文档库 最新最全的文档下载
当前位置:文档库 › 2014高三数学理科单元过关自测(九)数列,不等式,数学归纳法

2014高三数学理科单元过关自测(九)数列,不等式,数学归纳法

2014高三数学理科单元过关自测(九)数列,不等式,数学归纳法
2014高三数学理科单元过关自测(九)数列,不等式,数学归纳法

第 1 页 共 4 页

2014高三数学理科单元过关自测(九)

考查:数列、不等式、数学归纳法 一、选择题:

1、不等式2210x x -->的解集是( )

A .),(12

1

- B.),(∞+1 C .),(),(∞+∞-21 D .),(),(∞+-∞-12

1 2.下列命题中正确的是 ( )

A.x

x y 1

+

=的最小值是2 B.x x y x sin 2sin ),,0(+=∈π的最小值是22

C.4

522

++=x x y 的最小值是2 D.+

∈R x ,x x y 432--=的最大值是342-

3.设S n 是等差数列{a n }的前n 项和,若

35a a =9

5

,则59S S =( ). A .1

B .-1

C .2

D .2

1

4.已知数列{}n a 的前n 项和2

9n S n n =-,第k 项满足58k a <<,则k =( )

A. 9

B. 8

C. 7

D. 6

5、 对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为 ( )

(A)k<3

(B)k<-3

(C)k ≤3

(D) k ≤-3

6、已知平面直角坐标系xOy 上的区域D 由不等式组0222x y x y

?≤≤?

≤??

≤?给定,若(),M x y 为D 上的动点,点A 的坐标

为()

2,1,则z OM OA =?

的最大值为( )

A .3

B .4

C .32

D .42

7、已知),2(24

13

21...2111N n n n n n ∈≥>+++++过程中,由"1"""+==k n k n 变到时,不等式左边的变化是( )

A .)1(21++k

B .11221121+-++++k k k

C .1

1

221+-++k k D .)1(21121++++k k

8、如果c bx x x f ++=2

)(对于任意实数t 都有)3()3(t f t f -=+,那么( )

A .)4()1()3(f f f <<

B .)4()3()1(f f f <<

C .)1()4()3(f f f <<

D .)1()3()4(f f f <<

班别: 姓名: 学号: 成绩:

一、选择题答案

1 2 3 4 5 6 7 8

二、填空题

9. 不等式1|3

1

|

≥-+x x 的解集是 . 10. 已知递增的等差数列{}n a 满足2

1321,4a a a ==-,则_____n a =

11、已知变量x ,y 满足约束条件30

111x y x y -+≥??

-≤≤??≥?

则z x y =+的最大值是________。

12、不等式ax 2+bx +12>0的解集为{x |-3<x <2},则a =_______, b =________。

13.若方程4(3)20x

x

m m +-?+=有两个不相同的实根,求m 的取值范围 。 14、观察下列式子:

1+122<32,1+122+132<53,1+122+132+142<7

4

,…,则可归纳出____________________. 三、解答题

15.已知关于x 的不等式(m 2+4m-5)x 2-4(m-1)x+3>0对一切实数x 恒成立,求实数m 的取值范围。

16、已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =2

11

n a -(n ∈N *

),求数列{}n b 的前n 项和n T .

第 2 页 共 4 页

17.某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C 。另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C 。

如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?

18.已知数列{}n a 满足11

228(1)8

(21)(23)9

n n n a a a n n ++=+=++,,求数列{}n a 的通项公式。

附加题:19. 已知二次函数t t t t y l c bx ax x f .20(8:,)(2

12≤≤+-=++=其中直线为常数);2:2=x l .若直线l 1、l 2与函数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示. (Ⅰ)求a 、b 、c 的值;

(Ⅱ)求阴影面积S 关于t 的函数S (t )的解析式;

(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m ,使得y=f (x )的图象与y=g (x )的图象有且只有两个不同的

交点?若存在,求出m 的值;若不存在,说明理由.

高二数学归纳法证明不等式

第四讲:数学归纳法证明不等式 数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。 本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比及猜想、抽象及概括、从特殊到一般等数学思想方法。 在用数学归纳法证明不等式的具体过程中,要注意以下几点: (1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是 左端)项数的变化,也就是要认清不等式的结构特征; (2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置; (4)有的试题需要先作等价变换。 例题精讲 例1、用数学归纳法证明 n n n n n 212111211214131211+++++=--++-+- 分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明: 1 当n=1时,左边=1-21=21,右边=111+=21 ,所以等式成立。

2假设当n=k 时,等式成立, 即 k k k k k 212111211214131211+++++=--++-+- 。 那么,当n=k+1时, 221121211214131211+-++--++-+- k k k k 221121212111+-+++++++=k k k k k )2 2111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21 121213121+++++++++= k k k k k 这就是说,当n=k+1时等式也成立。 综上所述,等式对任何自然数n 都成立。 点评: 数学归纳法是用于证明某些及自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确. 要证明的等式左边共2n 项,而右边共n 项。f(k)及f(k+1)相比较,左边增加两项,右边增加一项,并且二者右边的首项也不一样,因此 在证明中采取了将11+k 及221 +k 合并的变形方式,这是在分析了f(k) 及f(k+1)的差异和联系之后找到的方法。 练习: 1.用数学归纳法证明3k ≥n 3(n≥3,n∈N)第一步应验证( )

2019年高考数学二轮复习试题:专题六 第4讲 用数学归纳法证明数列问题(带解析)

第4讲用数学归纳法证明数列问题 选题明细表 知识点·方法巩固提高A 巩固提高B 数学归纳法的理解1,2,5 1 数学归纳法的第一步3,7 2,7 3,4,5,6,8, 数学归纳法的第二步4,6,10,12 9,12 类比归纳8,9,11 10,11 数学归纳法的应用13,14,15 13,14,15 巩固提高A 一、选择题 1.如果命题P(n)对n=k成立,则它对n=k+2也成立,若P(n)对n=2也成立,则下列结论正确的是( B ) (A)P(n)对所有正整数n都成立 (B)P(n)对所有正偶数n都成立 (C)P(n)对所有正奇数n都成立 (D)P(n)对所有正整数n都成立 解析:由题意n=k时成立,则n=k+2时也成立,又n=2时成立,则P(n)对所有正偶数都成立.故选B. 2.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立.”那么,下列命题总成立的是( D )

(A)若f(2)≤4成立,则当k≥1时,均有f(k)≤k2成立 (B)若f(4)≤16成立,则当k≤4时,均有f(k)≤k2成立 (C)若f(6)>36成立,则当k≥7时,均有f(k)>k2成立 (D)若f(7)=50成立,则当k≤7时,均有f(k)>k2成立 解析:若f(2)≤4成立,依题意则应有当k≥2时,均有f(k)≤k2成立,故A不成立; 若f(4)≤16成立,依题意则应有当k≥4时,均有f(k)≤k2成立,故B不成立; 因命题“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立”?“当f(k+1)>(k+1)2成立时,总可推出f(k)>k2成立”;因而若f(6)>36成立,则当k≤6时,均有f(k)>k2成立 ,故C也不成立; 对于D,事实上f(7)=50>49,依题意知当k≤7时,均有f(k)>k2成立,故D成立. 3.若f(n)=1+++…+(n∈N*),则f(1)为( C ) (A)1 (B) (C)1++++(D)非以上答案 解析:注意f(n)的项的构成规律,各项分子都是1,分母是从1到6n-1的正整数, 故f(1)=1++++.故选C. 4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从k到k+1时,左端需增乘的代数式为( B ) (A)2k+1 (B)2(2k+1) (C)(D) 解析:n=k时左边为(k+1)(k+2)…(k+k),n=k+1时左边为(k+2)(k+3)…(k+k+2),

数列极限数学归纳法综合能力训练

1 mn 4(m n) mn 2(m n) 【综合能力训练】 一、选择题 1?数列{a n }是等比数列,下列结论中正确的是( ) A. a n ? a n+1 >0 B. a n ? a n+1 ? a n+2>0 C. a n ? a n+2 >0 D. a n ? a n+2 ? a n+4>0 2.在等比数列{a n }中,a 1=sec 0 ( B 为锐角),且前n 项和S n 满足lim S n = ,那么B 的 n a 1 取值范围是( ) A. (0, ) B. (0, ) C. (0, ) D. (0, 2 3 6 4 3.已知数列{a n }中,a n =p^ (n € N ),则数列{a n }的最大项是( ) n 156 A.第12项 B.第13项 C.第 项或13 . D.不存在 4.三个数成等差数列,如果将最小数乘 2,最大数加上 7,所得三数之积为 1000,且成 等比数列,则原等差数列的公差一定是( ) A.8 B.8 或—15 C. ± 8 D. ± 15 112 1 2 3 1 2 9 1 5.已知数列{a n }: , + , + +-, + + …+ ” , ... 那么数列{ 2 3 3 4 4 4 10 10 10 a n ?a n 1 的所有项的和为( ) A.2 B.4 C.3 D.5 n 1 | n n 1 . n 6.已知a 、b € —?a -> lim n ,贝V a 的取值范围是( ) n a n a A. a>1 B. — 11 D.a>1 或一1O ,且 |a 10|<|an|, S n 为其前 n 项之和, 则() A. S 1,S 2,…, S 10都小于零,S 11, S 12, …都大于零 B. S 1,S 2,…, S 5都小于零,S 6, S 7,… 都大于零 C. S 1,S 2,…, S 19都小于零,S 20, S 21 , …都大于零 D. S 1,S 2,…, S 20都小于零,S 21 , S 22 , …都大于零 9.将自然数1, 2, 3,…,n ,…按第k 组含k 个数的规则分组: (1), (2, 3), (4, 5, 6),…,那么1996所在的组是( ) A.第62组 B.第63组 C.第64组 D.第65组 10.在等差数列中,前 n 项的和为S n ,若 S m =2n,S n =2m,(m 、 n € N 且m ^ n ),则公差d 的 值为( )

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

用数学归纳法证明不等式

用数学归纳法证明不等式 在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫) (2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx. 师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑. 师:现将命题转化成如何证明不等式 (1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x. 提问:证明不等式的基本方法有哪些? (学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结) 师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k +1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立. (通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)例2证明:2n+2>n2,n∈N+. 证:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立. (2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2. 现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立. 师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立. 师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证? 师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书) (2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k +2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0) ≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立. 师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证

数列、极限、数学归纳法 归纳、猜想、证明 教案

数列、极限、数学归纳法·归纳、猜想、证明·教案 张毅 教学目标 1.对数学归纳法的认识不断深化. 2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法. 3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系.教学重点和难点 用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明. 教学过程设计 (一)复习引入 师:我们已学习了数学归纳法,知道它是一种证明方法.请问:它适用于哪些问题的证明? 生:与连续自然数n有关的命题. 师:用数学归纳法证明的一般步骤是什么? 生:共有两个步骤: (1)证明当n取第一个值n0时结论正确; (2)假设当n=k(k∈N,且k≥n0)时结论正确,证明当n=k+1时,结论也正确. 师:这两个步骤的作用是什么? 生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程. 师:这实质上是在说明这个证明具有递推性.第(1)步是递推的始点;第(2)步是递推的依据.递推是数学归纳法的核心.用数学归纳法证题时应注意什么? 生:两个步骤缺一不可.证第(2)步时,必须用归纳假设.即在n=k成立的前提下推出n=k+1成立.师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题. 今天,我们一起继续研究解决一些与连续自然数有关的命题.请看例1. (二)归纳、猜想、证明 1.问题的提出 a3,a4,由此推测计算an的公式,然后用数学归纳法证明这个公式. 师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理.(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上) 师:正确.怎么推测an的计算公式呢?可以相互讨论一下.

专题06 数列与数学归纳法(原卷版)

1 专题6.数列与数学归纳法 数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合. 预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合 . 1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0, 11a d ≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能... 成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b = 2.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +??????就是二阶等差数列,数列(1)2n n +?????? (N )n *∈ 的前3项和是________. 3.(2020·浙江省高考真题)已知数列{a n },{b n },{c n }中,111112 1,,()n n n n n n n b a b c c a a c c n b +++====-= ?∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d +++<+.*()n N ∈ 4.(2020·天津高考真题)已知{}n a 为等差数列,{}n b 为等比数列, ()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;

归纳法证明不等式

归纳法证明不等式 数学归纳法证明不等式的本质 数学归纳法证明不等式的典型类型是与数列或数列求和有关的问题,凡是与数列或数列求和有关的问题都可统一表述成f(n)?g(n)(n?n?)的形式或近似于上述形式。 这种形式的关键步骤是由n?k时,命题成立推导n?k?1时,命题也成立。为了表示的方便,我们记?左n?f(k?1)?f(k),?右n?g(k?1)?g(k)分别叫做左增量,右增量。那么,上述证明的步骤可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 例1.已知an?2n?1,求证: 本题要证后半节的关键是证 an1a1a2n????n?(n?n?) 23a2a3an?12 2k?1?11?中k??右k即证k?2? 2?12 而此式显然成立,所以可以用数学归纳法证明。 而要证前半节的关键是证 12k?1?1?左k??中k即证?k?2 22?1 而此式显然不成立,所以不能用数学归纳法证明。如果不进行判断就用数学归纳法证前半节,忙乎半天,只会徒劳。 有时,f(n)?g(n)(n?n?)中f(n),g(n)是以乘积形式出现,且f(n)?0,g(n)?0是显然成立的。此时,可记 ?左k?f(k?1)g(k?1),?右k? f(k)g(k) 分别叫做左增倍,右增倍。那么,用数学归结法证明由n?k时,成立推导 n?k?1成立,可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 和前面所讲相似,上述四步中,两个“=”和“<”都显然成立,而“≤”是否成立,就需要判断和证明了,既“?左k??右k”若成立,既可用数学归纳法证明;若不成立,则不能用数学归纳法证明。因此,可以这样说,此时,数学归纳法证明不等式的本质是证“左增倍≤右增倍”,而判断能否用数学归纳法证明不等式的标准就是看“左增倍≤右增倍”是否成立。 第二篇:归纳法证明不等式

高考一轮复习之数列与数学归纳法

43 / 1843 / 18 第三章 数列及数学归纳法 知识结构 高考能力要求 1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2、理解等差数列的概念,掌握等差数列的通项公式及前n 项和的公式,并能解决简单的实际问题. 3、理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式,并能解决简单的实际问题. 4、理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 高考热点分析 纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列及函数、三角、解析几何、组合数的综合应用问题是命题热点. 从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的 “知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用. 高考复习建议 数列部分的复习分三个方面:① 重视函数及数列的联系,重视方程思想在数列中的应用.② 掌握等差数列、等比数列的基础知识以及可化为等差、等比数列的简单问题,同时要重视等差、等比数列性质的灵活运用.③ 要设计一些新颖题目,尤其是通过探索性题目,挖掘学生的潜能,培养学生的创新意识和创新精神,数列综合能力题涉及的问题背景新颖,解法灵活,解这类题时,要引导学生科学合理地思维,全面灵活地运用数学思想方法. 数列部分重点是等差、等比数列,而二者在内容上是完全平行的,因此,复习时应将它们对比起来复习;由于数列方面的题目的解法的灵活性和多样性,建议在复习这部分内容时,要启发学生从多角度思考问题,提倡一题多解,培养学生思维的广阔性,养成良好的思维品质. 3.1 数列的概念 知识要点 1.数列的概念 数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n }的函数f (n ).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项. 2.数列的通项公式 一个数列{a n }的 及 之间的函数关系,如果可用一个公式a n =f (n )来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 及通项a n 的关系为: = n a ?? ? ??≥==21n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列及等比数列采用首项及公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.

选修4-5学案§4.1.1数学归纳法证明不等式

选修4-5学案 §4.1.1数学归纳法证明不等式 姓名 ☆学习目标:1. 理解数学归纳法的定义、数学归纳法证明基本步骤; 2. 会运用数学归纳法证明不等式 重点:应用数学归纳法证明不等式. ?知识情景: 关于正整数n 的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性: 10. 验证n 取 时命题 ( 即n =n 时命题成立) (归纳奠基) ; 20. 假设当 时命题成立,证明当n=k +1时命题 (归纳递推). 30. 由10、20知,对于一切n ≥n 的自然数n 命题 !(结论) 要诀: 递推基础 , 归纳假设 , 结论写明 . ☆ 数学归纳法的应用: 例1. 用数学归纳法证明不等式sin sin n n θθ≤. 例2已知x > -1,且x ≠0,n ∈N*,n ≥2.求证:(1+x )n >1+nx .

例3 证明: 如果(n n 为正整数)个正数12,,,n a a a 的乘积121n a a a = , 那么它们的和12n a a a n +++ ≥. 例4 证明:2 2 2 111112(,2).2 3 ≥n N n n n + + +?+ <- ∈

例5.当2n ≥时,求证:1 + +++ > 选修4-5练习 §4.1.1数学归纳法证明不等式(1) 姓名 1、已知f(n)=(2n+7)·3n +9,存在自然数m,使得对任意n ∈N,都能使m 整除f(n),则最大的m 的 值为( ) A.30 B.26 C.36 D.6 2、.观察下列式子:2 2 2 2 2 1311511171, 1, 1222 3 32 3 4 4 + < + +< + ++<

数列与数学归纳法专项训练(含答案)(新)

数列与数学归纳法专项训练 1.如图,曲线2 (0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…△Q n-1P n Q n …设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1)求1a 的值; (2)求数列{n a }的通项公式n a 。 w.w.w.k.s.5.u.c.o.m 2. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有2 1,,n n n a b a +成等差数列, 2211,,n n n b a b ++成等比数列. (1)试问{}n b 是否成等差数列?为什么? (2)如果111,2a b ==,求数列1n a ?? ???? 的前n 项和n S . 3. 已知等差数列{n a }中,2a =8,6S =66. (Ⅰ)求数列{n a }的通项公式; (Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥1 6 .

4. 已知数列{n a }中5 3 1=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-= n n a b (+∈N n ) (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求 )1(lim -∞→n b n n . 5. (Ⅰ (Ⅱ (Ⅲn 项的 6. (1(2 7. 已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意* ∈N n ,都有 n n pa p S p -=?-)1((p 为大于1的常数),并记 n n n n n n n S a C a C a C n f ??++?+?+=21)(2211 .

高中奥数_函数 不等式 数列 极限 数学归纳法

函数 不等式 数列 极限 数学归纳法 一 能力培养 1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨 问题1数列{n a }满足112 a =,212n n a a a n a ++???+=,(n N *∈). (I)求{n a }的通项公式; (II)求1100n n a -的最小值; (III)设函数()f n 是 1100n n a -与n 的最大者,求()f n 的最小值. 问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件: 1a a =,1()n n a f a -= (n =2,3,4,???),21a a ≠, 1()()n n f a f a --=1()n n k a a --(n =2,3,4,???),其中a 为常数,k 为非零常数. (I)令1n n n b a a +=-(n N * ∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞. 问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ?,PM PN ?,NM NP ?成公差小 于零的等差数列. (I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ.

三 习题探讨 选择题 1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是 A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b = A, 23 B,2131n n -- C,2131 n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是 A, B, C, D, 4在等差数列{}n a 中,1125 a = ,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是 A,475t > B,837525t <≤ C,437550t << D,437550t <≤ 5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22 221x y a b +=(0a b >>)上三个点,F 为焦点, 若,,AF BF CF 成等差数列,则有 A,2132x x x =+ B,2132y y y =+ C,213 211x x x =+ D,2213x x x =? 6在ABC ?中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以 13为 第三项,9为第六项的等比数列的公比,则这个三角形是 A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空 7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = . 8223323232323236666n n n n S ++++=+++???+,则lim n n S →∞= . 9在等比数列{}n a 中,121lim()15 n n a a a →∞++???+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前 2m 项之和2m S = . 11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <,

(浙江专版)2019版高考数学大一轮复习第七章数列与数学归纳法第2节等差数列及其前n项和学案理

第2节 等差数列及其前n 项和 最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系. 知 识 梳 理 1.等差数列的概念 (1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N * ,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). (2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2 . 2.等差数列的通项公式与前n 项和公式 (1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N * ). (2)等差数列的前n 项和公式 S n =n (a 1+a n )2 =na 1+n (n -1)2 d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的有关性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和. (1)若m +n =p +q (m ,n ,p ,q ∈N * ),则有a m +a n =a p +a q . (2)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当 d =0时,{a n }是常数列. (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N * )是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 4.等差数列的前n 项和公式与函数的关系 S n =d 2 n 2+? ?? ??a 1-d 2n .

新人教A版高中数学选修45数学归纳法证明不等式教案

整合提升 知识网络 典例精讲 数学归纳法是专门证明与自然数集有关的命题的一种方法.它可用来证明与自然数有关的代数恒等式、三角恒等式、不等式、整除性问题及几何问题.在高考中,用数学归纳法证明与数列、函数有关的不等式是热点问题,特别是数列中的归纳—猜想—证明是对观察、分析、归纳、论证能力有一定要求的,这也是它成为高考热点的主要原因. 【例1】设n ∈N *且n≥2,求证:1+ n n >+++13121 恒成立. 证明: ①n=2时,左边=1+22 2>=右边,原不等式成立; ②设n=k(k≥2)时原不等式成立, 即1+k k >+ ++131 21 . 当n=k+1时,有1+=++>++++1111131 21 k k k k 即n=k+1时原不等式成立. 由①②,可知对于任何n ∈N *(n≥2)原不等式成立. 【例2】设a 1,a 2,a 3,…,a n ∈R 且0a 1+a 2+…+a n +1-n(n≥2,n ∈N *). 证明:①n=2时,∵(1-a 1)(1-a 2)>0, ∴a 1a 2>a 1+a 2+1-(1+1)成立. ②设n =k(n≥2)时原不等式成立, 即a 1a 2…a k >a 1+a 2+…+a k+1-k 成立, 则a 1a 2…a k +a k+1-1>a 1+a 2+…+a k +a k+1+1-(k+1)成立. ∴要证明n=k+1时原不等式成立, 即a 1a 2…a k a k+1>a 1+a 2+…+a k+1+1-(k+1)成立, 只需证明不等式 a 1a 2…a k a k+1>a 1a 2…a k +a k+1-1(*)成立. 要证明不等式(*)成立,只需证明 (a 1a 2…a k -1)(a k+1-1)>0. 又∵00成立. ∴不等式(*)也成立,即n=k+1时原不等式成立. 由①②可知对于任何n ∈N *(n≥2)原不等式成立. 温馨提示 当“假设不等式”直接向“目标不等式”过渡有困难时,可以先找一个介于“假设不等式”和“目标不等式”之间的“中途不等式”.通过对“中途不等式”的证明,实现由“假设不等式”到“目标不等式”的平稳过渡.而这个“中途不等式”仅起到桥梁作用.本例关键是尽快由“假设不等式”得

数列的极限数学归纳法

数列的极限、数学归纳法 一、知识要点 (一) 数列的极限 1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作 A a n n =∞ →lim . 2.运算法则:若lim n n a →∞ 、lim n n b →∞ 存在,则有 lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ±=±;lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ?=? )0lim (lim lim lim ≠=∞→∞ →∞→∞→n n n n n n n n n b b a b a 3.两种基本类型的极限:<1> S=?? ? ??-=>=<=∞ →)11() 1(1) 1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、 p b 且)(0)(N n n g ∈≠,则??? ????>=<=∞→)()() (0)()(lim q p q p b a q p n g n f q p n 不存在 4.无穷递缩等比数列的所有项和公式:1 1a S q = - (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞ = (当lim n n S →∞ 存在时) (二)数学归纳法 数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。 ②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。 二、例题(数学的极限)

高考数学复习数列与数学归纳法 汇编

数列与数学归纳法 一、填空题 (杨浦区2013文理)1. 计算:=+∞→1 33lim n n n .1 1. 计算:= 3 . 4、已知{}n a 是公比为2的等比数列,若316a a -=,则n a a a +++Λ21 = 221-+n (2014年1月青浦)各项为实数的等比数列中7191,8a a =-=-,则13a = (2014年1月青浦)已知lim(1)1n n q →∞ -=,则实数q 的取值范围是 11q -<< . 221lim 2n n n n →∞+=-____1 2 _______. 已知数列{}n a 中,11a =,* 13,(2,)n n a a n n N -=+≥∈,则n a =___32n -________. 5.已知为等差数列,其前项和为.若,35a =,64n S =,则n = 8 . 10、数列()*241N n a a n n ∈+-=+,如果{}n a 是一个等差数列,则=1a 3 6. 如果()那么共有28项. 4.已知数列}{n a 的前n 项和2 n S n =(*N ∈n ),则8a 的值是__________.15 8.若等差数列的首项为2,公差为,其前项和满足:对于任意的, 都有 是非零常数.则 .4 8.若公差为的等差数列的项数为奇数,,的奇数项的和是175,偶数项 的和是150,则 .4 10.函数x a y =(0>a ,1≠a )的图像经过点?? ? ??41, 2P ,则=+++∞→)(lim 2n n a a a Λ______ 1 11.设等比数列}{n a 的前n 项和为n S ,且55S a =,则=2014S ________0 210lim 323x n n →∞++{}n a n n S 11a =()1111112312 n f n n n =+ +++++++L L *n N ∈()()1f k f k +-{}n a )0(≠d d n n S * ∈N n n n S S 2=d d {}n a 11=a {}n a =d

相关文档
相关文档 最新文档