文档库 最新最全的文档下载
当前位置:文档库 › 椭圆专题复习学案考点

椭圆专题复习学案考点

椭圆专题复习学案考点
椭圆专题复习学案考点

椭圆专题复习

1. 椭圆定义:

(1)定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.

当21212F F a PF PF >=+时, P 的轨迹_______________________ ; 当21212F F a PF PF <=+时, P 的轨迹_______________________ 当21212F F a PF PF ==+时, P 的轨迹________________________ 2.椭圆的方程与几何性质:

标准方程

)0(122

22>>=+b a b

y a x )0(122

22>>=+b a b

x a y 性 质

参数关系

焦点

焦距

范围 顶点

对称性 离心率

考点1 椭圆定义及标准方程 题型1:椭圆定义的运用

[例1 ]椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a

B .2(a -c)

C .2(a+c)

D .以上答案均有可能

【新题导练】

1.短轴长为5,离心率3

2

=

e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则

△ABF 2的周长为 ( )

A.3

B.6

C.12

D.24

2.已知P 为椭圆

22

12516x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为( )

A . 5

B . 7

C .13

D . 15 题型2 求椭圆的标准方程

[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程.

【新题导练】

3. 如果方程x 2

+ky 2

=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.

4. 椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上

的点的最短距离是3,求这个椭圆方程.

考点2 椭圆的几何性质

题型1:求椭圆的离心率(或范围)

[例3 ] 在ABC △中,

3,2||,300

===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,

则该椭圆的离心率e = .

【新题导练】

5.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为 A .

45 B .23 C .22 D .2

1 6.已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆

12

2=+n

y m x 的离心率为

题型2:椭圆的其他几何性质的运用(范围、对称性等)

[例4 ] 已知实数y x ,满足12

42

2=+y x ,求x y x -+22的最大值与最小值

【新题导练】

7.已知点B A ,是椭圆22

221x y m n

+=(0m >,0n >)上两点,且BO AO λ=,则λ=

8.如图,把椭圆22

12516

x y +=的长轴AB 分成8等份,过每个分点作x 轴

的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点

则1

234567PF P F P F P F P F P F P F ++++++=________________

考点3 椭圆的最值问题

[例5 ]椭圆

19

162

2=+y x 上的点到直线l:09=-+y x 的距离的最小值为___________.

【新题导练】

9.椭圆19

162

2=+y x 的内接矩形的面积的最大值为

10. P 是椭圆122

22=+b

y a x 上一点,1F 、2F 是椭圆的两个焦点,求||||21PF PF ?的最大值

与最小值

11.已知点P 是椭圆14

22

=+y x 上的在第一象限内的点,又)0,2(A 、)1,0(B , O 是原点,则四边形OAPB 的面积的最大值是_________.

考点4 椭圆的综合应用

题型:椭圆与向量、解三角形的交汇问题

[例6 ] 已知椭圆C 的中心为坐标原点O ,一个长轴端点为()0,1,短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且PB AP 3=. (1)求椭圆方程;(2)求m 的取值范围.

[例7 ]、从椭圆22

221(0)x y a b a b +=>>上一点P 向x 轴引垂线,垂足恰为椭圆的左焦点

1F ,A 为椭圆的右顶点,B 是椭圆的上顶点,且(0)AB OP λλ=>

.

⑴、求该椭圆的离心率.

⑵、若该椭圆的准线方程是25x =±,求椭圆方程.

【新题导练】

12.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=?AB OQ ,则P 点的轨迹方程是

( ) A.

()0,0132322>>=+y x y x B. ()0,0132

3

22>>=-y x y x C. ()0,0123322>>=-

y x y x D. ()0,012

3

322>>=+y x y x 13. 如图,在Rt △ABC 中,∠CAB=90°,AB=2,AC=

2

2

。一曲线E 过点C ,动点P 在曲线E 上运动,且保持|PA |+|PB |的值不变,直线l 经过A 与曲线E 交于M 、N 两点。 (1)建立适当的坐标系,求曲线E 的方程;

(2)设直线l 的斜率为k ,若∠MBN 为钝角,求k

的取值范围。

基础巩固训练

1. 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且

901=∠BDB ,则椭圆的离心率为( )

A

21

3- B 21

5- C 215- D 2

3

2. 设F 1、F 2为椭圆4

2x +y 2

=1的两焦点,P 在椭圆上,当△F 1PF 2面积为1时,21PF PF ?的

值为

A 、0

B 、1

C 、2

D 、3

3.椭圆

22

1369

x y +=的一条弦被(4,2)A 平分,那么这条弦所在的直线方程是

A .20x y -=

B .2100x y +-=

C .220x y --=

D .280x y +-= 4.在ABC △中,90A ∠=

,3

tan 4

B =.若以A B ,为焦点的椭圆经过点

C ,则该椭圆的离心率e = .

5. 已知21,F F 为椭圆的两个焦点,P 为椭圆上一点,若3:2:1::211221=∠∠∠PF F F PF F PF , 则此椭圆的离心率为 _________.

6.在平面直角坐标系中,椭圆22

22x y a b +=1( a b >>0)的焦距为2,以O 为圆心,a 为半径

的圆,过点2,0a c ??

???

作圆的两切线互相垂直,则离心率e = . 综合提高训练 7、已知椭圆

)0(12

22

2>>=+

b a b

y a

x 与过点A (2,0),B (0,1)的直线l 有且只有一个公共点T ,且椭圆的离心率2

3

=e .求椭圆方程

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_417

习题课导数的应用 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用. 知识点一函数的单调性与其导数的关系 定义在区间(a,b)内的函数y=f(x) f′(x)的正负f(x)的单调性 f′(x)>0单调递________ f′(x)<0单调递________ 知识点二求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值. (2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. 知识点三函数y=f(x)在[a,b]上最大值与最小值的求法 1.求函数y=f(x)在(a,b)内的极值. 2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值. 类型一数形结合思想的应用 例 1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________. 反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:

(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪个区间上为负,在哪个点处与x 轴相交,在交点附近导函数值是怎样变化的. (2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点. 跟踪训练1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是________. 类型二 构造函数求解 命题角度1 比较函数值的大小 例2 已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+ f x x <0,若a =12f (12),b =-2f (-2),c =(ln 12)f (ln 1 2),则a ,b ,c 的大小关系是________. 反思与感悟 本例中根据条件构造函数g (x )=xf (x ),通过g ′(x )确定g (x )的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数. 跟踪训练2 设a =ln 33,b =ln 44,c =ln 5 5,则a ,b ,c 的大小关系是________. 命题角度2 求解不等式 例3 定义域为R 的可导函数y =f (x )的导函数f ′(x ),满足f (x )2e x 的解集为________. 反思与感悟 根据所求结论与已知条件,构造函数g (x )=f x e x ,通过导函数判断g (x )的单 调性,利用单调性得到x 的取值范围. 跟踪训练3 设函数f (x )是定义在R 上的偶函数,f ′(x )为其导函数.当x >0时,f (x )+ x ·f ′(x )>0,且f (1)=0,则不等式x ·f (x )>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x >1,证明不等式x -1>ln x .

椭圆及其标准方程教学设计

《椭圆及其标准方程》教学设计 胥娟 一、教材及学情分析 1.《椭圆及其标准方程》是高中数学选修1-1(人教版)2.1.1中的内容,分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路。本节是第一课时. 2.本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法学习曲线。椭圆的学习可以为后面学习双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本章和本节的重点内容之一。 3.运用多媒体形象地给出椭圆,通过让学生自已动手作图,“定性”地画出椭圆,再通过坐标法“定量”地描述椭圆,使之从感性到理性抽象概括,形式概念,推出方程。 二、教学目标分析 1. 知识与技能目标: 掌握椭圆的定义和标准方程;明确焦点、焦距的概念;理解椭圆标准方程的推导。 2. 过程与方法目标: 通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程;体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力。 3. 情感态度与价值观目标: 通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,养成实事求是的科学态度和契而不舍的钻研精神。 三、学习者特征分析 1.在此之前,学生已学过坐标法解决几何问题,学过圆的定义与标准方程,但掌握不够,2.从研究圆到研究椭圆,跨度较大,学生思维上存在障碍. 3.在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要。 4.该班学生是高二文科生,数学基础整体较差。 5.经过近一学期的引导、鼓励,学生学习数学的积极性较高。 点评:对学习者知识基础、运算能力、学习兴趣和认知特征分析较到位,能和相应的教学方法激发学生的兴趣、锻炼提高运算能力和学生学习过程的积极性。 四、教学策略选择与设计 1、教法设计:采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。 2、学法设计:自主探究,合作交流 要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。 3、教学手段:多媒体辅助教学. 通过动态演示,有利于引起学生的学习兴趣,激发学生的学习热情,增大知识信息的容量,使内容充实、形象、直观,提高教学效率和教学质量. 点评:本节课的引入采用神州7号围绕地球旋转的壮观图片,一下子就把学生的注意力吸引住了,在创设情境,引发动机方面起到很好的效果。 五、教学资源与工具设计 1.多媒体教室

最新3.1-3.2导数学案汇总

3.1-3.2导数学案

第三章导数及其应用 3.1导数(刘骏宇) 第1课时平均变化率、瞬时速度与导数 学习要求 1.了解函数的平均变化率的概念 2.会求函数的平均变化率 3.知道函数的瞬时速度的概念 4.理解导数的概念,能利用导数的定义求导数 自学评价 1、已知函数?Skip Record If...?在点?Skip Record If...?及其附近 有定义,令?Skip Record If...?_______, ?Skip Record If...?,则当?Skip Record If...?时,比值______=?Skip Record If...?,称作自变量在?Skip Record If...?附近的平均变化率. 2、一般地,如果物体的运动规律是?Skip Record If...?,那么物体在 时刻t的瞬时速度v,就是物体在t到?Skip Record If...?这段时 间内,当?Skip Record If...?时__________,即 v=______=________ 3、设函数?Skip Record If...?在?Skip Record If...?附近有定义, 当自变量在?Skip Record If...?处有增量?Skip Record If...? 时,函数?Skip Record If...?相应地有增量?Skip Record If...?=________.如果?Skip Record If...?时,?Skip Record If...?与?Skip Record If...?的比?Skip Record If...?(也叫做 函数的______)有极限(即?Skip Record If...?无限趋近于某个常 数),我们就把这个极限值叫做函数?Skip Record If...?在?Skip Reco rd If...?处的导数,记做______或_______,于是可写作 ______=?Skip Record If...?. 4、如果函数?Skip Record If...?在开区间(a,b)内的每点处都有导 数,此时对于每一个?Skip Record If...?,都对应着一个确定的导 数?Skip Record If...?,从而构成了一个新的函数?Skip Record If...?,称这个函数?Skip Record If...?为函数?Skip Record If...?在开区间(a,b)内的______,简称______. 【精典范例】 例1:(1)求?Skip Record If...?在?Skip Record If...?到?Skip Record If...?之间的平均变化率.

高考数学第一轮复习导数及其应用【导学案】学案13

第三章 导数及其应用 学案13 导数的概念及运算 导学目标: 1.了解导数概念的实际背景,理解函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.2.能根据导数定义,求函数y =C (C 为 常数),y =x ,y =x 2,y =1 x ,y =x 的导数.熟记基本初等函数的导数公式(c ,x m (m 为有理 数),sin x ,cos x ,e x ,a x ,ln x ,log a x 的导数),能利用基本初等函数的导数公式及导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b ))的导数. 自主梳理 1.函数的平均变化率 一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1- y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商________________________=Δy Δx 称作函 数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数 (1)定义 函数y =f (x)在点x 0处的瞬时变化率______________通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即______________________________. (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的____________. 导函数y =f ′(x )的值域即为__________________. 3.函数f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作____________. 4.基本初等函数的导数公式表 原函数 导函数 f (x )=C f ′(x )=______ f (x )=x α (α∈Q *) f ′(x )=______ (α∈Q *) F (x )=sin x f ′(x )=__________ F (x )=cos x f ′(x )=____________ f (x )=a x (a >0,a ≠1) f ′(x )=____________(a >0, a ≠1) f (x )=e x f ′(x )=________ f (x )=lo g a x (a >0,a ≠1,且x >0) f ′(x )=__________(a >0, a ≠1,且x >0) f (x )=ln x f ′(x )=__________ 5.导数运算法则 (1)[f (x )±g (x )]′=__________; (2)[f (x )g (x )]′=______________; (3)????f (x )g (x )′=______________ [g (x )≠0]. 6.复合函数的求导法则:设函数u =φ(x )在点x 处有导数u x ′=φ′(x ),函数y =f (u )在点x 处的对应点u 处有导数y u ′=f ′(u ),则复合函数y =f (φ(x ))在点x 处有导数,且y ′x =y ′u ·u ′x ,或写作f ′x (φ(x ))=f ′(u )φ′(x ).

弦长与面积问题

圆锥曲线中弦长与三角形问题 一.知识点: 1.直线与椭圆,双曲线,抛物线相交与A ,B 两点,则弦长|AB|= 2.(1 (2 1.已知椭圆22 221(0)x y a b a b +=>>的离心率为22,过点A (0,-b )和B (a ,0)的直线 与原点的距离为 3 6 。 (1)求椭圆C 的方程;(2)设直线L 经过定点(0,1),且与椭圆交于M ,N 两点,当|MN|=3 24时,求直线L 的方程; 2.已知椭圆E :22 221(0)x y a b a b +=>>的离心率为322,且椭圆上一点与椭圆的两个焦 点构成的三角形周长为6+42。 (1)求椭圆C 的方程;

(2)设直线L 与椭圆E 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 的面积的最大值; 作业: 1.已知动圆过定点A (p ,0),圆心C 在抛物线y 2 =2px (p>0)上运动。圆C 与y 轴上截得的弦长为MN ,求证:三角形AMN 的面积为定值。 2.设F 1,F 2分别是椭圆E :)10(122 2 <<=+b b y x 的左,右焦点,过F 1的直线L 与E 相交 于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列。 (1)求|AB|长; (2)若直线L 的斜率为1,求b 的值; 3.如图,F 1,F 2分别是椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点,A 是椭圆C 的顶点,B 是直

线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°. (1)求椭圆C 的离心率; (2)已知△AF 1B 的面积为403,求a ,b 的值. 4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为6 3,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (1)求椭圆G 的方程; (2)求△PAB 的面积. 5.已知中心在原点O ,焦点在x 轴上,离心率为 32的椭圆过点? ? ??? 2,22. (1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ , OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.

高考数学新版一轮复习教程学案:第46课__椭圆的标准方程

高考数学新版一轮复习教程学案 第46课 椭圆的标准方程 1. 熟练掌握椭圆的定义、几何性质. 2. 会利用定义法、待定系数法求椭圆方程. 3. 重视数学思想方法的应用,体会解析几何的本质——用代数方法求解几何问题. 1. 阅读:选修11第25~26页,选修11第28~29页(理科阅读选修21相应内容). 2. 解悟:①椭圆是一个平面斜截圆锥面(与母线不平行、与轴不垂直)而形成的,并理解椭圆上的点到两个定点的距离之和是常数;②椭圆的一般定义以及椭圆的焦点、焦距的含义是什么?③理解化简过程中设a 2-c 2=b 2的合理性与必要性. 3. 践习:①将选修11第28页,化简椭圆方程的过程亲手做一遍;②在教材空白处,完成选修11第30页练习第2、3、4题(理科完成选修21相应任务). 基础诊断 1. 已知下列方程:①x 24+y 23=1;②4x 2+3y 2=12;③2x 2+2y 2=5;④x 212+y 232 =1.其中表示焦点为F(0,1)的椭圆的有 ②④ .(填序号) 解析:①的方程表示焦点在x 轴上的椭圆;将②的方程4x 2+3y 2=12化为x 23+y 24 =1,它表示焦点为F(0,1)的椭圆;③是圆;④表示焦点为F(0,1)的椭圆. 2. 已知M(1,0),N(0,1),动点P 满足PM +PN =2,则点P 的轨迹是 椭圆 . 3. 已知椭圆x 212+y 23 =1,其焦点为F 1,F 2,点P 在椭圆上,若线段PF 1的中点在y 轴上, 则PF 1= 2 ,PF 2= 2 . 解析:由题意得c =a 2-b 2=3,所以F 2(3,0).设PF 1的中点为Q ,则OQ ∥PF 2,所以 PF 2垂直于x 轴,故可设P(3,y 0),所以912+y 203=1,所以y 0=±32,所以PF 2=32 .又因为PF 1+PF 2=43,所以PF 1=732 . 4. 已知方程x 22-k +y 2 2k -1 =1表示焦点在y 轴上的椭圆,则实数k 的取值范围是 (1,2) . 解析:由题意得2k -1>2-k>0,所以1

《导数的应用》教学设计

导数 一、考纲要求 1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 3.会利用导数解决某些实际问题. 二、知识梳理 1.函数的单调性与导数 在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减.如果,那么函数y=f(x)在这个区间上是常数函数. 问题探究:若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)内单调递增的充要条件? 2.函数的极值与导数 (1)函数的极小值 若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值,且f′(a)=0,而且在点x=a附近的左侧,右侧,则a点叫做函数的极小值点,f(a)叫做函数的极小值. (2)函数的极大值 若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值,且f′(b)=0,而且在点x=b附近的左侧,右侧,则b点叫做函数的极大值点,f(b)叫做函数的极大值,和统称为极值. 3.函数的最值与导数 函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条的曲线,那么它必有最大值和最小值. 三,考点探究 考点一:函数的单调性与导数 【例1】设函数f(x)=x3—3x2-9x-1.求函数f(x)的单调区间.

人教A版高中数学高二选修2-1学案 椭圆及其标准方程(1)

§2.2.1椭圆及其标准方程(1) 【使用说明及学法指导】 1.先自学课本,理解概念,完成导学提纲; 2.小组合作,动手实践。 【学习目标】 1.从具体情境中抽象出椭圆的模型; 2.掌握椭圆的定义; 3.掌握椭圆的标准方程. 【重点】理解椭圆的定义 【难点】掌握椭圆的标准方程 一、自主学习 1.预习教材P 38~ P 40, 找出疑惑之处 复习1:等腰三角形三个顶点的坐标分别是A (0,3),B (-2,0),C (2,0)。中线AO (O 为原点)的方程是X=0吗?为什么? 2.导学提纲 探究:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 . 如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线? 思考:移动的笔尖(动点)满足的几何条件是什么? 经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数. 新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .

反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 . 试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 . 小结:应用椭圆的定义注意两点: ①分清动点和定点; ②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()22 2210x y a b a b +=>> 其中222b a c =- 若焦点在y 轴上,两个焦点坐标 , 则椭圆的标准方程是 . 二、典型例题 例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上; ⑵4,a c ==y 轴上; ⑶10,a b c +== 变式:方程214x y m +=表示焦点在x 轴上的椭圆,则实数m 的范围 .

导数及其应用学案+作业 (答案)

变化率与导数、导数的计算 1.函数y =f (x )在x =x 0处的导数:f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 2.函数f (x )在点x 0处的导数f ′(x 0)的几何意义:f ′(x 0)是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 二、基本初等函数的导数公式 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=lo g a x f ′(x )=1x ln a f (x )=ln x f ′(x )=1x 三、导数的运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 3.????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 1.函数求导的原则 对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. 2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 1.用定义法求下列函数的导数. (1)y =x 2; (2)y =4x 2. [自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx =(x +Δx )2-x 2 Δx

2019-2020年高中数学第三章第一课椭圆及其标准方程教学案新人教A版选修2-1

2019-2020年高中数学第三章第一课椭圆及其标准方程教学案新人教A 版 选修2-1 ◆ 知识与技能目标 理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法. ◆ 过程与方法目标 (1)预习与引入过程 当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P 41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长,两端各结一个套),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程. (2)新课讲授过程 (i )由上述探究过程容易得到椭圆的定义. 〖板书〗把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse ).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为时,椭圆即为点集. (ii )椭圆标准方程的推导过程 提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系. 无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理. 设参量的意义:第一、便于写出椭圆的标准方程;第二、的关系有明显的几何意义. 类比:写出焦点在轴上,中心在原点的椭圆的标准方程. (iii )例题讲解与引申 例1 已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程. 分析:由椭圆的标准方程的定义及给出的条件,容易求出.引导学生用其他方法来解. 另解:设椭圆的标准方程为,因点在椭圆上,则 22222591104464a a b b a b ??+==?????=???-=? . 例2 如图,在圆上任取一点,过点作轴的垂线段,为垂足.当点 在圆上运动时,线段的中点的轨迹是什么? 分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴 随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程. 引申:设定点,是椭圆上动点,求线段中点的轨迹方程. 解法剖析:①(代入法求伴随轨迹)设,;②(点与伴随点的关系)∵为线段的中点,

3.1导数导学案

导数的概念及运算 一、预习案 (一)高考解读 能利用给出的基本初等函数的导数公式求简单函数的导数,通过图像直观地理解导数的几何意义,会求在某点和过某点的切线方程。 (二)知识清单 2、求导法则 ①运算 (1)=±' )]()([x g x f 。 (2)=?')]()([x g x f 。 (3)=?? ????' )()(x g x f 。 ②复合函数的导数:设)(x v u =在x 处可导,)(u f y =在点u 处可导, 则复合函数)]([x v f 在点x 处可导,且=)('x f 。 (三)预期效果及存在困惑

二、导学案 (一)完成《新亮剑(红色)》第50页查缺补漏。 (二)高考类型 考点一、导数运算 1、已知函数ax x x x f +=sin )(,且1)2 ('=π f ,则a 的值等于( ) A.0 B.1 C.2 D.4 2、函数)(x f 的定义域是R ,2)0(=f ,对任意1)()(,'>+∈x f x f R x ,则不等式1)(+>?x x e x f e 的解集为 考点二、导数几何意义的应用 3、已知函数454)(23-+-=x x x x f 。 (1)求曲线)(x f 在点))2(,2(f 处的切线方程; (2)求经过点)2,2(-A 的曲线)(x f 的切线方程。 练习: 1(2018课标I )设函数ax x a x x f +-+=23)1()(。若)(x f 为奇函数,则曲线)(x f y =在)0,0(处的切线方程为( ) A. x y 2-= B.x y -= C.x y 2= D.x y =

2.(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0 课堂总结: 三、巩固案 1.(2016北京节选)设函数bx xe x f x a +=-)(,曲线)(x f y =在))2(,2(f 处的切线方程为4)1(+-=x e y ,求b a ,的值。 2.(2015全国II )设函数)('x f 是奇函数)(x f 的导函数,0)1(=-f ,当 0>x 时,0)()('<-x f x xf ,解不等式0)(>x f 。

高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_1

高中数学第三章导数及其应用习题课导数的应用学案苏教版 选修1_1 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用. 知识点一函数的单调性与其导数的关系 定义在区间(a,b)内的函数y=f(x) 知识点二 解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值. (2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. 知识点三函数y=f(x)在[a,b]上最大值与最小值的求法 1.求函数y=f(x)在(a,b)内的极值. 2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值. 类型一数形结合思想的应用 例1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________. 反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪

个区间上为负,在哪个点处与x轴相交,在交点附近导函数值是怎样变化的. (2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点. 跟踪训练1 设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是________.类型二构造函数求解 命题角度1 比较函数值的大小 例2 已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+<0,若a=f(),b=-f(-),c=(ln )f(ln ),则a,b,c的大小关系是________. 反思与感悟本例中根据条件构造函数g(x)=xf(x),通过g′(x)确定g(x)的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数. 跟踪训练2 设a=,b=,c=,则a,b,c的大小关系是________.命题角度2 求解不等式 例 3 定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)2ex的解集为________.反思与感悟根据所求结论与已知条件,构造函数g(x)=,通过导函数判断g(x)的单调性,利用单调性得到x的取值范围. 跟踪训练3 设函数f(x)是定义在R上的偶函数,f′(x)为其导函数.当x>0时,f(x)+x·f′(x)>0,且f(1)=0,则不等式x·f(x)>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x>1,证明不等式x-1>ln x.

圆锥曲线三种弦长问题word版本

圆锥曲线三种弦长问题的探究 一、一般弦长计算问题: 例1、已知椭圆()2222:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为 且3 e = ,过椭圆C 2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度. 思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为22 8a b +=,………① 又e =,即2223 c a =,所以22 3a b =………………………….② 联立①②得2 2 6,2a b ==,所以所求的椭圆的方程为22 162 x y +=. ⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x =-, 代入椭圆C 的方程,化简得,2 51860x x -+= 由韦达定理知,1212186 ,55 x x x x +== 从而125 x x -= = , 由弦长公式,得12AB x =-==, 即弦AB 点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数2 2 ,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。 二、中点弦长问题: 例2、过点()4,1P 作抛物线2 8y x =的弦AB ,恰被点P 平分,求AB 的所在直线方程及弦 AB 的长度。 思路分析:因为所求弦通过定点P ,所以弦AB 所在直线方程关键是求出斜率k ,有P 是弦 的中点,所以可用作差或韦达定理求得,然后套用弦长公式可求解弦长. 解法1:设以P 为中点的弦AB 端点坐标为()()1122,,,A x y B x y , 则有22 11228,8y x y x ==,两式相减,得()()()1212128y y y y x x -+=-

2.2.1椭圆及其标准方程(4)学案(人教A版选修2-1)

§2.2.1椭圆及其标准方程(1) 1.从具体情境中抽象出椭圆的模型; 2.掌握椭圆的定义; 3.掌握椭圆的标准方程. 一、课前准备 (预习教材理P38~ P40,文P32~ P34找出疑惑之处) 复习1:过两点(0,1),(2,0)的直线方程. 复习2:方程22 -++=表示以为圆心, 为半径的. (3)(1)4 x y 二、新课导学 ※学习探究 取一条定长的细绳, 把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个. 如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,Array 拉紧绳子,移动笔尖,画出的轨迹是什么曲线?

思考:移动的笔尖(动点)满足的几何条件是什么? 经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数. 新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的 点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦 距 . 反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 . 试试: 已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹 是 . 小结:应用椭圆的定义注意两点: ①分清动点和定点; ②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程

()2 22210x y a b a b +=>> 其中222b a c =- 若焦点在y 轴上,两个焦点坐标 , 则椭圆的标准方程是 . ※ 典型例题 例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上; ⑵4,a c =y 轴上; ⑶10,a b c +== 变式:方程2 14x y m +=表示焦点在x 轴上的椭圆, 则 实数m 的范围 .

2017函数的最值与导数学案.doc

3.3.3 函数的最值与导数 【学习目标】 是多少?最小值是多少? 2.函数的最大值、最小值与函数的极大值和极小值的区别与联系是什么?能列表的应采用列表的方法. 3.利用导数求函数的最大值和最小值的方法是什么? 4.利用导数求函数的最值步骤是什么? 5.不等式恒成立问题,常常转化为求函数的最值,f(x)≥c对x∈R 恒成立,常怎么转化? f(x)≤c对x∈R恒成立,常怎么转化?【自主检测】 1.下列说法正确的是( ) A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值

2.函数y=f(x)在区间[a,b ]上的最大值是M ,最小值是m,若M=m, 则f ′(x) ( ) A.等于0 B.大于0 C.小于0 D.以上都有可能 【典型例题】 例1.(1)求()31443f x x x =-+在[]0,3的最大值与最小值; (2)求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值; (3)求函数x x x y -+=23在闭区间]1,2[-上的最大值与最小值. 例2.已知函数f (x )=x 3+ax 2+bx +c 在x =-23 与x =1时都取得极值 (1)求a 、b 的值与函数f (x )的单调区间; (2)若对x ∈[]12-,,不等式f (x )b,则 ( ) A .2,29a b =-=- B .2,3a b == C .3,2a b == D .2,3a b =-=- 2. 已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,求此函数在[-2,2]上的最小值__________________. 4.求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值,并画出函数的图像.

导数及其应用复习课教学设计

导数及其应用复习课教学设计 教学目标 1、知识与技能 (1)利用导数求函数的单调区间; (2)利用导数求函数的极值以及函数在闭区间上的最值; (3)解决很成立问题 2、过程与方法 1)能够利用函数性质作图像,反过来利用函数的图像研究函数的性质如交点情况,能合理利用数形结合解题。 2)学会利用熟悉的问答过渡到陌生的问题。 3、情感态度与价值观 这是一堂复习课,教学难度有所增加,培养学生思考问题的习惯,以及克服困难的信心。 重点和难点: 重点是应用导数求单调性,极值,最值 难点是恒成立问题 教学过程: (一)、导入. 给出三道题 (1)曲线3231y x x =-+在点(1,1)-处的切线方程为 ( ) A. 34y x =- B. 32y x =-+ C. 43y x =-+ D. 45y x =- (2)过原点作曲线x y e =的切线,切线的斜率____________ (3)函数3223125y x x x =--+在[0,3]上的最大值____________ [设计意图: 数学的教学要遵循循序渐近的原则,三道题是导数应用中基础的题型。其中(1), (2)两题同是求切线方程,却不同类型题,学生不易识别其间的不同之处容易出错。通过题目的求同存异,加深学生对题目的本质的理解] (二)、例题剖析 例1.已知函数32()25f x x ax x =+-+ 若()f x 在2(1,)3 -上单调递减,在(1,)+∞上单调递增,求实数a 的值 提问:本题已知函数在给定区间上的单调性,求解析式中参数。由条件得到什么? 学生:'(1)f 是极小值 师:为什么? 没有回答 师:在学习极值的时候,要成为极值点,首先要保证在这个点上的导数等于0,现在导数=0不能保证,怎么能说取得极小值。 举反例:

2.2.1《椭圆及其标准方程(1)》导学案

高二数学 §2.2.1《椭圆及其标准方程(1)》导学案 【学习目标】 1.从具体情境中抽象出椭圆的模型; 2.掌握椭圆的定义; 3.掌握椭圆的标准方程. 【重点难点】 重点:椭圆的定义的理解 难点:椭圆的标准方程的求解 【知识链接】 (预习教材理P 38~ P 40,文P 32~ P 34找出疑惑之处) 复习1:过两点(0,1),(2,0)的直线方程 . 复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 . 【学习过程】 取一条定长的细绳, 把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 . 如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线? 思考:移动的笔尖(动点)满足的几何条件是什么? 经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数. 新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 . 反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 . 试试: 已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 . 小结:应用椭圆的定义注意两点: ①分清动点和定点; ②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()22 2210x y a b a b +=>> 其中222b a c =- 若焦点在y 轴上,两个焦点坐标 ,

相关文档