文档库 最新最全的文档下载
当前位置:文档库 › 数值微分

数值微分

数值微分
数值微分

数值微分

数值微分(numerical differentiation)

根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。通常用差商代替微商,或者用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值。例如一些常用的数值微分公式(如两点公式、三点公式等)就是在等距步长情形下用插值多项式的导数作为近似值的。此外,还可以采用待定系数法建立各阶导数的数值微分公式,并且用外推技术来提高所求近似值的精确度。当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。如果离散点上的数据有不容忽视的随机误差,应该用曲线拟合代替函数插值,然后用拟合曲线的导数作为所求导数的近似值,这种做法可以起到减少随机误差的作用。数值微分公式还是微分方程数值解法的重要依据。

7.1 数值微分

7.1.1 差商与数值微分

当函数是以离散点列给出时,当函数的表达式过于复杂时,常用数值微分近似计算

的导数。在微积分中,导数表示函数在某点上的瞬时变化率,它是平均变化率的极限;在几何上可解释为曲线的斜率;在物理上可解释为物体变化的速率。

以下是导数的三种定义形式:

(7.1)

在微积分中,用差商的极限定义导数;在数值计算中返璞归真,导数取用差商(平均变化率)作为其近似值。

最简单的计算数值微分的方法是用函数的差商近似函数的导数,即取极限的近似值。下面是与式(7.1)相应的三种差商形式的数值微分公式以及相应的截断误差。

向前差商

用向前差商(平均变化率)近似导数有:

(7.2)

其中的位置在的前面,因此称为向前差商。同理可得向后差商、中心差商的定义。

由泰勒展开

得向前差商的截断误差:

向后差商

用向后差商近似导数有:(7.3)

与计算向前差商的方法类似,由泰勒展开得向后差商的截断误差:

中心差商

用中心差商(平均变化率)近似导数有:

(7.4)

由泰勒展开

得中心差商的截断误差:

差商的几何意义

微积分中的极限定义,表示在处切线的斜率,

即图7.1中直线的斜率;差商表示过和两

点直线的斜率,是一条过的割线。可见数值微分是用近似值内接弦的斜率代替准确值切线的斜率。

图7.1 微商与差商示意图

例7.1给出下列数据,计算,

解:(5.07-5.06)/(0.04-0.02)= 0.5

(5.05-5.07)/(0.08-0.04)= -0.5

(5.05-5.055)/(0.08-0.10)= 0.25

((0.10) -(0.06))/(0.10-0.06)= 18.75

设定最佳步长

在计算数值导数时,它的误差由截断误差和舍入差两部分组成。用差商或插值公式近似导数产生截断误差,由原始值的数值近似产生舍入误差。在差商计算中,从截断误差的逼

近值的角度看,越小,则误差也越小;但是太小的会带来较大的舍入误差。怎样选择最佳步长,使截断误差与舍入误差之和最小呢?

一般对计算导数的近似公式进行分析可得到误差的表示式,以中心差商为例,截断误差不超过

而舍入误差可用量估计(证明略),其中是函数的原始值的绝对误差限,总误差

当时,总误差达到最小值,即

(*)

可以看到用误差的表达式确定步长,难度较大,难以实际操作。

通常用事后估计方法选取步长,例如,记为步长等于的差商计算公式,给定误差界,当时,就是合适的步长。

例7.2对函数,取不同的步长计算,观察误差变化规律,从而确定最佳步长。

解:

表中数据显示,当步长从0.10减少到0.03时,数值微分误差的绝对值从0.0048减少到0.0001,而随着 的进一步减少,误差的绝对值又有所反弹,表明当步长小于0.03时,舍入误差起了主要作用。

在实际计算中是无法得到误差的准确数值的,这时以最小为标准确定

步长,本例中取= 0.04。 7.1.2 插值型数值微分 对于给定的的函数表,建立插值函数

,用插值函数

的导数近似函数

的导数。 设

为上的节点,给定,以

为插

值点构造插值多项式

,以

的各阶导数近似

的相应阶的导数,即

时,

(7.5)

误差项为:

例7.3给定,并有,计算。解:作过的插值多项式:

将代入得三点端点公式和三点中点公式:

利用泰勒(Taylor)展开进行比较和分析,可得三点公式的截断误差是。

类似地,可得到五点中点公式和五点端点公式:

7.1.3 样条插值数值微分

把离散点按大小排列成,用关系式构造插值点

的样条函数:

当则当时,可用计算导数。

曲线拟合-正文

用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系。更广泛地说,空间或高维空间中的相应问题亦属此范畴。在数值分析中,曲线拟合就是用解析表达式逼近离散数据,即离散数据的公式化。实践中,离散点组或数据往往是各种物理问题和统计问题有关量的多次观测值或实验值,它们是零散的,不仅不便于处理,而且通常不能确切和充分地体现出其固有的规律。这种缺陷正可由适当的解析表达式来弥补。

数学表述设给定离散数据

(1)

式中x k为自变量x(标量或向量,即一元或多元变量)的取值;y k为因变量y(标量)的相应值。曲线拟合要解决的问题是寻求与(1)的背景规律相适应解析表达式

(2)

使它在某种意义下最佳地逼近或拟合(1),?(x,b)称为拟合模型;为待定参数,当b)仅在?中线性地出现时,称模型为线性的,否则为非线性的。量

称为在x k处拟合的残差或剩余,衡量拟合优度的标准通常有

式中ωk>0为权系数或权重(如无特别指定,一般取为平均权重,即

(k=1,2,…,m),此时无需提到权)。当参数b)使T(b))或Q(b))达到最小时,相应的(2)分别称为在加权切比雪夫意义或加权最小二乘意义下对(1)的拟合,后者在计算上较简便且最为常用。

模型中参数的确定一般的线性模型是以参数b)为系数的广义多项式,即

,(3)

式中g0,g1,…,g n称为基函数。对诸g j的不同选取可构成多种典型的和常用的线性

模型。从函数逼近的观点来看,式(3)还能近似地体现许多非线性模型的性质。

在最小二乘意义下用线性模型(3)拟合离散点组(1),参数b可通过解方程组

(i=0,…,n)来确定,即解关于b0,b1,…,b n的线性代数方程组

(4)

式中(i,j=0,1,…,n),

方程组(4)通常称为法方程或正规方程,当m>n时一般有惟一解。

至于非线性模型以及非最小二乘原则的情形,参数b)可通过解非线性方程组或最优化计算中的有关方法来确定(见非线性方程组数值解法、最优化)。

模型的选择对于给定的离散数据(1),需恰当地选取一般模型(2)中函数?(x,b))的类别和具体形式,这是拟合效果的基础。若已知(1)的实际背景规律,即因变量y对自变量x的依赖关系已有表达式形式确定的经验公式,则直接取相应的经验公式为拟合模型。反之,可通过对模型(3)中基函数g0,g1,…,g n(个数和种类)的不同选取,分别进行相应的拟合并择其效果佳者。函数g0,g1,…,g n对模型的适应性起着测试的作用,故又称为测试函数。另一种途径是:在模型(3)中纳入个数和种类足够多的测试函数,借助于数理统计方法中的相关性分析和显著性检验,对所包含的测试函数逐个或依次进行筛选以建立较适合的模型(见回归分析)。当然,上述方法还可对拟合的残差(视为新的离散数据)再次进行,以弥补初次拟合的不足。总之,当数据中变量之间的内在联系不明确时,为选择到相适应的模型,一般需要反复地进行拟合试验和分析鉴别。

数值分析第四章数值积分与数值微分习题复习资料

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h A h -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4 ()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h A h -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值积分与数值微分实验报告

实验三 数值积分程序设计算法 1)实验目的 通过本次实验熟悉并掌握各种数值积分算法及如何在matlab 中通过设计程序实现这些算法,从而更好地解决实际中的问题。 2)实验题目 给出积分 dx x I ? -= 3 2 2 1 1 1.用Simpson 公式和N=8的复合Simpson 公式求积分的近似值. 2.用复合梯形公式、复合抛物线公式、龙贝格公式求定积分,要求绝对误差为 7 10*2 1-= ε,将计算结果与精确解做比较,并对计算结果进行分析。 3)实验原理与理论基础 Simpson 公式 )]()2 ( 4)([6 b f b a f a f a b S +++-= 复化梯形公式 将定积分? = b a dx x f I )(的积分区间],[b a 分隔为n 等分,各节点为 n j jh a x j ,,1,0, =+= n a b h -= 复合梯形(Trapz)公式为 ])()(2)([21 1 ∑-=++-= n j j n b f x f a f n a b T 如果将],[b a 分隔为2n 等分,而n a b h /)(-=不变, 则 )]()(2)(2)([41 2 111 2b f x f x f a f n a b T n j j n j j n +++-= ∑∑-=+-= 其中 h j a h x x j j )2 1(2 12 1+ +=+ =+ ,)]()(2)(2)([41 2 11 1 2b f x f x f a f n a b T n j j n j j n +++-= ∑∑-=+ -= ∑ -=-++-+ =1 )2) 12((22 1n j n n a b j a f n a b T n=1时,a b h -=,则)]()([2 1b f a f a b T +-= )0(0T = )2 1(2 2 112h a f a b T T + -+ =)1(0T = 若12-=k n ,记)1(0-=k T T n , ,2,1=k 1 2 --= k a b h jh a x j +=1 2 --+=k a b j a h x x j j 2 12 1+ =+ k a b j a 2 ) 12(-++=,则可得如下递推公式

Matlab数值积分与数值微分

M a t l a b数值积分与数值微分 Matlab数值积分 1.一重数值积分的实现方法 变步长辛普森法、高斯-克朗罗德法、梯形积分法 1.1变步长辛普森法 Matlab提供了quad函数和quadl函数用于实现变步长 辛普森法求数值积分.调用格式为: [I,n]=Quad(@fname,a,b,tol,trace) [I,n]=Quadl(@fname,a,b,tol,trace) Fname是函数文件名,a,b分别为积分下限、积分上限; tol为精度控制,默认为1.0×10-6,trace控制是否展 开积分过程,若为0则不展开,非0则展开,默认不展开. 返回值I为积分数值;n为调用函数的次数. --------------------------------------------------------------------- 例如:求 ∫e0.5x sin(x+π )dx 3π 的值. 先建立函数文件 fesin.m function f=fesin(x) f=exp(-0.5*x).*sin(x+(pi/6));再调用quad函数

[I,n]=quad(@fesin,0,3*pi,1e-10) I= 0.9008 n= 365 --------------------------------------------------------------------- 例如:分别用quad函数和quadl函数求积分 ∫e0.5x sin(x+π 6 )dx 3π 的近似值,比较函数调用的次数. 先建立函数文件 fesin.m function f=fesin(x) f=exp(-0.5*x).*sin(x+(pi/6)); formatlong [I,n]=quadl(@fesin,0,3*pi,1e-10) I= n= 198 [I,n]=quad(@fesin,0,3*pi,1e-10) I= n= 365 --------------------------------------------------------------------- 可以发现quadl函数调用原函数的次数比quad少,并 且比quad函数求得的数值解更精确. 1.2高斯-克朗罗德法

数值积分与数值微分知识题课

数值积分与 数值微分 习题课

一、已知012113,,424x x x ===,给出以这 3个点为求积节 点在[]0.1上的插值型求积公式 解:过这3个点的插值多项式基函数为 ()()()()()()()()()()()()()()()()1202010202121012012220211 20,0,1,2 k k x x x x l x x x x x x x x x l x x x x x x x x x l x x x x x A l x dx k --= ----= ----= --==?

()()()()()()()()()()()()111200001021102100101210120202113224111334244131441113324241142x x x x x x A dx dx x x x x x x x x x x A dx dx x x x x x x x x x x A dx x x x x ????-- ???--????=== --????-- ??? ???? ????-- ???--????===- --????-- ??? ???? ????-- ??--???==--?????102313134442dx ??= ????-- ??? ???? ? 故所求的插值型求积公式为 ()1 211 123343234f x dx f f f ??????≈- + ? ? ??????? ?

二、确定求积公式 ( )( )(1 1158059f x dx f f f -? ?≈++?? ? 的代数精度,它是Gauss 公式吗? 证明:求积公式中系数与节点全部给定,直接检验 依次取()23451,,,,,f x x x x x x =,有 [ ](1 1111 215181519 1058059dx xdx --==?+?+???==?+?+?? ???

微分积分公式全集

x 高中大学数学微分与积分公式(全集) (高中大学数学) 二 _ 、 重要公式(1) sin x lim 1 1 (2) lim 1 x 匸 e (3) lim : a(a o) 1 x 0 x x 0 n (4) lim n n 1 (5) limarctan x — (6) lim arc tan x — n x 2 x 2 (7) limarccot x x 0 (8) lim arccot x x (9) lim e x 0 x (10) lim e x x (11) lim x x 1 x 0 三、 下列常用等价无穷小关系 (x 0) 四、 导数的四则运算法则 五、 基本导数公式 ⑴c 0 ⑵x ⑷ cosx sinx (5) tan x (7) secx secx tan x ⑻ cscx cscx cotx 1 x (3) sin x cosx 2 sec x ⑹ cot x 2 csc x ⑼e x ⑽ a x a x lna 1 (11) In x n n 1 j a o x a 1x a n i m - m 1 b o x b ^x 1 b m a 。 b o (系数不为0的情况) lim x 0 n m

1 1 (12) loga x (13) arcsinx (14) arccosx xln a 1 (15) arcta nx 2 1 x arccot x (17) 1 (18) 1 2 「 x 六、高阶导数的运算法则 (1) u x V x (2) cu cu n (3) u ax b ax (4) k c n u (k) 七、基本初等函数的 n 阶导数公式 (1) (2) ax e ax e x n ln a sin ax n . a sin ax cos ax n a cos ax ax b n i n a n! n 1 ax b In ax n ax b 八、 微分公式与微分运算法则 x 1dx (3) d sin x cosxdx cosx sin xdx ⑸ d tanx sec xdx (6) d cot x csc 2 xdx

数值微分与数值积分

专题六数值微积分与方程求解6.1 数值微分与数值积分 ?数值微分 ?数值积分

1.数值微分 (1)数值差分与差商 微积分中,任意函数f(x)在x 0点的导数是通过极限定义的: h x f h x f x f h )()(lim )('0 0-+=→h h x f x f x f h ) ()(lim )('0 00 0--=→h h x f h x f x f h ) 2/()2/(lim )('0 --+=→

) ()()(000 x f h x f x f -+=?) ()()(0 h x f x f x f --=?) 2/()2/()(0 h x f h x f x f --+=δ如果去掉极限定义中h 趋向于0的极限过程,得到函数在x 0点处以h (h>0)为步长的向前差分、向后差分和中心差分公式: 向前差分: 向后差分: 中心差分:

函数f(x)在点x 0的微分接近于函数在该点的差分,而f 在点x 的导数接近于函数在该点的差商。 h x f h x f x f ) ()(≈ )('0 00 -+h h x f x f x f ) ()(≈ )('0 00 --h h x f h x f x f ) 2/()2/(≈ )('0 --+向前差商: 向后差商: 中心差商: 当步长h 充分小时,得到函数在x 0点处以h (h>0)为步长的向前差商、 向后差商和中心差商公式:

(2)数值微分的实现 MATLAB提供了求向前差分的函数diff,其调用格式有三种: ?dx=diff(x):计算向量x的向前差分,dx(i)=x(i+1)-x(i),i=1,2,…,n-1。?dx=diff(x,n):计算向量x的n阶向前差分。例如,diff(x,2)=diff(diff(x))。?dx=diff(A,n,dim):计算矩阵A的n阶差分,dim=1时(默认状态),按列计算差分;dim=2,按行计算差分。 注意:diff函数计算的是向量元素间的差分,故差分向量元素的个数比原向量少了一个。同样,对于矩阵来说,差分后的矩阵比原矩阵少了一行或一列。 另外,计算差分之后,可以用f(x)在某点处的差商作为其导数的近似值。

最新导数公式、微分公式和积分公式

基本公式 导数公式微分公式 积分公式 反三角函数公式 导数公式微分公式 积分公式

基本三角函数公式 导数公式微分公式 积分公式 其他积分公式 C a x x a x x C a x a x a x dx x a + ± + = ± + + - = - ? ? 2 2 2 2 2 2 2 2 2 ln d arctan 2 2 () C x x e x x e C x x e x x e C a x x a x x x a x x x x x + + = + - = + ± + + ± = ± ? ? ? ) cos (sin 2 1 d cos cos sin 2 1 d sin ln 2 d2 2 2 2 2 2

青岛市高三统一质量检测 数学(理科) 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,复数 i i +12的实部为 A .2 B .2- C .1 D .1- 2. 设全集R U =,集合{} 2|lg(1)M x y x ==-,{}|02N x x =<<,则()U N M = A .{}|21x x -≤< B .{}|01x x <≤ C .{}|11x x -≤≤ D .{}|1x x < 3. 下列函数中周期为π且为偶函数的是 A .)22sin(π - =x y B. )2 2cos(π-=x y C. )2sin(π+=x y D .)2cos(π +=x y 4. 设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S = A .90 B .54 C .54- D .72- 5. 已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是 A .若l m ⊥,l n ⊥,且,m n α?,则l α⊥ B .若平面α内有不共线的三点到平面β的距离相等,则βα// C .若n m m ⊥⊥,α,则α//n D .若α⊥n n m ,//,则α⊥m 6. 一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是 A .16π B .14π C .12π D .8π 7. 已知抛物线x y 42 =的焦点为F ,准线为l ,点P 为抛物 线上一点,且在第一象限,l PA ⊥,垂足为A ,4PF =,则直线AF 的倾斜角等于 正视图 俯视图 左视图

数值微分与数值积分练习题

第五章 数值微分与数值积分 一.分别用向前差商,向后差商和中心差商公式计算()f x =2x =的导数的近似值。其中,步长0.1h =。 【详解】 00()()(20.1)(2)=0.349 2410.10.1 f x h f x f f h +?+?===向前差商 00()()(2)(20.1)=0.358 0870.10.1 f x f x h f f h ????===向后差商 00()()(20.1)(20.1)= 0.353 664220.10.2f x h f x h f f h +??+??===×中心差商 二.已知数据 x 2.5 2.55 2.60 2.65 2.70 ()f x 1.58114 1.59687 2 1.62788 1.64317 求( 2.50),(2.60),(2.70)f f f ′′′的近似值。 【详解】 0.05h =,按照三点公式 3(2.50)4(2.55)(2.60)3 1.581144 1.59687 1.61245(2.50)0.316 10020.050.1 f f f f ?+??×+×?′≈==×(2.65)(2.55)1.627881.59687(2.60)0.310 10020.050.1 f f f ??′≈==× (2.60)4(2.65)3(2.70)241.6278831.64317(2.70) 4.179 90020.050.1 f f f f ?+?×+×′≈==× 三.已知如下数据 x 3 4 5 6 7 8 ()f x 2.937 6 6.963 213.600 0 23.500 8 37.318 4 55.705 6

常用微分公式

(1)dx dx =nx n -1 ,n ∈N 。 (2)d x dx n x n N n n =∈-11 1,。 (3)dc dx =0,其中c 为常数。(4)(sin x )/=cos x (5)(cos x )/=-sin x 另一种表示:① (x n )/=nx n -1 ② /)(n x =1n 1 1-x ③ (c )/=0 证明: (2)设a 为f (x )=n x 定义域中的任意点, 则f /(a )=a x →lim f (x )-f (a ) x -a =a x →lim a x a x n n --=a x →lim ] )(....)())[((121---++?+--n n n n n n n n n n n a a x x a x a x =1) (1-n n a n =1n (n a -1)=1n (1 1-a ) (4)设a 为任意实数,f (x )=sin x f (x )-f (a )x -a = sin x -sin a x -a = a x a x a x -+-2cos 2sin 2 计算f /(a )= a x →lim f (x )-f (a )x -a =a x →lim ( a x a x a x -+-2cos 2sin 2)=cos a 。 (1)(3)(5)自证 (1)f (x )与g (x )为可微分的函数。?f (x )+g (x )为可微分的函数。 且d dx (f (x )+g (x ))= d dx (f (x ))+ d dx (g (x ))成立。 另一种表示:(f (x )+g (x ))/=f /(x )+g /(x ) 证明:令h (x )=f (x )+g (x ),设a 为h (x )定义域中的任一点 h /(a )=a x →lim h (x )-h (a )x -a =a x →lim a x a g a f x g x f ---+) ()()()( =a x →lim (f (x )-f (a )x -a + g (x )-g (a )x -a )=a x →lim (f (x )-f (a )x -a )+a x →lim (g (x )-g (a )x -a ) =f /(a )+g /(a ) 例:求=+)(35x x dx d ? 推论:dx d (f 1(x )+f 2(x )+...+f n (x )) = dx x df dx x df dx x df n )() ()(21+???++

实验4_数值积分与数值微分

数值分析实验报告四 数值积分与数值微分实验(2学时) 一 实验目的 1.掌握复化的梯形公式、Simpson 公式等牛顿-柯特斯公式计算积分。 2. 掌握数值微分的计算方法。 二 实验内容 1. 用复化梯形公式计算积分。 ?9 0dx x M=8 2. 用复化Simpson 公式计算积分。 ? 90dx x M=8 3. 给定下列表格值 利用四点式(n=3)求)50()50('''f f 和的值。 三 实验步骤(算法)与结果 1复化梯形公式 用C 语言编程如下: #include #include /*被积函数的定义*/ float f(float x) {

float y; y=sqrt(x); return y; } void main() { int i,m; float a,b,h,r; printf("输入等分数m:" ); scanf("%d",&m); printf("输入区间左端点a的值:"); scanf("%f",&a); printf("输入区间右端点b的值:"); scanf("%f",&b); float x[m+1]; h=(b-a)/m; for(i=0;i<=m;i++) x[i]=a+i*h; r=0; for(i=0;i<=m;i++) {if(i==0) r=r+h*0.5*f(x[i]); if(i>0&&i

if(i==m) r=r+0.5*h*f(x[i]); } printf("输出区间[%3.1f %3.1f]的积分值:%f\n",a,b,r); } 求解结果如下: 输入等分数m:8 输入区间左端点a的值:0 输入区间右端点b的值:9 输出区间[0.0 9.0]的积分值:17.769514 2复化Simpson公式 用C语言编程如下: #include #include /*被积函数的定义*/ float f(float x) { float y; y=sqrt(x); return y; } void main()

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

数值积分与微分方法

数值积分与微分 摘要 本文首先列举了一些常用的数值求积方法,一是插值型求积公式,以N e w t o n C o t e s -公式为代表,并分析了复合型的Newton Cotes -公式;另一个是Gauss Ledendre -求积公式,并给出几个常用的Gauss Ledendre -求积公式。其次,本文对数值微分方法进行分析,主要是差分型数值微分和插值型数值微分,都给出了几种常用的微分方法。然后,本文比较了数值积分与微分的关系,发现数值积分与微分都与插值或拟合密不可分。 本文在每个方法时都分析了误差余项,并且在最后都给出了MATLAB 的调用程序。 关键词:插值型积分Gauss Ledendre -差分数值微分插值型数值微分 MATLAB

一、常用的积分方法 计算积分时,根据Newton Leibniz -公式, ()()()b a f x dx F b F a =-? 但如果碰到以下几种情况: 1)被积函数以一组数据形式表示; 2)被积函数过于特殊或者原函数无法用初等函数表示 3)原函数十分复杂难以计算 这些现象中,Newton Leibniz -公式很难发挥作用,只能建立积分的近似计算方法,数值积分是常用的近似计算的方法。 1.1 插值型积分公式 积分中的一个常用方法是利用插值多项式来构造数值求积公式,具体的步骤如下: 在积分区间上[,]a b 上取一组节点:01201,,,,()n n x x x x a x x x b ≤<<≤ 。已知()k x f 的函数值,作()x f 的n 次插值多项式,则 (1) ()10()()()()() (1)!n n x n n k k n k f f L x R x f x l x w x n ++==+=++∑ 其中,()k l x 为n 次插值基函数,则得 (1)+10()(()())1 =[()]()[()](1)!b b n n a a n b b n k k n a a k f x dx L x R x dx l x dx f x f x w x dx n ξ+==+++? ?∑??() 公式写成一般形式: ()()[]n b k k n a k f x dx A f x R f ==+∑? 其中, 01100110 ()()()() ()()()()()b b k k k k a a k k k k k k x x x x x x x x A l x dx dx x x x x x x x x -+-+----==----?? (1)+11 [][()](1)!b n n n a R f f x w x dx n ξ+=+?() 显然,当被积函数f 为次数小于等于n 的多项式时,其相应的插值型求积公式为准确公式,即: ()() n b k k a k f x dx A f x ==∑? 1.1.1 求积公式的代数精度 定义:求积公式对于任何次数不大于m 的代数多项式()f x 均精确成立,而对于 1()m f x x +=不精确成立,则称求积公式具有m 次代数精度。 定理:含有1n +个节点(0,1,,)k x k n = 的插值型求积公式的代数精度至少为n 。

第7章 数值积分与数值微分

第七章数值积分与数值微分 积分问题最早来自于几何形体的面积、体积计算,也是经典力学中的重要问题(例如计算物体的重心位置). 在现实应用中,很多积分的结果并不能写成解析表达式,因此需要通过数值方法来计算. 数值微分是利用一些离散点上的函数值近似计算某一点处的函数导数,它针对表达式未知的函数. 本章介绍一元函数积分(一重积分)和微分的各种数值算法,它们也是数值求解积分方程、微分方程的基础. 7.1数值积分概论 7.1.1基本思想 考虑如下定积分的计算: I(f)≡∫f(x)dx b a ,(7.1) 其中函数f: ?→?,首先应想到的是微积分中学习过的牛顿-莱布尼兹(Newton-Leibniz)公式: ∫f(x)dx b a =F(b)?F(a) , 其中F′(x)=f(x),即F(x)为f(x)的原函数. 但是,诸如e x2,sinx x ,sinx2等表达式很简单的函数却找不到用初等函数表示的原函数,因此必须研究数值方法来近似计算积分. 另一方面,某些函数的原函数虽然可以解析表示,但其推导、计算非常复杂,此时也需要使用数值积分方法. 一般考虑连续的、或在区间[a,b]上可积①的函数f(x),则根据积分的定义有: lim n→∞,?→0∑(x i+1?x i)f(ξi) n i=0 =I(f) , (7.2) 其中a=x0

数值积分与数值微分

第5章数值积分与数值微分方法关于定积分计算,已经有较多方法,如公式法、分步积分法等,但实际问题中,经常出现不能用通常这些积分方法计算的定积分问题。怎样把这些通常方法失效的定积分在一定精度下快速计算出来,特别是通过计算机编程计算出来就是本章研究的内容。 此外,怎样根据函数在若干个点处的函数值去求该函数的导数近似值也是本章介绍的内容。 本章涉及的方法有Newton-Cotes求积公式、Gauss求积公式、复化求积公式、Romberg求积公式和数值微分。

5.1 引例

人造地球卫星轨道可视为平面上的椭圆。我国的第一颗人造地球卫星近地点距离地球表面439km ,远地点距地球表面2384km ,地球半径为6371km ,求该卫星的轨道长度。 本问题可用椭圆参数方程 cos ,,0sin x a t a b y b t π=?≤≤>?=? (0t 2) 来描述人造地球卫星的轨道,式中a, b 分别为椭圆的长短轴,该轨道的长度L 就是如下参数方程弧长积分 但这个积分是椭圆积分,不能用解析方法计算。 5.2问题的描述与基本概念

要想用计算机来计算()b a f x dx ?,应对其做离散化处 理。注意到定积分是如下和式的极限 1 ()lim ()n b i i a i f x dx f x λξ→==?∑? 要离散化,做 1) 去掉极限号lim 2) 将i ξ取为具体的i x 值 3) 为减少离散化带来的误差,将i x ?用待定系数i A 代替 于是就得到

定义 5.1 若存在实数1212,,,;,, ,,n n x x x A A A 且任 取()[,],f x C a b ∈都有 1 ()()n b i i a i f x dx A f x =≈∑? (5.1)

(完整word版)证明微积分基本公式

定义(定积分) 设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点 a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b 把闭区间[a ,b ]划分成n 个小区间 [x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ] 记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式 n n i i n i i i x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑= 称为函数f (x )在区间[a ,b ]上的积分和。记各小区间的最大长度为d = max{Δx i },如果对于区间 [a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为 ∑?=→=n i i i d b a x x f x x f 10Δ)(lim d )( 其中?为积分号,[a , b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。 上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定: (1)当a = b 时,规定0d )(=?a a x x f ; (2)当a > b 时,规定??-=a b b a x x f x x f d )(d )(。 可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。 定理1(可积的必要条件) 如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。 定理2(可积的充分条件) 1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。 2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。 3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。 引理(微分中值定理) 设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式 f (b ) ? f (a ) = f'(ξ)(b ? a ) 以上结论称为微分中值定理,等式称为微分中值公式。 设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。试利用微分中值定理和定积分的定义证明微积分基本公式 )()()(d )(a F b F x F x x f b a b a -==? 这个公式又称为牛顿-莱布尼茨公式。 证明:

导数基本常用公式及微分法则

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) x x e e =')( (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设 )(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? (反函数) 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数 )(x f y =在对应区间x I 内也可导,且)(1)(y x f ?'= ' 或 dy dx dx dy 1 = (复合函数) 设 )(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数 )]([x f y ?=的导数dx du du dy dx dy ? =或)()(x u f y ?'?'='。

一元函数微分公式

【大小】【打印】【关闭】启航考研数学系列精讲之二 一元函数积分的计算(一) 一元函数积分包括不定积分与定积分,以及作为定积分推广的广义积分. 对于不定积分需要掌握的,除了原函数与不定积分的概念与基本性质外,就是基本积分公式与两种基本积分方法。这是因为任何积分过程最终都要化为基本积分公式中已有的形式,否则就需要再进一步简化,而两种基本的积分方法,变量替换法(换元积分法)与分部积分法是简化积分的主要方法。除此之外,一些特殊的积分方法,如:有理函数积分法、三角函数有理式的积分法、某些简单无理式的积分法等,则是在特定情况下的特殊方法。 由于不定积分的计算是最基本的,它渗透于一切积分之中,所以这里将不单独予以讲述,而是将其融合于定积分的计算之中。为了帮助读者查找,在分类讲述例题之前将列出基本积分公式。 借助于牛顿—莱布尼兹(Newton—Leibniz)公式,定积分可化为被积函数的任一原函数在积分上限与下限两点函数值的差。这样,只要能求出原函数就解决了定积分的计算问题,而求原函数则是不定积分所解决的问题。然而,定积分的计算过程并不是分为求原函数与求原函数在上、下限函数值的差两个步骤,而是把两者结合起来。这样,如同不定积分一样,定积分也有两个基本方法,那就是变量替换法与分部积分法。 牛顿—莱布尼兹公式的基础是关于变限积分求导数的定理,同时在如何求极限的部分也涉及到,这里就不再重复了。 一、定积分的变量替换法 定理设f(x)在区间[a,b]上连续,代换x=Ф(t)满足条件:

(1)Ф’(t)在[α,β]上连续; (2)Ф(α)=a,Ф(β)=b,并且当α≤t≤β时,a≤Ф(t)≤b, 则(1) 注 (1)在定理的叙述中,,,定义于区间[α,β],说明呈上升趋势.实际上,呈下降趋势也是一样的,亦即定理中的区间[α,β],刖改为[β,α]。 (2)在定积分作变量替换时,一定要同时更换积分限,而且积分限的更换可以采用表格形式表示。 (3)不定积分的变量替换有第一与第二换元法之分。相应于第二换元积分法就是公式(1)中左端的x换成右端的t;相应于第一换元积分法(凑微分法)就是把右端的t换成左端的x。 几种常用的凑微分形式: (1) (2) (3) (4) (5)

常用微积分公式大全

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为, 故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分

下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

分析:将按三次方公式展开,再利用幂函数求积公式. 解: (为任意常数) 例4 求不定积分. 分析:用三角函数半角公式将二次三角函数降为一次. 解: (为任意常数) 例5 求不定积分. 分析:基本积分公式表中只有 但我们知道有三角恒等式: 解:

数值积分与微分方程

2.3 数值积分 2.3.1 一元函数的数值积分 函数1 quad 、quadl 、quad8 功能 数值定积分,自适应Simpleson 积分法。 格式 q = quad(fun,a,b) %近似地从a 到b 计算函数fun 的数值积分,误差为10-6。 若给fun 输入向量x ,应返回向量y ,即fun 是一单值函数。 q = quad(fun,a,b,tol) %用指定的绝对误差tol 代替缺省误差。tol 越大,函数计 算的次数越少,速度越快,但结果精度变小。 q = quad(fun,a,b,tol,trace,p1,p2,…) %将可选参数p1,p2,…等传递给函数 fun(x,p1,p2,…),再作数值积分。若tol=[]或trace=[],则用缺省值进行计算。 [q,n] = quad(fun,a,b,…) %同时返回函数计算的次数n … = quadl(fun,a,b,…) %用高精度进行计算,效率可能比quad 更好。 … = quad8(fun,a,b,…) %该命令是将废弃的命令,用quadl 代替。 例2-40 >>fun = inline(‘3*x.^2./(x.^3-2*x.^2+3)’); equivalent to: function y=funn(x) y=3*x.^2./(x.^3-2*x.^2+3); >>Q1 = quad(fun,0,2) >>Q2 = quadl(fun,0,2) 计算结果为: Q1 = 3.7224 Q2 = 3.7224 补充:复化simpson 积分法程序 程序名称 Simpson.m 调用格式 I=Simpson('f_name',a,b,n) 程序功能 用复化Simpson 公式求定积分值 输入变量 f_name 为用户自己编写给定函数()y f x 的M 函数而命名的程序文件名 a 为积分下限 b 为积分上限 n 为积分区间[,]a b 划分成小区间的等份数 输出变量 I 为定积分值 程序 function I=simpson(f_name,a,b,n) h=(b-a)/n; x=a+(0:n)*h; f=feval(f_name,x);

相关文档