文档库 最新最全的文档下载
当前位置:文档库 › 用向量法证明欧拉线问题

用向量法证明欧拉线问题

用向量法证明欧拉线问题

b sin A=a sin B,

(b co s A)2+(b sin A)2=(c-a co s B)2+ (a sin B)2,

∴a co s B+b co s A=c(射影定理),

a sin A =

b

sin B

(正弦定理),

b2=c2+a2-2ca co s B(余弦定理).

用向量法证明欧拉线问题

刘步松 (江苏省运河师范学校 221300)

设三角形A B C外心为O,重心为W,垂心为H,则O,W,H三点共线,且 OH = 3 OW ,这便是著名的欧拉线问题.但平面几何证法较麻烦,笔者用向量坐标法去证,感觉过程较为简洁.

证 以外心O为原点,过O平行于B C 的直线为x轴,B C的中垂线为y轴,建立直角坐标系.设A D是B C上的高,并设各点坐

图1

标如下:A(a,b),B

(-c,d),C(c,d),

H(a,y),则B H=

(a+c,y-d),A C

=(c-a,d-b),因

为B H⊥A C,有B H

?A C=0,即(a+

c)(c-a)+(y-d)(d-b)=0,解之得y= -a2+c2+bd-d2

-d+b

.因为O是外心,所以 OA = OB = O C ,即a2+b2=(-c)2+ d2=c2+d2,从而a2-c2=d2-b2,代入y的表达式,求得y=b+2d,即H的坐标是(a,b+ 2d).从H及A,B,C的坐标可以发现,O H =

OA+OB+O C.又由重心定理OW=

1

3

(OA+OB+O C),从而有H,W,O共线,并

有 O H =3 OW .证毕.

构造法解竞赛题初探

胡国生 (江苏省洪泽县中学 223100)

大多数竞赛试题设计新颖,构思巧妙,综

合性强,注重对学生的思维能力的考查,因此

难度较大,不少学生无从下手.本文在用构造

法解竞赛题方面做一些粗浅探讨,希望对数

学爱好者有所启迪.

1 构造特殊图形

例1 正数a,b,c,A,B,C满足a+A=b

+B=c+C=k,求证:aB+bC+c A

(第24届前苏奥赛试题)

证明 构造正方形:从三个和数相等联

想到四边相等,a+A=b+B=c+C=b+B

=k,作边长为k的正方形,由面积关系(如图

1)知道:

aB+bC+c A<(a+A)2=k2.

图1

例2 已知五

边形A B CD E中,

∠A B C=∠A ED

=90°,A B=CD=

A E=

B C+D E=

2,求五边形

A B CD E的面积.

(江苏省第17届初中数学联赛试题)

解 如图2,构造全等三角形,延长CB

至F,使B F=D E.

易证R t△A B F≌R t△A ED,

∴A F=A D.

∵CF=CD,A C=A C,

∴R t△A CD≌R t△A CF,?

2

4

? 中学数学月刊 2003年第10期

用向量法证明欧拉线问题

b sin A=a sin B, (b co s A)2+(b sin A)2=(c-a co s B)2+ (a sin B)2, ∴a co s B+b co s A=c(射影定理), a sin A = b sin B (正弦定理), b2=c2+a2-2ca co s B(余弦定理). 用向量法证明欧拉线问题 刘步松 (江苏省运河师范学校 221300) 设三角形A B C外心为O,重心为W,垂心为H,则O,W,H三点共线,且 OH = 3 OW ,这便是著名的欧拉线问题.但平面几何证法较麻烦,笔者用向量坐标法去证,感觉过程较为简洁. 证 以外心O为原点,过O平行于B C 的直线为x轴,B C的中垂线为y轴,建立直角坐标系.设A D是B C上的高,并设各点坐 图1 标如下:A(a,b),B (-c,d),C(c,d), H(a,y),则B H= (a+c,y-d),A C =(c-a,d-b),因 为B H⊥A C,有B H ?A C=0,即(a+ c)(c-a)+(y-d)(d-b)=0,解之得y= -a2+c2+bd-d2 -d+b .因为O是外心,所以 OA = OB = O C ,即a2+b2=(-c)2+ d2=c2+d2,从而a2-c2=d2-b2,代入y的表达式,求得y=b+2d,即H的坐标是(a,b+ 2d).从H及A,B,C的坐标可以发现,O H = OA+OB+O C.又由重心定理OW= 1 3 (OA+OB+O C),从而有H,W,O共线,并 有 O H =3 OW .证毕. 构造法解竞赛题初探 胡国生 (江苏省洪泽县中学 223100) 大多数竞赛试题设计新颖,构思巧妙,综 合性强,注重对学生的思维能力的考查,因此 难度较大,不少学生无从下手.本文在用构造 法解竞赛题方面做一些粗浅探讨,希望对数 学爱好者有所启迪. 1 构造特殊图形 例1 正数a,b,c,A,B,C满足a+A=b +B=c+C=k,求证:aB+bC+c A

用法向量求二面角和证明两平面垂直

用法向量求二面角和证明两平面垂直 用法向量证明两平面垂直问题 要证两平面相互垂直,只需找出这两个平面的两个法向量,证明这两个法向量相互垂直。 例1.如右图,△ABC 是一个正三角形,EC ⊥平面ABC , BD ∥CE ,且CE=CA=2BD ,M 是EA 的中点。 求证:(1)DE=DA ; (2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA ; 分析(3):建立如图所示右手直角坐标系 ,不妨设CA=2, 则CE=2,BD=1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1),( ) 2,1,3-= EA ,()2,0,0=CE ,()1,2,0-=ED , 分 别假设面CEA 与面DEA 的法向量是()1111,,z y x n =、()3222,,z y x n =,所以得 11111113203200x y z y x z z ??+-==???? ?==????,22222 2222 3203202x y z x y y z z y ??+-==?????-==???? 不妨取() 0,3,11-=n 、()2,1,32=n ,从而计算得02 1 =?n n ,所以两个法向量相互 垂直,两个平就相互垂直。 用法向量求二面角 如图,有两个平面α与β,分别作这两个平面的法向量1n 与2n ,则平面α与β所成的角跟法向量1n 与 2n 所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角。 例2、如下图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=a ,AD=3a ,sin ∠ADC= 5 5 ,且PA ⊥平面ABCD ,PA=a ,求二面角P-CD-A 的平面角的余弦值。 分析:依题意,先过C 点CE ⊥AD ,计算得ED=2a ,BC=AE=a,建立如图右角直角坐标系,则P (0,0,a ),D(0,3a,0), C(a,a,0), () a a PD -=,3,0, () a a a PC -=,,, ()0,3,0a AD =,()0,,a a AC = 取平面ACD 的一个法向量()1,0,01=n ,设平面PCD 的法 z y x E A D B P C z y x M C B A E D

(完整版)运用向量法证明几个数学公式

运用向量法证明几个数学 向量法是几何问题代数化的一种重要方法,运用向量法可以证明一些三角或者几何公式,下面仅举几例予以说明。 例1、用向量证明和差化积公式 cos cos 2cos cos 22αβ αβ αβ+-+= sin sin 2sin cos 22αβαβ αβ+-+= 如图,作单位圆,并任作两个向量 (cos ,sin )OP αα=u u u r ,(cos ,sin )OQ ββ=u u u r 取 ?PQ 的中点M ,则 (cos ,sin )2 2 M αβαβ ++ 连接PQ 、OM ,设它们相交于点N ,则点N 为线段PQ 的中点,且ON PQ ⊥,∠Mo x 和∠MOQ 分别为,22αβαβ +-,所以||||cos cos 22 ON OM αβαβ --==u u u r u u u u r ,所以点N 的坐标为(||cos ,||sin ) 22 ON ON αβαβ ++u u u r u u u r ,即(cos cos ,cos sin )2222N αβαβαβαβ-+-+ 又11 ()(cos cos ,sin sin )22ON OP OQ αβαβ=+=++u u u r u u u r u u u r 所以(cos cos ,cos sin )2222αβαβαβαβ-+-+1 (cos cos ,sin sin )2 αβαβ=++ 即cos cos 2cos cos 22 αβαβ αβ+-+= sin sin 2sin cos 22 αβαβαβ+-+= 在上面的基础上,还可以证明另外两个和差化积公式:

sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 2 2 αβ αβ αβ+--=- 如图,过P 点作y 轴的平行线,过Q 作x 轴的平行线相交于点F ,那么||sin sin PF αβ=-u u u r ,||cos cos FQ βα=-u u u r , ∠ QPF = ∠ QNE = ∠ Mox = 2 αβ +, ||2||2||sin 2sin 22 PQ NQ OQ αβαβ --===u u u r u u u r u u u r 所以||||cos ,||||sin PF PQ QPF FQ PQ QPF =∠=∠u u u r u u u r u u u r u u u r 即sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 22 αβαβ αβ+--=- 例2、用向量解决平行四边形与三角形面积的计算公式 如图,在直角坐标系中,已知12(,)OA a a a ==u u u r r ,12(,)OB b b b ==u u u r r ,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积 12211 ||2 OAB S a b a b ?= - 证明:设,a b α<>=r r ,那么可以得出 ||||sin OACB S a b α=r r ,由于cos ||||a b a b α?=r r r r 所以222sin 1cos 1()|||| a b a b αα?=-=-r r r r 222222 1122122111221221222222222 222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++ 所以sin α=

西藏2021年高一下学期数学期末考试试卷(II)卷

西藏2021年高一下学期数学期末考试试卷(II)卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共8题;共16分) 1. (2分) (2016高一下·东莞期中) 1﹣2sin2 的值等于() A . 0 B . C . D . 2. (2分)不等式9x2+6x+1≤0的解集是() A . B . C . D . R 3. (2分) (2019高二下·广东期中) 在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是() A . 恰有1件一等品 B . 至少有一件一等品 C . 至多有一件一等品 D . 都不是一等品 4. (2分)(2020·奉贤模拟) 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用如图的条形图表示,根据条形图可得这50名学生这一天平均每人的课外

阅读时间为() A . 1.5小时 B . 1.0小时 C . 0.9小时 D . 0.6小时 5. (2分) (2019高二上·台州期末) 已知圆C:,则过点的圆C的切线方程为 A . B . C . D . 6. (2分)平行线和的距离是() A . B . 2 C .

D . 7. (2分) (2018高三上·深圳月考) 在中, 分别为角的对边),则 的形状为() A . 直角三角形 B . 等边三角形 C . 等腰三角形 D . 等腰三角形或直角三角形 8. (2分) (2019高一下·柳州期末) 已知圆截直线所得弦的长度为4,则实数a的值是( A . -2 B . -4 C . -6 D . -8 二、多选题 (共4题;共12分) 9. (3分) (2019高二上·沂水月考) 设集合,,分别从集合和中随机取一个元素与 .记“点落在直线上”为事件,若事件的概率最大,则的取值可能是() A . 4 B . 5 C . 6 D . 7 10. (3分) (2020高一下·烟台期末) 如图,在四棱锥中,底面为菱形,,

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

数学奥赛-2(西姆松定理-欧拉线-九点圆)

西姆松(Simson)定理 西姆松定理说明 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线) 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明 证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC 于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠A CP ①,(∵都是∠ABP的补角)且∠PDE=∠PCE ②而∠ACP+∠PCE=180° ③∴∠FDP+∠PDE=180° ④即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆. 证明二:如图,若L、M、N三点共线,连结BP,CP, 则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、 L、N和M、P、L、C分别四点共圆,有 ∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL 垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N 和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。

高中数学竞赛定理

重 心 定义:重心是三角形三边中线的交点, 可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 已知:△ABC 中,D 为BC 中点,E 为AC 中点,AD 与BE 交于O ,CO 延长线交AB 于F 。求证:F 为AB 中点。 证明:根据燕尾定理, S △AOB=S △AOC , 又S △AOB=S △BOC , ∴S △AOC=S △BOC , 再应用燕尾定理即得AF=BF ,命题得证。 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、三角形到三边距离之积最大的点。 5、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((321x x x ++)/3,(321y y y ++)/3);空间直角坐标系——横坐标:(321x x x ++)/3 纵坐标:(321y y y ++)/3 竖坐标:(321z z z ++)/3 外 心 定义:外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。 外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。 外心性质:三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。 设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积 1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c 重心坐标:( (32c c +)/2c ,(31c c +)/2c ,(21c c +)/2c ) 垂 心 定义:三角形的三条高的交点叫做三角形的垂心。 性质: 锐角三角形垂心在三角形部 直角三角形垂心在三角形直角顶点 钝角三角形垂心在三角形外部

§3.2 立体几何中的向量方法(二)——空间向量与垂直关系

§3.2立体几何中的向量方法(二) ——空间向量与垂直关系 课时目标 1.能利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系. 1.空间垂直关系的向量表示 空间中的垂直关系 线线垂直线面垂直面面垂直 设直线l的方向向量为a =(a1,a2,a3),直线m 的方向向量为b=(b1,b2,b3),则l⊥m?______ 设直线l的方向向量是a= (a1,b1,c1),平面α的法向量 u=(a2,b2,c2),则l⊥α? ________ 若平面α的法向量u=(a1,b1 , c1),平面β的法向量为v= (a2,b2,c2),则α⊥β? ________ 线线垂直线面垂直面面垂直 ①证明两直线的方向向量的数 量积为______. ①证明直线的方向向量与平面的法向 量是______. ①证明两 个平面的 法向量 _________ ___. ②证明两直线所成角为 ______. ②证明直线与平面内的相交直线 ________. ②证明二 面角的平 面角为 ________._ _______. 一、选择题 1.设直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,m),若l1⊥l2,则m等于() A.1B.2C.3D.4 2.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是() A.等边三角形B.等腰三角形 C.直角三角形D.等腰直角三角形 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则() A.l∥αB.l⊥α C.l?αD.l与α斜交

4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定 5.设直线l 1的方向向量为a =(1,-2,2),l 2的方向向量为b =(2,3,2),则l 1与l 2的关系是( ) A .平行 B .垂直 C .相交不垂直 D .不确定 6. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是上底面中心,则AC 1与CE 的位置关系 是( ) A .平行 B .相交 C .相交且垂直 D .以上都不是 二、填空题 7.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______. 8.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有______对. 9.下列命题中: ①若u ,v 分别是平面α,β的法向量,则α⊥β?u·v =0; ②若u 是平面α的法向量且向量a 与α共面,则u·a =0; ③若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是________.(填写所有正确的序号) 三、解答题 10.已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱 CC 1上的点,且CN =1 4 CC 1.求证:AB 1⊥MN . 11.已知ABC —A 1B 1C 1是各条棱长均为a 的正三棱柱,D 是侧棱CC 1的中点,求证:平面AB 1D ⊥平面ABB 1A 1.

用向量法证明海伦公式

用向量法证明海伦公式 杜云 (六盘水师范学院数学系;贵州六盘水553004) 摘要:从数与形的角度对向量进行再认识,通过应用向量方法证明海伦公式,更进一步阐明了向量是沟通代数与几何的天然桥梁,是一个重要的数学模型,它能为解决问题提供新的方法和视角。 关键词:向量;几何;海伦公式;数形结合 中图分类号:G421文献标识码:A 文章编号:1671-055X (2009)03-0063-03 To prove Heron's Formula with the Vector DU Yun (Mathematics Department of Liupanshui Nornal College;Liupanshui,553004,China) Abstract:Recognized the vector from algebra and geometry and by proving Heron's Formula further expounds ,If shows thar the vector is a natural bridge between algebra and geometry,and it is an important mathematics style,and also provides the new method and view to solve the problems. Key words :vector ;geometry;Heron's Formula;combination between algebra and geometry 收稿日期:2009-03-03 作者简介:杜云(1982-),男,贵州盘县人,助教,研究方向:高等代数与解析几何。 第21卷第3期 2009年6月六盘水师范高等专科学校学报Journal of Liupanshui Teachers College Vol.21NO.3June 2009 63--

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

利用空间向量证明面面平行垂直

利用空间向量证明面面平行垂直 1.如图所示,在正方体ABCDA1B1C1D1中,E,F,M分别为棱BB1,CD,AA1的中点.证 明:平面ADE⊥平面A1D1F. 2.如图,在直三棱柱ABC?A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在棱BB1 上,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,EF与B1D相交于点H.求证:平面EGF//平面ABD 3.如图,在四棱锥P?ABCD中,底面ABCD是边长为1的正方形,PA⊥平面ABCD, PA=1,M为侧棱PD的中点.证明:平面MAC⊥平面PCD

4.如图,四边形是矩形,平面,,为中点. 证明:平面平面 5.如图,在底面是矩形的四棱锥P?ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4, E是PD的中点.求证:平面PDC⊥平面PAD 6.如图,在正方体ABCD?A1B1C1D1中,E为棱DD1的中点. 求证:平面EAC⊥平面AB1C

7.如图,正三棱柱ABC?A1B1C1的所有棱长都为2,D为CC1中点. 求证:平面ABB1A1⊥平面A1BD PD。 8.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD//QA,QA=AB=1 2证明:平面PQC⊥平面DCQ

答案和解析 1.解:以D 为原点,向量DA ????? ,DC ????? ,DD 1???????? 的方向分别为x 轴,y 轴,z 轴的正方向建立坐标系如图, 设正方体的棱长为1. 则D(0,0,0),A(1,0,0),E (1,1,1 2),C 1(0,1,1),M (1,0,1 2), DA ????? =(1,0,0),DE ?????? =(1,1,12),C 1M ???????? =(1,?1,?1 2 ). 设平面ADE 的法向量为m ??? =(a,b ,c), 则{DA ????? ·m ??? =0 DE ?????? ·m ??? =0?{a =0,a +b +12 c =0.令c =2,得m ??? =(0,?1,2), 由D 1(0,0,1),A 1(1,0,1),F (0,12,0),得D 1A 1?????????? =(1,0,0),D 1F ??????? =(0,1 2 ,?1), 设平面A 1D 1F 的法向量为n ? =(x,y ,z),则{D 1A 1?????????? ·n ? =0D 1F ??????? ·n ? =0?{x =0,12y ?z =0. 令y =2,则n ? =(0,2,1).∵m ??? ·n ? =(0,?1,2)·(0,2,1)=0?2+2=0, ∴m ??? ⊥n ? .∴平面ADE ⊥平面A 1D 1F . 2.证明:如图所示建立空间直角坐标系, 设AB =a ,则A 1(a,0,0),B 1(0,0,0),C 1(0,2,0),F(0,1,0),E(0,0,1), A(a,0,4),B(0,0,4),D(0,2,2),G(a 2,1,0). 所以B 1D ???????? =(0,2,2),AB ????? =(?a,0,0),BD ?????? =(0,2,?2). AB ????? =(?a,0,0),BD ?????? =(0,2,?2),GF ????? =(?a 2,0,0),EF ????? =(0,1,?1),所以AB ????? =2GF ????? ,BD ?????? =2EF ????? ,所以GF ????? //AB ????? ,EF ????? //BD ?????? ?所以GF // AB ,EF // BD . 又GF ∩EF =F ,AB ∩BD =B ,所以平面EGF //平面ABD .

第五讲 平面几何中的重要命题

平面几何中的重要命题 在初等几何的平面部分,所涉及到的证明题分为两大类:证度量关系和证位置关系.证明位置关系中有一类问题比较棘手,即点共线、线共点和四点共圆的证明.常用的证明方法是利用梅涅劳斯(Menelaus)定理、赛瓦(Ceva)定理、西姆松定理和托勒密定理来证.这是一种表达形式简洁又非常实用的方法.特别是在点、线处于位置任意,无法确定具体度量或角度的情况下,使用如上定理证明问题时,往往能得心应手,起到事半功倍的作用.一般地,把梅涅劳斯(Menelaus)定理、赛瓦(Ceva)定理、西姆松定理和托勒密定理称为平面几何四大定理。 定理1(梅涅劳斯定理) 设A '、B '、C '是ABC ?的边BC 、CA 、AB 所在直线上的点,则A '、B '、C '共线的充要条件是 1AC BA CB C B A C B A ''' ??='''. 证明:(必要性) AC A BC A S AC C B S '' ?'' ?'=' BA C A CC S BA A C S ''?''?'= ' A C C A C A S CB B A S ''?''?'= '由上面三式相乘即得 1AC BA CB C B A C B A '''??='''. (充分性)延长A B ''交AB 于点P ,下证P 与C '重合。 ∵1AC BA CB C B A C B A '''??=''' 及 1A P B A C B P B A C B A ''??='' 故AC AP C B PB '=',由点内分线段AB 成定比的点的惟一性知,P C '≡,故A '、B '、C '共线。■ 例1 如图,AD 是ABC ?的中线,F 是AD 的中点,求FE FB 的值。 解:直线AEC 截BDF ?,则 1BC DA FE CD AF EB ??=,因为 2BC DC =,2DA AF =,所以 14FE EB =,于是1 3 FE FB =。

海伦公式的证明(精选多篇)

经典合同 海伦公式的证明 姓名:XXX 日期:XX年X月X日

海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2-c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2 +b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4* √[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+ b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式 =√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:海伦公式的几种证明与推广 海伦公式的几种证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重 要且优美的公式——海伦公式〔heron's formula〕:假设有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1 第 2 页共 32 页

欧拉线

欧理线 三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线,且外心到重心的距离等于垂心到重心距离的一半。 莱昂哈德·欧拉于1765年在它的著作《三角形的几何学》中首次提出定理:三角形的重心在欧拉线上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。 欧拉线的证法1 作△ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G’ ∵ BD是直径 ∴ ∠BAD、∠BCD是直角 ∴ AD⊥AB,DC⊥BC ∵ CH⊥AB,AH⊥BC ∴ DA‖CH,DC‖AH ∴ 四边形ADCH是平行四边形 ∴ AH=DC ∵ M是BC的中点,O是BD的中点 ∴ OM= 1/2DC ∴ OM= 1/2AH ∵ OM‖AH ∴ △OMG’ ∽△HAG’ ∴AG’/MG’=AH/MO=2/1 ∴ G’是△ABC的重心 ∴ G与G’重合 ∴ O、G、H三点在同一条直线上

如果使用向量,证明过程可以极大的简化,运用向量中的坐标法,分别 求出O G H三点的坐标即可. 欧拉线的证法2 设H,G,O,分别为△ABC的垂心、重心、外心 。连接AG并延长交BC于D, 则可知D为BC中点。 连接OD ,又因为O为外心,所以OD⊥BC。连接AH并延长交BC于E,因H为垂心,所以AE⊥BC。所以OD//AE,有∠ODA=∠EAD。由于G为重心,则GA:GD=2:1。 连接CG并延长交BA于F,则可知F为AB中点。同理,OF//CM.所以有∠OFC=∠MCF 连接FD,有FD平行AC,且有DF:AC=1:2。FD平行AC,所以∠DFC=∠FCA,∠FDA=∠CAD,又∠OFC=∠MCF,∠ODA=∠EAD,相减可得 ∠OFD=∠HCA,∠ODF=∠EAC,所以有△OFD∽△HCA,所以OD:HA=DF:AC=1:2;又GA:GD=2:1所以OD:HA=GA:GD=2:1 又∠ODA=∠EAD,所以△OGD∽△HGA。所以∠OGD=∠AGH,又连接AG并延长,所以∠AGH+∠DGH=180°,所以∠OGD+∠DGH=180°。即O、G、H三点共线。 欧拉线的证法3 利用向量证明,简单明了 设H,G,O,分别为△ABC的垂心、重心、外心.,D为BC边上的中点。 ∵AH = OH+ OA =向量OA+2向量OD (1) =向量OA+向量OB+向量BD+向量OC+向量CD =向量OA+向量OB+向量OC; 而向量OG=向量OA+向量AG =向量OA+1/3(向量AB+向量AC) (2) =1/3[向量OA+(向量OA+向量AB)+(向量OA+向量AC)]

用向量方法证明直线垂直,求两直线夹角

3.2.2用向量运算证明两条直线垂直或求两条直线所成的角 学习目标: 1、进一步理解向量的坐标表示和坐标运算 2、能建立适应的空间直角坐标系并利用坐标方法求空间两个向量的夹角 3、利用向量的数量积解决与立体几何有关的问题 复习回顾 1、 向量数量积的运算及其性质? 2、 向量夹角与线线夹角的联系与区别? 3、 如何求向量的夹角? 一、课前达标: 1、异面直线所成的角: 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角θ等于向量b a ,所成的角或其补角(如图1所示), 则 .||||| |cos b a b a ??=θ 2、预习检测 (1)如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,求证EF ⊥DA 1 . (2)如图,在正方体ABCDA ′B ′C ′D ′中,E `1 、F 1分别是A 1B `1、C 1D 1的四等分点,求BE 1与DF 1所成的角.

二、典例分析: 1、建立坐标系证明线线垂直,求夹角 例3 在棱长为1的正方体中ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、BD 的中点,G 在CD 上,且CG =CD/4,H 为C 1G 的中点,⑴求证:EF ⊥B 1C ;⑵求EF 与C 1G 所成角的余弦值;⑶求FH 的长。 注意思考: (1) 如何建立坐标系、把已知条件转化为向量表示? (2) 如何对已经表示出来的向量进行运算才可获得所需结论? 巩固练习:练习A 1 练习B 1 2、选取基向量求解线线夹角:例4、(见课本100页) O -A B C ,O A =4,O B =5,O C =3; A O B =B O C = C O A =90,M ,N O A ,B C M N ,B C ∠∠∠三棱锥分别是中点,求直线所成角 注意:基向量的选取;如何用基向量来表示未知向量。 巩固练习:练习B 3 三:作业:如下图,直棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

初中数学竞赛第十九讲三角形的四心(含解答)

第十九讲三角形的四心 【趣题引路】 你知道欧拉线吗?欧拉线是欧拉发现的.欧拉(1707-1783),瑞士数学家,?变分法的奠基人,复变函数论的先驱者,理论流体力学的创始人,受学于贝努利家族.著作浩如烟海.几乎每一个数学分支都可见到他的名字.如多面体的欧拉定理,?空间解析几何的欧拉变换公式,四方方程的欧拉解法,数论中的欧拉函数,?微分方程中的欧拉方程,等等.他在数论和微分方程等方面有重大成就,?在天文学和物理学等方面也有很大贡献,对航海和弹道研究起了一定作用 . 初等几何中的欧拉线.欧拉线定理的内容是:三角形任一顶点到垂心的距离等于外心到对边的距离的两倍,且三角形的外心、重心、垂心共线.你会证明这个定理吗? 证明 (1)连BO交圆于E,则BE是直径, 如图1,BO=OE,做OD⊥BC?于点D,?则BD=DC. ∴OD//1 2 EC.∵BE是直径. ∴CE⊥BC,EA⊥AB.∴CE∥AH.AE∥CH,AHCE是平行四边形. ∴AH//EC,∴AH=2OD; (1)(2) (2)△ABC中,AE为高,H为垂心,O为外心如图2. OD⊥BC于点D,连AD交HO于G′. ∵AH//2OD,∴△AHG′∽△DOG′. ∴AG′=2G′D. 又∵AD是中线, ∴G′与△ABC重心重合. ∴三角形的外心,重心,?垂心三点共线. 即H、G′、O共线.

【知识延伸】 三角形的四心,指的是外心、内心、重心、垂心.?由于三角形的四心处在特殊的位置上,因而它们具有独特的性质.这些是解与四心相关问题的基础. 外心是三角形外接圆的圆心,它是三角形各边中垂线的交点.若O 为锐角△ABC?的外心,则有(1):∠BOC=2∠BAC,或∠BOC=360°-2∠A;(2)OA=OB=OC. 内心是三角形三条内角平分线的交点,它是三角形内切圆的圆心.如I 是△ABC?的内心.则有: (1)∠BIC=90°+ 1 2 ∠A; (2)内切圆半径与半周长的积为三角形面积; (3)?内心I 到△ABC 的三边距离相等; (4)若延长AI 交△ABC 的外接圆于点E,则EI=EB=EC. (5)?在Rt △ABC 中,斜边为c,内切圆半径为r,两直角边分别为a 、b,则r=1 2 (a+b+c). 重心是三角形三条中线的交点,设G 是△ABC 的重心,则有: (1)重心G?分每条中线为2:1; (2)S △BCG =S △CAG =S △ABC ; (3)若AD 是△ABC 的BC 边上的中线,?则有AD 2= 1 2 (AB 2+AC 2- BC 2).这就是中线长公式.(称斯台沃特定理). 垂心是三角形三条高所在直线的交点,?常利用它构造相似三角形及判定四点共圆. 例1 已知G 、L 、H 分别是△ABC 的重心,内心,垂心,且AB>AC,则关系式: 甲: S △AGB > S △AGC ;乙: S △ALB > S △ALC ; 丙: S △ABC = S △AHC + S △BHC + S △AHC . 其中正确的有( ) A.0个 B.1个 C.2个 D.3个 解析 如图3,若G 为△ABC 的重心.由重心的性质知, S △AGB = S △AGC . (3) (4) 如图4 ,若L 为△ABC 的内心,设三角形内切圆半径为r, 则S △ALC = 12AB ·r. S △ALC =1 2 AC ·r.

相关文档