文档库 最新最全的文档下载
当前位置:文档库 › 拉普拉斯方程数值解

拉普拉斯方程数值解

拉普拉斯方程数值解
拉普拉斯方程数值解

二维有限差分析是求解两个变量的拉普拉斯方程的一种近似方法,这种方法的要点如下:

在平面场中,将平面划分成若干正方形格子,每个格子的边长都等于h ,图13-10表示其中的一部分,设0点的电位为V 0,0点周围方格顶点的电位分别为V 1、V 2、V 3和V 4。现在来推导一个用V 1、V 2、V 3和V 4表示V 0的公式:

图13-10

已知平面场的电位满足两个变量的拉普拉斯方程:

0222

2=??+??y

V

x V 其中

h

x

V x

V x V x x V c

a

??-

??≈??? ??????=

??0

22

但是

h V V x V

h V V x

V c a

30

01 ,-≈??-≈

?? 所以

2

30013

0010

2

2h V V V V h h V V h V V x V +--≈--

-≈??

同理

2

4

0020

2

2h

V V V V y V

+--≈

?? 将上面两个方程相加一起得:

042

43212222=-+++≈??+??h

V V V V V y V x V 由上面方程推出:)(4

1

43210V V V V V +++≈

(13.47)

该式说明0点的电位近似等于相互垂直的方向上和0点等距离的四个点上的电位平均值,距离h 愈小则结果愈精确,方程(13.47)是用近似法求解两个变量拉普拉斯方程的依据。

然而,V 0和V 1、V 2、V 3、V 4都是未知值,这种情况下需要按照方程(13.47)写出每一点的电位方程,然后求这些方程的联立解。

求解时较简便的方法是选代法,这种方法可求出平面场中各点电位的近似值。 图13-11表示一个截面为正方形的导体槽,槽的顶面与侧面相互绝缘,顶面的电位为

V 0,侧面与底面的电位都等于零。为了求出槽中各点的电位,将槽分成十六个相同的方格,这些方格在槽中共有九个顶点。用V 1、V 2,…,V 9表示各顶点的电位。求解步骤如下:

图13-11

第一步,假设某点的电位为某值,称为某点的原始电位,原始电位等于多少并不影响最后的结果。如果原始电位选择得当,则计算步骤会得到简化。

第二步,根据原始电位,利用式(13.47)求出每点周围四个点电位的平均值,电位平均值一般不等于电位的原始值,将平均值代替原始值就得到每点电位的第一次选代值。然后根据第一次选代值求出每点周围四个点电位的平均值,如果平均值不等于第一次选代值,就将平均值代替第一次选代值,得到每点电位的第二次选代值。

第三步,利用式(13.47)对每点电位进行选代,一直到每点的电位与它的周围四个点的电位平均值相差在允许范围内为止。

【例13.1】在图13-12中,设V=100,试用选代法求方格顶点上的电位。

图13-12

解:设九个顶点的电位分别用V 1、V 2、…、V 9来表示。

第一步:设每点的原始电位都等于零。 第二步:根据原始电位利用公式,)(4

1

43210V V V V V +++≈

,求出各点的周围电位的平均值为:25)000100(4

1

321=+++===

V V V 。其余各点周围电位的平均值都等于零。 然后将所得的平均值代替原始值,得到第一次选代值。第三步,根据第一次选代值,求出各点周围电位的平均值为:

3.31)0025100(41

1=+++=V 5.37)25025100(41

2

=+++=V 3.313

=V

3.6)00025(4

1

654

=+++===V V V

0987

===V V V

然后将所得的平均值代替第一次选代值,得到第二次选代值。第四步:根据第二次选代值,求出各点周围电位的平均值为: 36)03.65.37100(41

1=+++=V 2.42)3.63.313.31100(41

2

=+++=V 363

=V 4.9)003.63.31(41

4=+++=V 5.12)3.603.65.37(41

5

=+++=V 4.96

=V

6.1)0003.6(4

1

987

=+++===V V V

然后将所得的平均值代替第二次选代值,得到第三次选代值。

按照同样方法对每一点进行选代,结果如表13-1,可以看出,步骤18以后,各点的电位收敛于某固定值。

利用有限差分法求解电位方程时,需要进行大量的计算,本题解仅求九个点的电位,计

算工作量已可观、如果求电位的点数目很大,则必须用电子计算机进行计算。

【例13.2】

如图13-13所示表示四个不同形状的电极围成一个不规则槽,各电极的电位如图所示。槽的截面共分成14个相同的方格,试用选代法求出每个方格顶点的电位。

图13-13

解:第一步,设每点的原始电位都等于零。

第二步,根据原始电位,求出各点的周围电位的平均值。

10)002020(41

1=+++=V 5)00200(41

2=+++=V 5)00200(41

3=+++=V 5)00020(4

1

4

=+++=V 065

==V V

然后将所得的平均值代替原始值,得到第一次选代值。 第三步,根据第一次选代值,求出各点周围电位的平均值为: 5.125041

)552020(411==+++=V 75.83541

)052010(412==+++=V 25.52541

)00205(413==+++=V 25.73041

)001020(414==+++=V 5.21041

)0055(415==+++=V

25.1)0050(4

1

6

=+++=V 然后将所得的平均值代替第一次选代值,得到第二次选代值。 第四步,根据第二次选代值,求出各点周围电位的平均值为:

145641

)25.775.82020(411==+++=V 1025.4041

)5.225.55.1220(412==+++=V 5.73041

)25.102075.8(413==+++=V 75.83541

)05.25.1220(414==+++=V 3.425.1741

)025.175.825.7(415==+++=V

94.175.74

1

)0025.55.2(416

==+++=V 然后将所得的平均值代替第二次选代值得到第三次选代值,这样继续重复下去,一直计算到

满意的程度为止。

拉普拉斯方程数值解

二维有限差分析是求解两个变量的拉普拉斯方程的一种近似方法,这种方法的要点如下: 在平面场中,将平面划分成若干正方形格子,每个格子的边长都等于h ,图13-10表示其中的一部分,设0点的电位为V 0,0点周围方格顶点的电位分别为V 1、V 2、V 3和V 4。现在来推导一个用V 1、V 2、V 3和V 4表示V 0的公式: 图13-10 已知平面场的电位满足两个变量的拉普拉斯方程: 0222 2=??+??y V x V 其中 h x V x V x V x x V c a ??- ??≈??? ??????= ??0 22 但是 h V V x V h V V x V c a 30 01 ,-≈??-≈ ?? 所以 2 30013 0010 2 2h V V V V h h V V h V V x V +--≈-- -≈?? 同理 2 4 0020 2 2h V V V V y V +--≈ ?? 将上面两个方程相加一起得: 042 43212222=-+++≈??+??h V V V V V y V x V 由上面方程推出:)(4 1 43210V V V V V +++≈ (13.47) 该式说明0点的电位近似等于相互垂直的方向上和0点等距离的四个点上的电位平均值,距离h 愈小则结果愈精确,方程(13.47)是用近似法求解两个变量拉普拉斯方程的依据。 然而,V 0和V 1、V 2、V 3、V 4都是未知值,这种情况下需要按照方程(13.47)写出每一点的电位方程,然后求这些方程的联立解。 求解时较简便的方法是选代法,这种方法可求出平面场中各点电位的近似值。 图13-11表示一个截面为正方形的导体槽,槽的顶面与侧面相互绝缘,顶面的电位为

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程 拉普拉斯方程,又名调和方程,是一砍。因为由法 国数学家首先提出而得名。求解拉普 拉斯方程栯、和等领域经常遇到的 一类重要的数学问領,因为这种方程以的形式描写了、和等物理对象(一般统称为“保守场”栖“有势场”)的性质。三维情况下@拉普拉斯方程可由下面的形式描 述,闠题归结为求解对实自变量x、y、z二阶的实函数 φ :: + + = 0. 上面的方程常常简写作:: \nabla^2 \varphi = 0 或: \operatorname\,\operatorname\,\varphi = 0, 其中div表示的(结果是一个),grad 表示标量场的(结果是一个矢量场),或者简写作 : \Delta \varphi = 0 其中Δ称为 . 拉普拉斯方 程的解称为。如果等号右边是一个给定的函数f( , y, z),即:: \Delta \varphi = f 则该方程称为。拉 普拉斯方程和泊松方程是最简单?? 。偏微 分算子\nabla^2或\Delta(可以在任意维空间中定义这样的算 堐)称为,英文是Laplace operator 或简称作 Laplacian。拉普拉斯方程的可归结为求解在区 域D内定义的函数φ,使得\varphi在D的边界上等于某给定 的函数。为方便堙述,以下采用拉普拉斯算子应用的其?一个例

子——作为背景进行介绍:固定区域边界上砄温度(是边界上各点位置坐标的函数 ,直到区域内部热传导使温度 分布达堰稳定,这个温度分布场就是相应的狄頌克雷问题的解。拉普拉斯方程的不直接给出区域D边界处的温度函数φ本身,而是φ ??D的边界法向的。从物理 的角度看,这种边界条件给堺的是矢量场的势分布在区域边界处的堲知效果(对热传导问题而言,这种效栜便是边界热流密度)。拉普拉斯方稠的解称为,此函数在方程成立的区域内是。任意两个函数,如果它们都满足拉栮拉斯方程(或任意线性微分方程),蠙两个函数之和(或任意形式的线性组堈)同样满足前述方程。这种非常有用砄性质称为。可以根据该原理将复杂问题的已知砀单组合起来,构造适用面更广的。 二维拉普拉斯方程 两个自变量的拉普拉斯方程具有以丠形式::\varphi_ + \varphi_ = 0.\, 解析函数 的实部和虚部均满足拉普拉斯方程。栢言之,若z = x + iy,并且:f(z) = u(x,y) + iv(x,y),\, 那么f(z)是解析函数的是它满足下列柯西-黎曼方程::u_x = v_y, \quad v_x = -u_y.\, 上述方程继续求导就得到:u_ = (-v_x)_y = -(v_y)_x = -(u_x)_x.\, 所以u 满足拉普拉斯方程。类似的计算可推堗v 同样满足拉普拉斯方程。反之,给定一个由解析函数(或至尠在某点及其邻域内解析的函数)f(z)的堞部确定的调

拉普拉斯方程

拉普拉斯方程 一、概念:一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 二、在数理方程中 拉普拉斯方程为:,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ: 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。

三、方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 四、二维方程 两个自变量的拉普拉斯方程具有以下形式: Δu =δ2u/δu2+δ2u/δy2=0 解析函数的实部和虚部均满足拉普拉斯方程

1拉普拉斯方程边值问题的提法

第四章 拉普拉斯方程的格林函数法 在第二、三两章,我们较系统地介绍了求解数学物理方程的三种常用方法——分离变量法、行波法与积分变换法,本章我们来介绍拉普拉斯方程的格林函数法。先讨论此方程解的一些重要性质,再建立格林函数的概念,然后通过格林函数建立拉普拉斯方程第一边值问题解的积分表达式。 §4.1 拉普拉斯方程边值问题的提法 在第一章,我们已从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维拉普拉斯方程 2222 2220.u u u u x y z ????o++=??? 作为描述稳定和平衡等物理现象的拉普拉斯方程,它不能提初始条件。至于边界条件,如第一章所述的三种类型,应用得较多的是如下两种边值问题。 (1)第一边值问题 在空间(,,)x y z 中某一区域W 的边界G 上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它的闭域W +G (或记作W )上连续,在W 内有二阶连续偏导数且满足拉普拉斯方程,在G 上与已知函数f 相重合,即 . (4.1)u f G = 第一边值问题也称为狄利克莱(Dirichlet )问题,或简称狄氏问题,§2.3中所讨论过的问题就是圆域内的狄氏问题。 拉普拉斯方程的连续解,也就是说,具有二阶连续偏导数并且满足拉普拉斯方程的连续函数,称为调和函数。所以狄氏问题也可以换一种说法:在区域W 内找一个调和函数,它在边界G 上的值为已知。 (2)第二边值问题 在某光滑的闭曲面G 上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在G 内部的区域W 中是调和函数,在W +G 上连续,在G 上任一点处法向导数u n ??存在,并且等于已知函数f 在该点的值: , (4.2)u f n G ?=? 这里n 是G 的外法向矢量。 第二边值问题也称牛曼(Neumann )问题。 以上两个边值问题都是在边界G 上给定某些边界条件,在区域内部求拉普拉斯方程的解,这样的问题称为内问题。 在应用中我们还会遇到狄氏问题和牛曼问题的另一种提法。例如,当确定某

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。 拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。 通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程。 在数理方程中

拉普拉斯方程拉普拉斯方程为:Δ u=d^2u/dx^2+d^2u/dy^2=0,其中Δ为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ:其中Δ称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator或简称作Laplacian。 狄利克雷问题 拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。

正方形环域Laplace方程的简明数值解法

收稿日期:2005212210 基金项目:辽宁省教育厅科研基金资助项目(05L415)? 作者简介:刘大卫(1964-),男,贵州贵阳人,贵州工业大学副教授? 第24卷 第2期 2006年4月 沈阳师范大学学报(自然科学版) Journal of S henyang Norm al U niversity (N atural Science ) V ol 124,N o.2Apr.2006 文章编号:1673-5862(2006)02-0166-04 正方形环域Laplace 方程的简明数值解法 刘大卫1,高 明2,3 (1.贵州工业大学基础部,贵州贵阳 550003; 2.沈阳师范大学物理科学与技术学院,辽宁沈阳 110034; 3.沈阳师范大学实验中心,辽宁沈阳 110034) 摘 要:通过正方形环域的Laplace 方程的数值求解过程,详细介绍了使用MA TLAB 求解微 分方程的方法?用MA TLAB 的M 文件,生成正方形环域,用函数numgrid 作网格划分,用函数delsq 建立五点差分格式建立并求解拉普拉斯方程第一边值问题?关 键 词:Laplace 方程;差分法;MA TLAB 中图分类号:O 175 文献标识码:A 0 引 言 Laplace 方程是解决电磁场问题中最常见的方程,在一些具有较复杂边界形状的区域中求出方程的 解析解是非常困难的[122]?因此寻求一种有效的、简明的数值解法对于解决实际问题中复杂边界区域中 的电磁场分布问题具有非常重要的实际价值?通过一个特殊的方形区域的电场分布问题介绍一种应用MA TLAB 数值求解Laplace 方程的方法? 考虑图1所示正方形环域,设区域内满足Laplace 方程Δu =0,内边界处电势u =100,外边界处电势u =0,求区域内的电势分布,易见,这是一个Laplace 方程的第一边值问题? 现用差分法求解这个问题,首先把研究区域划分为图2所示的网格,在这个划分中,除去边界点,区域被分为240个网格节点 ? 图1  正方形环域 图2 网格的划分 差分法求解的基本思想是,在网格节点上用差商代替微商,结合边界条件,把定解问题转化为以未知函数u (x ,y )在节点上的数值为未知量的线性方程组: Ax =b 其中,x 为解向量,代表函数u (x ,y )在节点上的数值?A 为系数矩阵,与网格节点的划分和编号方式有关,通常是一个大型的稀疏矩阵?b 为常数向量,由边界条件确定?对上述问题,A 为240×240阶稀疏矩阵,b 为240×1阶稀疏常数向量?下面用MA TLAB 提供的网格划分函数numgrid 和差分格式建立函数delsq 来构造系数矩阵A ?

拉普拉斯方程

拉普拉斯方程应该和泊松方程是同胞兄弟了,都是扩散方程,用来描述散度场的。只不过拉普拉斯方程是无源场,泊松方程是有源场。预备内容:梯度、旋度、散度和拉普拉斯算子在曲线坐标下的表达式: 如果在某个曲线坐标系内位移微元(其中是坐标),那么便有: 梯度:散度:旋度:拉普拉斯算符: 对于直角坐标系、球坐标系和柱坐标系来说,的值为: 于是,我们便可以轻松地默写球坐标下拉普拉斯算符的表达式\^o^/ 下面进入正题 1.直角坐标系 当出现金属平板之类的边界条件时,使用直角坐标系较为方便。 在直角坐标系下,拉普拉斯方程的表达式为: i)二维问题 假设沿z轴平移V保持不变,于是方程便简化为二维形式: 我们假设V可以写成两个函数相乘的形式: (乍看之下这不是一个很合理的假设。但是我们很快可以看到为什么可以这样做)

代入原方程并在两边除以V: 因为两部分之和为0,因此我们可以假设一个是正数另一部分是负数:(这里以含x的部分为正含y的部分为负为例) 很显然,这两个方程的解就是: 注记:这里决定哪一部分是正数哪一部分是负数要由边界条件来确定。比如说,沿x方向到达无限远时电势为零,x就应该含有指数衰减项,因此令含x的部分为正数。 于是,方程的一个解是 对所有可能的k求和,可以得到通解: 常数A,B,C,D的值需要由边界条件来确定。通常情况下,通过边界条件可以把k化成含有正整数的式子。将求和号改成对n求和,可以看到,第二个括号里的项便是傅里叶级数。狄利克雷定理保证了这个级数可以拟合任何边界条件。傅里叶系数可以由积分来确定。 ii)三维问题 三维问题的处理方法与二维的情形类似。 同样,假设是这种形式: 同样,代入方程并在两边同除以V:

拉普拉斯方程

拉普拉斯方程,也称为谐波方程和势方程,是一种偏微分方程,最早由法国数学家拉普拉斯提出。 拉普拉斯方程是液体表面曲率和液体表面压力之间关系的公式。 曲面称为曲面。通常,使用两个相应的曲率半径来描述表面,即在表面上的某个点处绘制垂直于该表面的直线,然后通过该线制作一个平面。平面和表面的截面是曲线,并且在该点与曲线相切的圆的半径称为曲线的曲率半径R1。第二剖面线及其曲率半径R2可以通过使第二平面垂直于第一平面并与表面相交来获得。液面的弯曲可以用R1和R2表示。如果液体表面弯曲,则液体P1内部的压力将与液体外部的压力P2不同,并且液体表面的两侧之间将存在压力差△P = P1-P2,这称为附加压力。压力。其值与液体表面的曲率有关,可以表示为:其中γ是液体的表面张力系数,称为拉普拉斯方程。 在数学公式中 拉普拉斯方程是:其中∥是拉普拉斯算子,而这里的拉普拉斯方程是二阶偏微分方程。在三维情况下,拉普拉斯方程可按以下形式描述。可以将问题简化为求解对于实变量X,y和Z可二阶微分的实函数φ ?2称为拉普拉斯算子。 拉普拉斯方程的解称为谐波函数。 如果在等号右边是给定的函数f(x,y,z),即: 然后将该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆偏微分方程。偏微分算子(可以在任何维空间中定义)称为拉

普拉斯算子。 方程解 它称为谐波函数,可以在建立方程的区域进行分析。如果任何两个函数满足拉普拉斯方程(或任何线性微分方程),则这两个函数的总和(或它们的任何线性组合)也满足上述方程。这种非常有用的特性称为叠加原理。根据这一原理,可以将已知的复杂问题的简单特殊解组合起来,以构建具有更广泛适用性的一般解。

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。 [1] 拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。 中文名 拉普拉斯方程 外文名 Laplace's equation 别称 调和方程、位势方程 提出者 拉普拉斯 关键词 微分方程、拉普拉斯定理 涉及领域 电磁学、天体物理学、力学、数学 目录 .1基本概述 .?在数理方程中 .?方程的解 .2二维方程 .3人物介绍

基本概述 一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为: ,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 在数理方程中 拉普拉斯方程为: ,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ : 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子 (可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。 方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 [2] 二维方程

泊松方程和拉普拉斯方程

拉普拉斯方程和泊松方程 摘要:拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象的性质。 关键词:分离变量电磁场拉普拉斯 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和 即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ,叫做势方程,后来通称拉普拉斯方程。1813年,S.D.泊松撰文指出,如 果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-V高斯定理微分式,即可导出静电场的泊松方程: 式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。在各分区的公共界面上,V满足边值关系,

, 式中i ,j 指分界面两边的不同分区,σ 为界面上的自由电荷密度,n 表示边界面上的内法 线方向。 边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物 理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄 利克雷边界条件;给定边界面上各点的自由电荷 ,叫做诺埃曼边界条件。 静电场的唯一性定理: 设区域V 内给定自由电荷分布)(x ,在V 内电势满足泊松方程 或拉普拉斯方程,在V 的边界S 上给定电势 ,或V 边界上给定电势的法线方向偏导数 ,则V 内场(静电场)唯一确定。 除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。 各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任 何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。 静磁场的泊松方程和拉普拉斯方程 在SI 制中,静磁场满足的方程为 ,式中j 为传导电流密度。第一式表明静磁 场可引入磁矢势r)描述: 。 在各向同性、线性、均匀的磁媒质中,传导电流密度j 0的区域里,磁矢势满足的方程 为 。 选用库仑规范,,则得磁矢势A 满足泊松方程 ,式中纯数μr 为媒质的相对磁导率, 真空磁导率μo =1.257×10-6亨/米。在传导电流密度j=0的区域里,上 式简化为拉普拉斯方程 。

4. 偏微分方程的数值解法

§4 偏微分方程的数值解法 一、 差分法 差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商 在平面 (x ,y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族. ?? ?====jh y y ih x x i i (i ,j =0,±1,±2,…,±n ) 作成一个正方形网格,这里h 为事先指定的正数,称为步 长;网格的交点称为节点,简记为(i ,j ).取一些与边界S 接近的网格节点,用它们连成折线S h ,S h 所围成的区域记作D h .称D h 内的节点为内节点,位于S h 上的节点称为边界节点(图14.7).下面都在网格D h + S h 上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数: ()()[]()()[]()()()[]()()()[]()()()[]y x u h y x u y h x u h y x u h y x u h y x u y x u h y x u h y u y h x u y x u y h x u h x u y x u h y x u h y u y x u y h x u h x u ,),(,,1 ,,2,1 ,,2,1 ,,1 ,,1 222 22222++-+-+≈???-+-+≈ ??-+-+≈ ??-+≈??-+≈?? 注意, 1? 式中的差商()()[]y x u y h x u h ,,1 -+称为向后差商,而()()[]y h x u y x u h ,,1--称为向 前差商,()()[]y h x u y h x u h ,,21 --+称为中心差商.也可用向前差商或中心差商代替一阶偏导数. 2? x 轴与y 轴也可分别采用不同的步长h ,l ,即用直线族 ?? ?====jh y y ih x x j i (i,j =0, ±1, ±2 , ) 作一个矩形网格. 2. 椭圆型方程的差分方法 [五点格式] 考虑拉普拉斯方程的第一边值问题 图14.7

泊松方程和拉普拉斯方程

拉普拉斯方程和泊松方程 摘要:拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象的性质。 关键词:分离变量 电磁场 拉普拉斯 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k 除以它们到任意观察点P 的距离r k ,并且把这些商加在一起,其总和 m k r k n k=1 = V x ,y ,z 即P 点的势函数,势函数对空间坐标的偏导数正比于在 P 点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ?2V ?x +?2V ?y +?2V ?z =0,叫做势方程,后来通称拉普拉斯方程。1813年,S.D.泊松撰文指出, 如果观察点P 在充满引力物质的区域内部,则拉普拉斯方程应修改为?2V ?x 2 + ?2V ?y 2 + ?2V ?z 2 =?4πρ, 叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V 在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-?V 高斯定理微分式??E =ρ/εr ε0,即可导出静电场的泊松方程:?2V ?x 2+?2V ?y 2+?2V ?z 2=?2V =?ρ/εr ε0 式中ρ为自由电荷密度,纯数 εr 为各分区媒质的相对介电常数,真空介电常数εo =8.854×10-12 法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程?2V =0 。 在各分区的公共界面上,V 满足边值关系V i =V j , ε0εri ?V ?n i ?ε0εrj ?V ?n j =??,

拉普拉斯方程

拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。 拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。 基本概述 一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为: ,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 在数理方程中 拉普拉斯方程为:,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普

拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ : 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。 方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 二维方程 两个自变量的拉普拉斯方程具有以下形式: 解析函数的实部和虚部均满足拉普拉斯方程。 人物介绍

1拉普拉斯方程边值问题的提法

1拉普拉斯方程边值问题的提法 第四章拉普拉斯方程的格林函数法 在第二、三两章,我们较系统地介绍了求解数学物理方程的三种常用方法——分离变 量法、行波法与积分变换法,本章我们来介绍拉普拉斯方程的格林函数法。先讨论此方程 解的一些重要性质,再建立格林函数的概念,然后通过格林函数建立拉普拉斯方程第一边 值问题解的积分表达式。 §4.1 拉普拉斯方程边值问题的提法 在第一章,我们已从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出 了三维拉普拉斯方程 ?2u ?2u ?2u ?u o2+2+2=0. ?x ?y ?z 2 作为描述稳定和平衡等物理现象的拉普拉斯方程,它不能提初始条件。至于边界条件,如第一章所述的三种类型,应用得较多的是如下两种边值问题。 (1)第一边值问题在空间(x , y , z ) 中某一区域W的边界G上给定了连续函数 f ,要求这样一个函数u (x , y , z ) ,它的闭域W+G(或记作)上连续,在W内有二 阶连续偏导数且满足拉普拉斯方程,在G上与已知函数f 相重合,即 u G=f . (4.1) 第一边值问题也称为狄利克莱(Dirichlet )问题,或简称狄氏问题,§2.3中所讨 论过的问题就是圆域内的狄氏问题。 拉普拉斯方程的连续解,也就是说,具有二阶连续偏导数并且满足拉普拉斯方程的连 续函数,称为调和函数。所以狄氏问题也可以换一种说法:在区域W内找一个调和函数, 它在边界G上的值为已知。 (2)第二边值问题在某光滑的闭曲面G上给出连续函数f ,要求寻找这样一个函数 u (x , y , z ) ,它在G内部的区域W中是调和函数,在W+G上连续,在G上任一点处 法向导数?u 存在,并且等于已知函数f 在该点的值:?n ?u ?n =f , (4.2) G 这里n 是G的外法向矢量。 第二边值问题也称牛曼(Neumann )问题。

chenpc_文件下载_数理方法_实验四、拉普拉斯方程与泊松方程的求解

实验四 拉普拉斯方程与泊松方程的求解 一、拉普拉斯方程的求解 例题:求解定界问题: ()()()()()00,030,0,,sin 3,00,,sin cos xx yy u u x a y b y u y u a y b x x u x u x b a a πμππμ??+=≤≤≤≤????==? ?????????==? ? ?????? 任意选取定界问题中参数的值,例如取1,1,1a b μ===。用偏微分方程工具箱来求解的步骤如下。 1、画求解区域 在指令窗口中,输入pdetool ,打开偏微分方程工具箱的界面, 图1 微分方程工具箱的界面 选择菜单Options/Axes Limits ,打开对话框如图2所示。 图2 设置坐标变化范围的对话框

在X-axis range 和Y-axis range 栏中都输入[-0.1 1.1],单击按钮Apply 确认,再关闭对话框。 单击左上角画矩形框按钮,在pdetool 的窗口中画一个矩形,然后,在刚画出的灰色矩形区域内部双击鼠标左键,出现如图3所示的对话框,设置左边界(Left )参数为0,下边界(Bottom )参数为0,宽度(Width )参数为1,高度(Hight )参数为1,点击OK 按钮,画出一个边长为1的正方形区域01,01x y ≤≤≤≤,这个正方形被自动命名为R1,并显示在区域上方的公告栏(Set Formula )中。 图3 确定正方形区域的边界位置和名称的对话框 2、设定方程类型 单击按钮,打开如图4所示的对话框。 图4 设置方程类型的对话框 在方程类型中选择椭圆型,这时方程的形式为 ()c u au f -???+= 取1,0,0c a f ===,设置好参数后,单击OK 即可。 3、设定边界条件 单击按钮,进入边界模式。这时区域由灰色变成白色,而边界变成红色。选择菜单Boundary/Show Edge Labels ,给四条边界标上序号1,2,3,4。根据题意,双击边界1,打

拉普拉斯方程

拉普拉斯方程 求助编辑百科名片 拉普拉斯方程 拉普拉斯方程(Laplace'sequation),又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。 目录 拉普拉斯方程(Laplace equation) 在数理方程中 狄利克雷问题 诺伊曼边界条件 拉普拉斯方程的解 二维拉普拉斯方程 解析函数 三维情况下 二维拉普拉斯方程 解析函数 在流场中的应用 在电磁学中的应用 三维拉普拉斯方程 基本解 格林函数 在流场中的应用 拉普拉斯人物介绍 展开 拉普拉斯方程(Laplace equation) 在数理方程中 狄利克雷问题 诺伊曼边界条件 拉普拉斯方程的解 二维拉普拉斯方程 解析函数 三维情况下 二维拉普拉斯方程 解析函数 在流场中的应用 在电磁学中的应用 三维拉普拉斯方程 基本解 格林函数 在流场中的应用

拉普拉斯人物介绍 展开 编辑本段拉普拉斯方程(Laplace equation) 拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程。 在数理方程中 拉普拉斯方程为:Δu=d^2u/dx^2+d^2u/dy^2=0,其中Δ 为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ : 其中Δ称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。 狄利克雷问题 拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。 诺伊曼边界条件 拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数φ本身,而是φ沿D的边界法向的导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。 拉普拉斯方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 编辑本段二维拉普拉斯方程 两个自变量的拉普拉斯方程具有以下形式: 函数h (x,y) 为二元函数,h(x,y) 对x的二阶偏导数+ h(x,y)对y的二阶偏导数= 0 解析函数 解析函数的实部和虚部均满足拉普拉斯方程。换言之,若z= x+ iy,并且 那么f(z)是解析函数的充要条件是它满足下列柯西-黎曼方程:f(z)= u(x,y) + iv(x ,y) u 对x的偏导数= v 对y 的偏导数,u 对y 的偏导数= - (v 对x 的偏导数)上述方程继续求导就得到 所以u满足拉普拉斯方程。类似的计算可推得v同样满足拉普拉斯方程。

拉普拉斯方程数值解

二维有限差分析是求解两个变量的拉普拉斯方程的一种近似方法,这种方法的要点如 下: 在平面场中,将平面划分成若干正方形格子,每个格子的边长都等于 h ,图13-10表示 其中的一部分,设 0点的电位为V o ,0点周围方格顶点的电位分别为 V 1、V 2、V 3和V 4。现 在来推导一个用 V" V 2、V 3和V 4表示V o 的公式: 图 13-10 已知平面场的电位满足两个变量的拉普拉斯方程: c 2V eV c —— + r =0 其中 0点等距离的四个点上的电位平均值, 距 离h 愈小则结果愈精确,方程(13.47)是用近似 法求解两个变量拉普拉斯方程的依据。 然而,V 0和V 1、V 2、V 3、V 4都是未知值,这种情况下需要按照方程( 13.47)写出每 一点的电位方程,然后求这些方程的联立解。 求解时较简便的方法是选代法,这种方法可求出平面场中各点电位的近似值。 图13-11表示一个截面为正方形的导体槽,槽的顶面与侧面相互绝缘,顶面的电位为 ex 2 但是 所以 同理 eV g 2V ex 2 ex ex 2 c 2V & I 泳丿0 V 1 -V o az --------------- - h V 1 -V 0 a : SV s : h 2 将上面两个方程相加一起得: c 2V + ex 2 "■2 eV h V o-V 3 ft ----- V o -V 3 a : h 2 .c z — h 2 由上面方程推出: V 0俺一(V 1 a +V 4) 4 该式说明0点的电位近似等于相互垂直的方向上和 (13.47)

V 0,侧面与底面的电位都等于零。为了求出槽中各点的电位,将槽分成十六个相同的方格, 这些方格在槽中 共有九个顶点。用 V 1、V 2,…,V 9表示各顶点的电位。求解步骤如下: 图 13-11 第一步,假设某点的电位为某值, 称为某点的原始电位, 原始电位等于多少并不影响最 后的结果。如果原始电位选择得当,则计算步骤会得到简化。 第二步,根据原始电位,利用式( 13.47)求出每点周围四个点电位的平均值,电位平 均值一般不等于电位的原始值,将平均值代替原始值就得到每点电位的第一次选代值。 根据第一次选代值求出每点周围四个点电位的平均值, 如果平均值不等于第一次选代值, 将平均值代替第一次选代值,得到每点电位的第二次选代值。 第三步,利用式(13.47)对每点电位进行选代,一直到每点的电位与它的周围四个点 的电位平均值相差在允许范围内为止。 【例13.1】在图13-12中,设V=100,试用选代法求方格顶点上的电位。 图 13-12 解:设九个顶点的电位分别用 V 1、V 2、…、V 来表示。 第一步:设每点的原始电位都等于零。 第二步:根据原始电位利用公式, V 0 丸一M +V 2 +V 3 +V 4),求出各点的周围电位的 4 平均值为:y =V 2 =V 3丄一(100 +0 +0 +0) =25。其余各点周围电位的平均值都等于零。 4 然后将所得的平均值代替原始值,得到第一次选代值。第三步,根据第一次选代值,求 出各点周围电位的平均值为: 2 0 忙=0 萨=0 矿=0 V =0 然后 就

泊松方程拉普拉方程

泊松方程和拉普拉斯方程 势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点 的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和 即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所 受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文 指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为 ,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势 函数 V在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程: , 式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854 ×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。在各分区的公共界面上,V满足边值关系,

, 式中i,j指分界面两边的不同分区,σ为界面上的自由电荷密度,n表示边界面上的内法线方向。 边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄 利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。 边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。 除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。 静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为 式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:。 在各向同性、线性、均匀的磁媒质中,传导电流密度j 0的区域里,磁矢势满足的方程为 选用库仑规范,墷?r)=0,则得磁矢势r)满足泊松方程, 式中纯数μr 为媒质的相对磁导率,真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程?2Α=0。

分离变量法求解齐次方程和齐次边界的拉普拉斯方程的边值问题 2

分离变量法求解齐次方程和齐次边界条件 的拉普拉斯方程的边值问题 33 隋沆锐34 程文博29袁盼盼 分离变量法又称fourier 级数法,是求解数学物理定解问题问题的一种最普遍最基本的方法之一。从数学的角度来说,其基本的思想是降低自变量的维数,把偏微分方程问题设法变成能解的常微分问题。 ● 分离变量法的主要步骤: (1) 根据区域边界的形状,适当选择坐标系。选取的原则是使坐标面与边界面一致,这 样可使边界条件简化,即使在该坐标系中边界条件的表达式最为简单。 (2) 将满足齐次偏微分方程和齐次边界的解通过变量分离,使其转化为常微分方程的定 解问题。 (3) 确定特征指和特征函数。当边界条件是齐次时,求特征值和对应的特征函数就是求 一个满足常微分方程和零边界条件的非零解。 (4) 定出特征值和特征函数后,再求其他常微分方程的解,然后把该解与特征函数相乘, 得到变量分离的特解。 (5) 为了得到原定解问题的解,将所有变量分离的特解叠加成级数,成为形式解,其中 任意常数有其他条件确定。 (6) 为了使形式解成为古典解,必须对定解条件附加适当的光滑性要求和相容性要求, 以保证微分运算得以进行,并使微分后的级数任然是收敛的。 ● 用分离变量法解拉普拉斯方程的边值问题常用的结论和规律: 1.设)(),...,('),(x f x f x f n 在区间【0,L 】上连续,)0(1 +m f 在【0,L 】上分段连续, ,22....2,0,0)()0(?? ? ???===m n L f f n n 其中【x 】表示不超过x 的最大整数。那么,如果函数f (x )在区间【0,L 】上可以张开傅里叶正弦级数 )1(],,0[,sin ~)(1 L x L x n b x f n n ∈∑∞ =π 则级数 ∑∞ =1 ||n n m b n 是收敛的。类似的,如果)(x f 在],0[L 上可以展开成傅里叶余弦级数 )2(],,0[,cos 2~)(10L x L x n a a x f n n ∈+∑∞=π 则级数||1n n m a n ∑∞ =是收敛的。这里?? ??? ====??.....2,1,0,sin )(2,....2,1,0,cos )(200n dx L x n x f L b n dx L x n x f L a L n L n ππ ? +∞ -+= 2 2;cos y x y xd e y ααα

相关文档
相关文档 最新文档