得很有必要讲解一下,不要等到搞复杂图形时,对某基础 命令不会用,再反过来学习,那就费时费工了。 由于每道题的绘图步骤不同,有多有少,我呢,就趁绘图步骤少的题,多讲一下命令 的使用。三维习题中的二维平面部分,比较简单,对这些二维平面部分,也许经常会一带 而过。二维平面的习题,本版块已经做了不少,而且还在继续,在做三维习题中,再为这

数据库概念设计及数据建模(一)有答案

数据库概念设计及数据建模(一) 一、选择题 1. 数据库概念设计需要对一个企业或组织的应用所涉及的数据进行分析和组织。现有下列设计内容 Ⅰ.分析数据,确定实体集 Ⅰ.分析数据,确定实体集之间的联系 Ⅰ.分析数据,确定每个实体集的存储方式 Ⅰ.分析数据,确定实体集之间联系的基数 Ⅰ.分析数据,确定每个实体集的数据量 Ⅰ.分析数据,确定每个实体集包含的属性 以上内容不属于数据库概念设计的是______。 A.仅Ⅰ、Ⅰ和Ⅰ B.仅Ⅰ和Ⅰ C.仅Ⅰ、Ⅰ和Ⅰ D.仅Ⅰ和Ⅰ 答案:D [解答] 数据库概念设计主要是理解和获取引用领域中的数据需求,分析,抽取,描述和表示清楚目标系统需要储存和管理什么数据,这些数据共有什么样的属性特征以及组成格式,数据之间存在什么样的依赖关系,同时也要说明数据的完整性与安全性。而数据的储存方式和数据量不是概念设计阶段所考虑的。 2. 关于数据库概念设计阶段的工作目标,下列说法错误的是______。 A.定义和描述应用系统设计的信息结构和范围

B.定义和描述应用系统中数据的属性特征和数据之间的联系 C.描述应用系统的数据需求 D.描述需要存储的记录及其数量 答案:D [解答] 数据库概念设计阶段的工作目标包括定义和描述应用领域涉及的数据范围;获取应用领域或问题域的信息模型;描述清楚数据的属性特征;描述清楚数据之间的关系;定义和描述数据的约束;说明数据的安全性要求;支持用户的各种数据处理需求;保证信息模型方便地转换成数据库的逻辑结构(数据库模式),同时也便于用户理解。 3. 需求分析阶段的文档不包括______。 A.需求说明书 B.功能模型 C.各类报表 D.可行性分析报告 答案:D [解答] 数据库概念设计的依据是需求分析阶段的文档;包括需求说明书、功能模型(数据流程图或IDEF0图)以及在需求分析阶段收集到的应用领域或问题域中的各类报表等,因此本题答案为D。 4. 数据库概念设计的依据不包括______。

CAD三维建模实例

CAD三维建模实例操作一-----创建阀盖零件的三维模型将下面给出的阀盖零件图经修改后,进行三维模型的创建。阀盖零件图如图1所示。 ●图形分析: 阀盖零件的外形由左边前端倒角30度的正六边体,右边四个角R=12mm的底座,中间有一个倒45度角和R=4mm连接左右两边。该零件的轴向为一系列孔组成。根据该零件的构造特征,其三维模型的创建操作可采用: (1)拉伸外轮廓及六边形; (2)旋转主视图中由孔组成的封闭图形; (3)运用旋转切除生成30度和45度、R4的两个封闭图形,生成外形上的倒角;(4)运用差集运算切除中间用旋转生成的阶梯轴(由孔组成的图形旋转而成),来创建该零件中间的阶梯孔,完成三维模型的创建。 如需室内设计学习指导请加QQ技术交流群:106962568 庆祝建群三周年之际,如今超级群大量收人!热烈欢迎大家! ●零件图如图1所示。

图1 零件图 具体的操作步骤如下: 1.除了轮廓线图层不关闭,将其他所有图层关闭,并且可删除直径为65mm的圆形。然后,结果如图2所示。 图2 保留的图形 2.修改主视图。将主视图上多余的线条修剪,如图3所示。 3.将闭合的图形生成面域。单击“绘图”工具条上的“面域”按钮,框选所有的视 图后,按回车键,命令行提示:已创建8个面域。

4.旋转左视图。单击“视图”工具条上的“主视”按钮,系统自动将图形在“主视平面”中显示。注意:此时,显示的水平线,如图4 a)所示。输入“RO”(旋转)命令,按回车键,再选择右边的水平线(即左视图)的中间点,输入旋转角度值90,按回车键,完成左视图的旋转如图4 b)所示。在轴测图中看到旋转后的图形如图4 c)所示。 图4 a)旋转前图4 b)放置后 提示:图中的红色中心线是绘制的, 用该线表明二视图的中心是在一条 水平线上。 图4 c)轴测视图 5.移动视图将两视图重合的操作如下: ①单击“视图”工具条上的“俯视”按钮,系统自动将图形转换至俯视图中,如图5所示。 图5 俯视图显示图6 标注尺寸 ②单击“标注”菜单,选择“线性”标注,标注出二图间的水平距离,如图6所示。标注尺寸的目的是便于将图形水平移动进行重合。

需求获取与需求建模

需求获取与需求建模 一.需求获取 需求获取,属于软件工程中的一部分,包括需求来源和获取需求的技术。它是软件设计的第一阶段,其本质主要是人的活动,涉及软件设计人员如何与客户建立有效的沟通。也称为“需求发现”、“需求获得”。 需求获取(requirement elicitation)是需求工程的主体。对于所建议的软件产品,获取需求是一个确定和理解不同用户类的需要和限制的过程。获取用户需求位于软件需求三个层次的中间一层。业务需求决定用户需求,它描述了用户利用系统需要完成的任务。从这些任务中,分析者能获得用于描述系统活动的特定的软件功能需求,这些系统活动有助于用户执行他们的任务。需求获取和分析包括对原始需求变更控制,版本控制,从需求到产品和模块的可追溯性,成品交付和产品的状态跟踪。 需求获取是在问题及其最终解决方案之间架设桥梁的第一步。获取需求的一个必不可少的结果是对项目中描述的客户需求的普遍理解。一旦理解了需求,分析者、开发者和客户就能探索出描述这些需求的多种解决方案。参与需求获取者只有在他们理解了问题之后才能开始设计系统,否则,对需求定义的任何改进,设计上都必须大量的返工。把需求获取集中在用户任务上—而不是集中在用户接口上—有助于防止开发组由于草率处理设计问题而造成的失误。 需求获取、分析、编写需求规格说明和验证并不遵循线性的顺序,这些活动是相互隔开、增量和反复的。当你和客户合作时,你就将会问一些问题,并且取得他们所提供的信息(需求获取)。同时,你将处理这些信息以理解它们,并把它们分成不同的类别,还要把客户需求同可能的软件需求相联系(分析)。然后,你可以使客户信息结构化,并编写成文档和示意图(说明)。下一步,就可以让客户代表评审文档并纠正存在的错误(验证)。这四个过程贯穿着需求分析的整个阶段。需求获取可能是软件开发中最困难、最关键、最易出错及最需要交流的方面。需求获取只有通过有效的客户—开发者的合作才能成功。分析者必须建立一个对问题进行彻底探讨的环境,而这些问题与产品有关。为了方便清晰地进行交流,就要列出重要的小组,而不是假想所有的参与者都持有相同的看法。对需求问题的全面考察需要一种技术,利用这种技术不但考虑了问题的功能需求方面,还可讨论项目的非功能需求。确定用户已经理解:对于某些功能的讨论并不意味着即将在产品中实现它。对于想到的需求必须集中处理并设定优先级,以避免一个不能带来任何益处的无限大的项目。 需求获取是一个需要高度合作的活动,而并不是客户所说的需求的简单誊本。作为一个分析者,你必须透过客户所提出的表面需求理解他们的真正需求。询问一个可扩充(open-ended)的问题有助于你更好地理解用户目前的业务过程并且知道新系统如何帮助或改进他们的工作。调查用户任务可能遇到的变更,或者用户需要使用系统其它可能的方式。想像你自己在学习用户的工作,你需要完成什么任务?你有什么问题?从这一角度来指导需求的开发和利用。 还有,探讨例外的情况:什么会妨碍用户顺利完成任务?对系统错误情况的反映,用户是如何想的?询问问题时,以“还有什么能”,”当?时,将会发生什么”“你有没有曾经想过”,“有没有人曾经”为开头。记下每一个需求的来源,这样向下跟踪直到发现特定的客

曲面建模讲解与实例

多边形建模现在被越来越多的人喜爱并使用。了解这些特性并在建模当中巧妙的使用能起到很好的效果,本教程详细的讲解曲面建模。 作者:asdf 在火星人上看到了很多人在讨论软件中的曲面建模方法,这其中包括NURBS、PATCH、SURFACE,和SUB DIVETION(细分)先介绍几个连续性的概念,需小小的高数基础,但为了让我们更好地理解曲线建模,不要畏惧它!LET’S BEGIN 某节点两端曲线在该点重合,则该点具有C0、G0级连续;该点两端曲线重合,切矢量方向相同,大小不等,称为G1级连续,该点两端曲线重合,切矢量方向相同,大小相等,称为C1级连续,如果两端曲线重合,切矢量导数方向相同,大小不等称为G2级连续,如果两端曲线重合,切矢量导数方向相同,大小相等称为C2级连续,至二阶三阶有C2、G2、C3、G3等连续方式。一般默认的NURBS(MAX中MAYA中)连续,是C23级别,控制点(CV、EP)的权重反映了切线的大小数值,而在高精度的工业设计中可应用于更高的连续级别。而把这些概念应用于BRZEIL上,我们可以看到,MAX中的BREZIL曲线可以较为自由地改变其节点连续性,将之转化成CORNER形或是BREZIL CORNER,就是C0G0级别,将之转成BEZIL 形就是两端曲线切线柄方向一致就是G1形,转成SMOOTH,因切线柄两端方向一致大小一致因此是C1形,因为都属于有理化样条曲线,所以BREZEIL和NURBS之间是可以转换的,也就是说PATCH和NURBS曲面是可以转换的,所以正像我前面说了,MAYA中NURBS面片建模的原理其实和PATCH原理极其相似,不过一般要满足四边面的拓朴关系,而PATCH也是一样的,如果出现三角面,曲面的光滑度很难控制,像是A:M和MAX中的基于样条曲建模手段,在MAX叫做SURFACE,其实也就连续性。细分是从多边形和NURBS中演生出的一种建模手段,在MAX中叫做NURMS,可以用少量的点、线、面是PATCH的快速方法,类似的方法其实用NURBS也可以实现,比如说在RHINOS中可织成曲线网,然后用三边线成面或四边线成面并要注意其子物体控制曲面的形态,并可以调整其子物体上的权重(WEIGHT)。因为是个人分析,可能有错误,希望高手斧正!

实体建模技术

实体建模技术 提示: 1.实体零件的后缀名为.prt 。 2.零件名称只能输入英文字母、汉语拼音、阿拉伯数字和一些带下划线的名称等,不能输入汉字和一些特殊字符,如“/、,、。、?、< >”等。 3.模型模板有英制和公制,英制inlbs_part_solid(默认英制模板,ecad为英制的 ecad模板),表示其长度为英寸(in),质 量为磅(ibm),时间为秒(s);公制 mmns_part_solid,表示 其长度为毫米(mm),质量为牛顿(N),时间为秒(s);一般选 择公制单位。 三维产品建模中常用的创建特征方法有基础特征、基准特征、工程特征等。 一、基础特征 是最常用的创建特征的方法,包括拉伸、旋转、扫描、混合,是零件建模的根本,也是进一步学习高级特征的基础。其中,拉伸完成零件的80% 建模工作,15%使用旋转功能,扫描和混合约占5%左右。1.1零件造型菜单介绍 一)零件环境模式进入 主菜单文件(File)下拉菜单新建(New)→零件(Part)→Solid 注意:将“缺省”复选框前的“√”去掉,在模板对话框中选择“mmns_part_solid”选项,即选择公制单位。

二)文件格式及文件名要求 文件保存成.Prt格式,并且文件名只能是英文字符、数字等组成,不能含汉字,最好以能说明零件用途的字符来命名。 三)零件造型菜单 实体建模命令中基础特征主要包括拉伸、旋转、扫描、混合等。1.2基础特征常用的造型方法介绍 三维实体建模的一般流程: 进入实体建模环境创建实体特征并进行编辑(一般先绘2D图形、再通过相关命令创建三维实体图形、最后对特征进行编辑,如抽壳/镜像/倒圆角等)。 一)拉伸(Extrude) 1.拉伸的特点 将封闭的二维截面或剖面图形沿垂直草绘平面方向延伸至指定距离来拉伸成柱体,当截面有内环时,特征将拉伸成孔。可创建实体、曲面,可填加或移除材料。 2.拉伸特征的创建步骤 单击命令→单击“放置”选项→“定义“内部草绘(或在绘图区按右键,选”定义内部草绘“)→草绘对话框中确定“草绘平面”和“参照平面(包括绘图方向和参照方向)。“→草绘环境绘制草绘截面→完成后”√“(”╳“退出草绘)→确定拉伸高度→”√“确认,生成实体。 3.拉伸操控板

概念模型建模方法研究_刘洁

概念模型建模方法研究 摘要:随着仿真规模的不断扩大,仿真系统复杂性不断提高,由此对概念模型建模的要求也不断提高。本文总结 了现有的概念模型抽象方法,提出了六元抽象方法,分析了这种方法的相似性原理,设计了相关的建模视图。关键词:概念模型;六元建模;相似性中图分类号:TP391 文献标识码:A 文章编号:1672-9870(2007)03-0126-04 收稿日期:2007-03-15 作者简介:刘洁(1981-),女,博士研究生,主要从事系统建模与仿真的研究,E-mail :wuqiong1205@https://www.wendangku.net/doc/0c18915411.html, 。 刘洁1,柏彦奇1,孙海涛2 (1.河北石家庄军械工程学院 装备指挥与管理系,石家庄 050003; 2.河北石家庄军械工程学院 火炮工程系,石家庄050003) Research on Conceptual Modeling LIU Jie 1,BAI Yanqi 1,SUN Haitao 2 (1.Department of Equipment Command &Management ,Ordnance Engineering College ,Shijiazhuang Hebei ,050003; 2.Department of Artillery Engineering ,Ordnance Engineering College ,Shijiazhuang Hebei ,050003)Abstract:With the extending of simulation scope ,the system complexity is becoming larger and larger.Therefore ,the re-quest for the conceptual modeling is enhancing rapidly.This paper summarizes the existing methods of conceptual model-ing ,puts forward the six-element modeling method ,analyzes the inner comparability principle ,and designs the corre-sponding modeling view. Key words:conceptual model ;six-element modeling ;comparability 计算机仿真是复杂系统开发与集成的重要支撑 手段,在系统全寿命管理中发挥着不可替代的作用。为满足军用大规模复杂系统仿真的迫切需要,美国国防部仿真与建模办公室(DMSO )提出了美军的建模与仿真主计划。在该计划的通用技术框架中提出要开展“任务空间概念模型(Conceptual Models of the Mission Space ,CMMS )、高层体系结构(High Level Architecture ,HLA )及一系列数据标准”。目前,这一技术框架已成为指导仿真建设的基本依据,并在各国的作战仿真领域得到广泛的应用。然而,任务空间概念模型和HLA 中的对象模型(OM )面临着一系列问题和挑战,主要表现在:CMMS 规范中,EATI 的四元抽象描述对问题域的定义和描述并不完整。EATI 的四元抽象的方法用实体(Entity )、行为(Action )、任务(Tas- k )、交互(Interaction )来描述问题域的问题空间,但是忽略了内涵(Inclusion )、结构(Struc-ture )。因此,EATI 四元抽象产生的CCMS 描述问题域的准确性和完整性将受到质疑,由此建立的仿真系统与客观实际也不相符。 因此,有必要研究一种新的概念模型建模方法,扩展原有建模方法的描述方式,增强仿真模型描述的完整性,使得仿真应用更符合客观实际。 1概念模型建模方法现状分析 概念模型是对真实世界的第一次抽象,是连接真实世界与仿真世界的桥梁。对概念模型的深入研究始于美国国防部建模与仿真办公室(DMSO ),在1995年10月,DMSO 发布的“建模与仿真主计划”[1,2]中就把任务空间概念模型(CMMS )作为 第30卷第3期2007年9月 长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition )Vol.30No.3 Sep.2007

数据库模型基础知识及数据库基础知识总结

数据库模型基础知识及数据库基础知识总结 数据库的4个基本概念 1.数据(Data):描述事物的符号记录称为数据。 2.数据库(DataBase,DB):长期存储在计算机内、有组织的、可共享的大量数据的集合。 3.数据库管理系统(DataBase Management System,DBMS 4.数据库系统(DataBase System,DBS) 数据模型 数据模型(data model)也是一种模型,是对现实世界数据特征的抽象。用来抽象、表示和处理现实世界中的数据和信息。数据模型是数据库系统的核心和基础。数据模型的分类 第一类:概念模型 按用户的观点来对数据和信息建模,完全不涉及信息在计算机中的表示,主要用于数据库设计现实世界到机器世界的一个中间层次 ?实体(Entity): 客观存在并可相互区分的事物。可以是具体的人事物,也可以使抽象的概念或联系 ?实体集(Entity Set): 同类型实体的集合。每个实体集必须命名。 ?属性(Attribute): 实体所具有的特征和性质。 ?属性值(Attribute Value): 为实体的属性取值。 ?域(Domain): 属性值的取值范围。 ?码(Key): 唯一标识实体集中一个实体的属性或属性集。学号是学生的码?实体型(Entity Type): 表示实体信息结构,由实体名及其属性名集合表示。如:实体名(属性1,属性2,…) ?联系(Relationship): 在现实世界中,事物内部以及事物之间是有联系的,这些联系在信息世界中反映为实体型内部的联系(各属性)和实体型之间的联系(各实体集)。有一对一,一对多,多对多等。 第二类:逻辑模型和物理模型 逻辑模型是数据在计算机中的组织方式

CAD、3D快捷命令

1、对象特性 ADC, *ADCENTER(设计中心“Ctrl+2”) CH, MO *PROPERTIES(修改特性“Ctrl+1”) MA, *MATCHPROP(属性匹配) ST, *STYLE(文字样式) COL, *COLOR(设置颜色) LA, *LAYER(图层操作) LT, *LINETYPE(线形) LTS, *LTSCALE(线形比例) LW, *LWEIGHT (线宽) UN, *UNITS(图形单位) ATT, *ATTDEF(属性定义) ATE, *ATTEDIT(编辑属性) BO, *BOUNDARY(边界创建,包括创建闭合多段线和面域) AL, *ALIGN(对齐) EXIT, *QUIT(退出) EXP, *EXPORT(输出其它格式文件) IMP, *IMPORT(输入文件) OP,PR *OPTIONS(自定义CAD设置) PRINT, *PLOT(打印) PU, *PURGE(清除垃圾) R, *REDRAW(重新生成) REN, *RENAME(重命名) SN, *SNAP(捕捉栅格) DS, *DSETTINGS(设置极轴追踪) OS, *OSNAP(设置捕捉模式) PRE, *PREVIEW(打印预览) TO, *TOOLBAR(工具栏) V, *VIEW(命名视图) AA, *AREA(面积) DI, *DIST(距离) LI, *LIST(显示图形数据信息) 2、视窗缩放: P, *PAN(平移) Z+空格+空格, *实时缩放 Z, *局部放大 Z+P, *返回上一视图 Z+E, *显示全图3、绘图命令: PO, *POINT(点) L, *LINE(直线) XL, *XLINE(射线) PL, *PLINE(多段线) ML, *MLINE(多线) SPL, *SPLINE(样条曲线)POL, *POLYGON(正多边形)REC, *RECTANGLE(矩形)C, *CIRCLE(圆) A, *ARC(圆弧) DO, *DONUT(圆环) EL, *ELLIPSE(椭圆) REG, *REGION(面域) MT, *MTEXT(多行文本)T, *MTEXT(多行文本) B, *BLOCK(块定义) I, *INSERT(插入块) W, *WBLOCK(定义块文件)DIV, *DIVIDE(等分) H, *BHA TCH(填充) 4、修改命令: CO, *COPY(复制) MI, *MIRROR(镜像) AR, *ARRAY(阵列) O, *OFFSET(偏移) RO, *ROTATE(旋转) M, *MOVE(移动) E, DEL键*ERASE(删除)X, *EXPLODE(分解) TR, *TRIM(修剪) EX, *EXTEND(延伸) S, *STRETCH(拉伸) LEN, *LENGTHEN(直线拉长)SC, *SCALE(比例缩放)BR, *BREAK(打断) CHA, *CHAMFER(倒角) F, *FILLET(倒圆角) PE, *PEDIT(多段线编辑)ED, *DDEDIT(修改文本)

数据库基础教程课后习题答案顾韵华

习题1 1、简述数据库系统的特点。 答:数据库系统的特点有: 1)数据结构化 在数据库系统中,采用统一的数据模型,将整个组织的数据组织为一个整体;数据不再仅面向特定应用,而是面向全组织的;不仅数据内部是结构化的,而且整体是结构化的,能较好地反映现实世界中各实体间的联系。这种整体结构化有利于实现数据共享,保证数据和应用程序之间的独立性。 2)数据共享性高、冗余度低、易于扩充 数据库中的数据能够被多个用户、多个应用程序共享。数据库中相同的数据不会多次重复出现,数据冗余度降低,并可避免由于数据冗余度大而带来的数据冲突问题。同时,当应用需求发生改变或增加时,只需重新选择不同的子集,或增加数据即可满足。 3)数据独立性高 数据独立性是由DBMS 的二级映像功能来保证的。数据独立于应用程序,降低了应用程序的维护成本。 4)数据统一管理与控制 数据库中的数据由数据库管理系统(DBMS )统一管理与控制,应用程序对数据的访问均经由DBMS 。DBMS 提供四个方面的数据控制功能:并发访问控制、数据完整性、数据安全性保护、数据库恢复。 2、什么是数据库系统? 答:在计算机系统上引入数据库技术就构成一个数据库系统(DataBase System ,DBS )。数据库系统是指带有数据库并利用数据库技术进行数据管理的计算机系统。DBS 有两个基本要素:一是DBS 首先是一个计算机系统;二是该系统的目标是存储数据并支持用户查询和更新所需要的数据。 3、简述数据库系统的组成。 答:数据库系统一般由数据库、数据库管理系统(及其开发工具)、数据库管理员(DataBase Administrator ,DBA )和用户组成。 4、试述数据库系统的三级模式结构。这种结构的优点是什么? 答:数据库系统的三级模式结构是指数据库系统是由外模式、模式和内模式三级构成,同时包含了二级映像,即外模式/模式映像、模式/内模式映像,如下图所示。 数据库应用1…… 外模式A 外模式B 模式 应用2应用3应用4应用5…… 模式 外模式/模式映像 模式/内模式映像 数据库系统的这种结构具有以下优点: (1)保证数据独立性。将外模式与模式分开,保证了数据的逻辑独立性;将内模式与模式分开,保证了数据的物理独立性。 (2)有利于数据共享,减少了数据冗余。 (3)有利于数据的安全性。不同的用户在各自的外模式下根据要求操作数据,只能对

三维建模技术

计算机三维建模及其应用 作者:刘胜平 指导老师: 南昌航空大学航空制造工程学院 摘要:为了更好的应用计算机三维建模技术,本文讲述了计算机三维建模的含义,描述了三维建模的发展历史,说明了三维曲面建模和三维实体建模的主要方法与应用、数据交换接口、三维建模技术的发展趋势。 关键字:三维建模技术 1 引言 为了能够在计算机环境下更逼真地模拟现实世界的人和物及其运动形态, 必须在三维空间系统中利用已有的三维建模技术,精确地描绘这些事物以实现三维物体的真实再现,进而为用户创造一个身临其境、形象逼真的环境。对现实世界的事物进行建模和模拟,就是根据研究的目标和重点, 在三维空间中对其形状、色彩、材质、光照、运动等属性进行研究,以达到3D 再现的过程。因而, 对三维实体的图形图像处理及其模型建模研究显得尤为必要。 2三维建模技术的定义、发展历史 三维建模技术是研究在计算机上进行空间形体的表达、存储和处理的技术,在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术等。 线框模型:20世纪60年代末开始研究线框和多边形构造三维实体,这样的模型被人称为线框模型。三维物体是由他的全部顶点以及边的集合来描述。

精选文库曲面模型:曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。 实体造型技术:实体模型在表面看来往往类似于经过消除隐藏线的线框模型在线框模型或经过消除隐藏面的曲面模型;但实体模型上如果挖一个孔,就会自动生产一个新的表面,同时自动识别内部和外部;实体模型可以使物体的实体特性在计算机中得到定义。 特征参数化技术:参数化造型的主体思想是用几何约束、工程方程与关系来说明产品模型的形状特征,从而达到设计一系列在形状或功能上具有相似性的设计方案。 变量化技术:我们在进行机械设计和工艺设计时,总是希望零部件能够让我们随心所欲地构建,可以随意拆卸,能够让我们在平面的显示器上,构造出三维立体的设计作品,而且希望保留每一个中间结果,以备反复设计和优化设计时使用。 3 三维曲面建模和三维实体建模的主要方法与应用

数据库建模

软件工程环境 综合实践结业论文—数据建模

1.1数据建模的基本概念 在设计数据库时,对现实世界进行分析、抽象、并从中找出内在联系,进而确定数据库的结构,这一过程就称为数据库建模。 数据建模中的三种模型的简介 a)概念模型 把现实世界中的客观对象抽象为某一种信息结构,这种信息结构并不依赖于具体的计算机系统,不是某一个数据库管理系统(DBMS)支持的数据模型,而是概念级的模型,成为概念模型。 b)逻辑模型 逻辑模型是对概念模型的扩展。不仅定义了描述概念模型中对象的相关属性,而且定义了对象之间的逻辑关系,比如:聚合、扩展。在数据仓库中,它关联着逻辑模型和物理模型两方。目前最流行就是关系模型也就是对应的关系数据库。常见的实体联系有:一对一联系,一对多联系,多对多联系。 c)物理模型 物理模型定义了数据的物理存储方式。通常是我们定义的一种数据库。如关系数据库中的一些对象为表、视图、字段、数据类型、长度、主键、外键、索引、约束、是否可为空、默认值。 1.2 MDA转化

模型驱动架构(MDA)的模型转换提供了一个完全可配置的方式将一个模型中的元素和模型片段从一个域转换到另一个域。这通常涉及到平台无关模型(PIM)元素转换成指定平台的模型(PSM)的元素。从单一的、平台独立的元素到可以负责创建跨多个域的多个平台相关的元素。也就是说从概念模型可以转化成任何语言的逻辑模型,没有平台的限制,例如:java、c++、c#等等,数据库建模的时候我们可以给它转化成具体的数据库管理系统。 a)定义配置转换 EA中提供了MDA转换模板,打开EA工具下的Tools目录下的MDA Transformation Templates,得到下图: 本文讲的是数据建模,因此我们选择DDL语言,在DDL转换中主要是将逻辑图中的类转化为物理存储系统中的表: 将类中Attribute转换为表的列:

(完整版)建模技术的发展史

建模技术的发展史 三维建模技术是研究在计算机上进行空间形体的表示、存贮和处理的技术。实现这项技术的软件称为三维建模工具。本课程主要培养运用Pro/Engineer软件表示和设计空间形体的能力。 三维建模技术是利用计算机系统描述物体形状的技术。如何利用一组数据表示形体,如何控制与处理这些数据,是几何造型中的关键技术。 三维建模技术的研究和发展 在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术 才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术。而如今参数化及变量化设计思想和特征模型则代表了当今CAD技术的发展方向。三维建模技术是伴随CAD技术的发展而发展的! 三维建模技术的发展史 1 线框模型(Wire Frame Model) : 20世纪60年代末开始研究用线框和多边形构造三维实体,这样地模型被称为线框模型。三维物体是由它的全部顶点及边的集合来描述,线框由此得名,线框模型就像人类的骨骼。 优点: 有了物体的三维数据,可以产生任意视图,视图间能保持正确的投影关系,这为生产工程图带来了方便。此外还能生成透视图和轴侧

图,这在二维系统中是做不到的;构造模型的数据结构简单,节约计算机资源;学习简单,是人工绘图的自然延伸。缺点:因为所以棱线全部显示,物体的真实感可出现二义解释;缺少曲线棱廓,若要表现圆柱、球体等曲面比较困难;由于数据结构中缺少边与面、面与面之间的关系的信息,因此不能构成实体,无法识别面与体,不能区别体内与体外,不能进行剖切,不能进行两个面求交,不能自动划分有限元网络等等。 2曲面模型(Surface Model) 曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。曲面模型的特点 与线框模型相比,曲面模型多了一个面表,记录了边与面之间的拓扑关系。曲面模型就像贴付在骨骼上的肌肉。 优点:能实现面与面相交、着色、表面积计算、消隐等功能,此外还擅长于构造复杂的曲面物体,如模具、汽车、飞机等表面。 缺点: 只能表示物体的表面及边界,不能进行剖切,不能对模型进行质量、质心、惯性矩等物性计算 第二次技术革命——实体造型系统 进入20世纪80年代,CAD价格依然令一般企业望而却步,这使得CAD技术无法拥有更广阔的市场。 由于表面模型技术只能表达形体的表面信息,难以准确表达零件的其它特性,如质量、重心、惯性矩等,对CAE十分不利。基于对

相关文档
相关文档 最新文档