文档库 最新最全的文档下载
当前位置:文档库 › 天然气水合物的危害与防止

天然气水合物的危害与防止

天然气水合物的危害与防止
天然气水合物的危害与防止

天然气水合物的危害与防止

一、天然气水合物

在一定的温度和压力条件下,含水天然气可生成白色致密的结晶固体,称为天然气水合物(NGHnaturalgashydrate),其密度约为

0.88~0.99g/cm3。天然气水合物是水与烃类气体的结晶体,外表类似冰和致密的雪,是一种笼形晶状包络物,即水分子借氢键结合成笼形晶格,而烃类气体则在分子间作用力下被包围在晶格笼形孔室中。NGH 共有两种结构,低分子的气体(如CH4,C2H6,H2S)的水合物为体心立方晶格;较大的气体分子(如C3H8,iC4H10)则是类似于金钢石的晶体结构。当气体分子充满全部晶格的孔室时,天然气各组分的水合物分子式可写为CH4·6H20,C2H6·6H20,C3H8·17H20,iC4H10·17H20,H2S·6H20,CO2·6H20。水合物是一种不稳定的化合物,一旦存在的条件遭到破坏,就会分解为烃和水。天然气水合物是采输气中经常遇到的一个难题之一。

二、天然气水合物的危害及成因

1.天然气水合物的危害

在天然气管道输送过程中,天然气水合物是威胁输气管道安全运行的一个重要因素。能否生成水合物与天然气组成(包括含水量)、压力、温度等条件有关。天然气通过阻力件(如节流阀、调压器、排污阀等)时,天然气压力升高,气体温度下降。温度的降低会使管路、阀门、过滤器及仪表结霜或结冰降低管道的输送效率,严重时甚至会堵塞管道,以导致管道上游压力升高,引起不安全的事故发生,造成设备及人员的伤害,从而影响正常供气。天然气水合物一旦形成后,它与金属结合牢固,会减少管道的流通面积,产生节流,加速水合物的

进一步形成,进而造成管道、阀门和一些设备的堵塞,严重影响管道的安全运行。我国某长距离输气管道,在投产后多次出现水合物堵塞。因此,研究和讨论天然气输送过程中水合物的防治和处理,对保障天然气管道的安全运行具有十分重要的实际意义。 2.形成天然气水合物的条件(1)形成天然气水合物的必要条件①气体处于水汽的饱和或过饱和状态并存在游离水;②有足够高的压力和足够低的温度。管道中有水是形成天然气水合物的必要条件之一。天然气水合物是天然气与水在一定条件下形成的一种类似冰雪的白色结晶体。形成天然气水合物的首要条件是管道内有液态水或者天然气的水蒸气分压接近饱和状态。第二是管道内的天然气要有足够高的压力和足够低的温度。

天然气中水汽含量取决于压力、温度和气体的组成。在压力不变的条件下,天然气的温度越高,气中水汽含量越大;在温度不变的条件下,天然气中水汽的含量随压力的升高而减少;天然气的相对分子质量越大,则单位体积内的水汽含量就越少;当天然气中含有氮气时,水汽含量减少;而含有重烃、二氧化碳和硫化氢时,水汽含量将增大。天然气的含水特性,可以用绝对湿度、相对湿度和水露点来表示。当湿天然气中存在液态水分时,在管道中所形成的液滴,由于在阀门、弯头、三通等地方同管壁相碰撞成为粉末而这些液末同气体混在一起并一道流动,黏附在管道的内表面上成为液膜,在高压低温条件下,就在管壁形成一层水合物,水合物便一层层地加厚,使管道内径变小,甚至将管道堵死。在实际生产中,脱水就是降低天然气中的水汽含量,即降低天然气的水露点。水合物形成的临界温度是水合物可能存在的最高温度,高于此温度,不论压力多高,也不会形成水合

物,表4-4是气体生成水合物的临界温度。表4-4不同气体形成水合物的临界温度

气体CH4C2H6C3H8i-C4H10n-C4H10CO2H2S临界温度

/℃21.514.55.52.51.01029

(2)形成天然气水合物的辅助条件

天然气流速和方向改变是形成天然气水合物的辅助条件,如弯头、阀门、孔板和其他局部阻力大的地方,因压力的脉动、流向的突变,特别是节流阀、分离器入口、阀门关闭不严处及压缩机出口等处气体节流的地方,由于焦耳一汤姆逊效应而使气体温度急剧降低,会加速水合物的形成。

三、预防天然气水合物的方法

(一)天然气水合物的预防

形成天然气水合物需要有足够的高压、低温和游离水。长距离输气管道防止水合物生成的措施主要有两方面:一方面除去天然气中携带的水分,使其水蒸气分压降低到不能生成水合物的水平;另一方面是清除天然气管道中的存水。目前,高压天然气管道在敷设施工结束后都要采用水压试验,投产前彻底清除管道残留的水并进行干燥是防止生成水合物和避免管道腐蚀的必要措施。

由于水合物是一晶状固体物质,且极易在天然气管道的阀门、分离器入口、管线接头及三通等处形成,从而造成水合物堵塞,影响天然气管道的安全运行和正常输送。因而,必须采取措施防止其形成,根据水合物的形成条件,天然气中饱和着水汽是形成水合物的内因,温度和压力的变化是形成水合物的外因,防止水合物形成主要从形成水合物的内因、外因两方面考虑。

为预防天然气管道中水合物的形成,主要采取以下方法:

①天然气进入输气管道之前应进行充分脱水,使天然气水露点低于管线周围介质最低温度5~7℃,这是预防形成水合物及冰堵的根本方法。②天然气进入输气管道时应进行必要的监督、检测,由供气方定期提供气质化验单(内容有天然气露点、水分、天然气成分等),防止水及污物的进入。③向输气管道中添加化学反应剂,吸收天然气的水分,降低天然气的水露点。④在输气管道的天然气入口处应安装除液器,并适当缩短除液器、分离器排水、排污周期。

⑤场站的调压阀、分离器、除液器等易产生冰堵部位加电伴热或水加热。(二)天然气净化脱水常用的天然气脱水方法有三类:低温分离、固体干燥剂吸附和液体吸收。 1.低温分离脱水高压天然气经过节流膨胀造成低温,使水分离出来。这种方法适于高压气田,高压天然气节流降压后仍高于输气所需的压力,温度降低脱水后不至于生成水合物。

为了彻底防止水合物,对降低露点及除水要求高的情况,有的在低温分离后还要进一步加入甲醇、乙二醇等水合物抑制剂。 2.固体干燥吸附脱水利用多孔性的固体干燥吸附天然气中的水蒸气,常用的吸附剂有硅胶、活性氧化铝、分子筛等。干燥剂吸附饱和后进行再生,然后重复使用。 3.液体吸收脱水常用的吸附剂有二甘醇、三甘醇等。在吸收塔中吸附剂与天然气接触,吸水后稀释,进入再生塔中蒸发出水分,再重复使用。天然气被脱水干燥。

各种脱水方法都有其特点和适用范围,需要根据脱水要求、投资及运行费用以及管输天然气的组分特点等条件来选择经济合理的方法。

天然气脱水在气田的天然气净化处理厂进行,除脱水以外,还要

除尘、脱硫、脱二氧化碳、脱轻烃,使气质符合管输天然气的标准要求。再将合格的天然气输送到长输管道的首站或进气站入口管道。(三)输气管道干燥管道中残留的液态水是造成管道腐蚀的主要原

因。天然气中的少量酸性气体如H2S、CO2等在有水的条件下能生成酸性物质,使管道内部产生危害较大的应力腐蚀。内部腐蚀是影响管道

系统使用寿命及其可靠性的重要因素,是造成管道事故的重要原因。

据资料报道,前苏联在1981~1990年10年间,内部腐蚀引起事故52次,占事故总数的6.9%;美国在1970~1984年14年间,内部腐蚀引起事故428次,占事故总数的7.3%。

其次,管道中液态水是形成天然气水合物的必要条件之一。管道

中的液态水在低温时会造成管道低洼处的冰堵,冰堵的产生会影响管

道的安全运行。管内积水如果形成冰堵,则影响输气量,严重时会造

成停输的重大事故。

综上所述,天然气长输管道中的液态水危害性极大,在管道投入

运行之前,必须进行除水和干燥处理,使管道内空气水露点达到规定

的要求,从以往经验来看,新建输气管道普遍存在气质差的问题,主

要原因是管道内积水进入天然气中造成的,这给企业造成很大的经济

损失和影响。因此输气管道在投产前必须进行干燥。

天然气管道的干燥一般有两个过程,即:除水,排除管道中的积水;干燥,降低管道中气体的含水量,使之在任何情况下都不出现水

蒸气饱和状态。

1.输气管道干燥的主要方法

①干燥剂法此种方法是用高浓度干燥剂置换管道中的试压水。用多个清管器形成清管器组(俗称清管列车),在清管器之间充入高浓度的干燥剂(甲醇、乙二醇、二甘醇、三甘醇等),这些干燥剂也是良好的水合物抑制剂。依靠后继介质的压力推动清管列车前进,排除管道中的水,并且用干燥剂置换清管器窜漏的水,以达到干燥的目的,将除水和干燥两个环节一次完成。这种干燥并不是真正意义上的干燥,而是用干燥剂置换了残留在管道中的水,置换完成后在管道的沿线残留少量的干燥剂水溶液,能有效地抑制水合物的生成。有时还将干燥剂制成凝胶置于清管列车的前段和后段,增加清管列车的密封性提高除水效果。欧洲的ZEE管道和我国的平湖至上海的天然气管道就采用了这种干燥方法。

②真空干燥法此方法有除水和干燥两个阶段。在除水阶段用空气吹扫或发送清管器置换管道中的存水,在于燥阶段采用真空泵从管道的一端抽气,在管道内形成负压使水分蒸发并随着气体排出管道。此方法在崖城13-1气田至香港的输气管道投产中应用。

③超干空气法此方法的除水阶段与真空干燥法相同,在管道的干燥阶段将深度脱水的超干空气(水露点在-50~70℃)注入管道,吸收管道中的残水使管道干燥。加拿大到美国的联盟管道采用了此方法。在西气东输工程之前,我国在涩宁兰管道的局部段上用此方法进行过试验。 2.输气管道干燥方法的选择干燥剂法的优点是工期短,在管道中预蛊干燥剂有利于防止水合物。缺点是干燥剂和凝胶的使用必须达到一定的量,而且收发清管器组和接收凝胶等作业比较复杂,因此对几百公里或更长的作业段施工比较合适。此方法最经济的方案是利用天然气压力,将除水、干燥与投产几个环节连续进行。

长距离的海底管道不能分段作业,此方法的优势明显。西气东输工程沿线高差变化大、标段多,在干燥后还有干输气设备安装作业,不能直接投产,使干燥剂法的使用受到限制。

真空干燥法和超干空气法的应用有置换和干燥两个阶段。真空干燥法从管道中抽气使水分蒸发,到一定程度后让管道吸入干空气,再抽气蒸发、再吸气,多次重复地进行,根据抽出空气的水露点判定管道干燥的效果。此方法作业简单,但不能连续工作,干燥的速度慢,效率低。超干空气法是在管道的一端注入超干空气,在管道的另一端排气,根据排出气体的水露点判定管道的干燥效果。此方法能连续作业,干燥的速度比真空法快。由于陆上管道可以多作业段同时施工。对于陆上管道或干燥段的长度在150km以内,宜首选超干空气法。西气东输管道就是采用了超干空气法,分若干作业段进行干燥。

3.干燥剂法工艺与技术参数

①清管列车由水基凝胶、干燥剂、干燥剂凝胶组成。选用7个(或更多)直板式清管器组成清管列车,在前两节车厢内充入水基凝胶,最后两车厢内充入乙二醇基凝胶,中间的车厢内充干燥剂(水合物抑制剂,如甲醇、乙二醇、三甘醇等)。在凝胶段加清管器有助于形成良好的密封。此方案的用意为用干燥剂置换管道死角(支管、阀坑等处)的水,将水合物抑制剂预置在管道中。

②凝胶和干燥剂的使用量根据国内外天然气管道干燥施工调研,干燥剂的用量为管道容积的0.3%~0.5%,对于有内涂层的管道用量少,无内涂层的管道用量大。

甲醇对防止水合物的效果最好,价格便宜,但毒性较大,在使用的时候需考虑环保和作业工人的安全。选用乙二醇和三甘醇主要考虑是价格的因素。

③清管列车的运行控制推动清管列车的动力可以是经过干燥的压缩空气也可以直接用天然气推动清管列车运行(位于欧洲北海的ZEE 管道就是如此)。清管列车的运行速度为0.4~1.0m/s为宜。在清管列车运行初期管道内基本是水,摩阻较大,需要的压差大。随着清管列车的运行,管道中的水越来越少,大量的压缩气体积蓄了较大的能量,需要在适当的时机停止向管道内供气,靠气体的膨胀继续推动清管列车前进。停止供气的时机需要通过能量平衡计算,否则管道蓄能过多将在清管末期给管道的出口造成较大的冲击。

4.超干空气法工艺与技术参数

①除水用压缩空气推动清管器排除管道中的水。作业的关键设备是清管器,目前常用的清管器有直板形、皮碗形和球形三种类型。直板形清管器的优点是清污、排水效果最好,可以双向运动;缺点是通过能力较差,如果管道施工质量不佳容易卡住清管器。清管球的通过能力最强,基本不受管道转弯半径的限制;但窜漏量大,清污、排水效果较差。皮碗清管器的优缺点介于两者之间。在可能的情况下应尽量选择直板形清管器,为了提高排水效果可以采用多个清管器(清管列车)连续清管。

②擦水除水以后,管道的低洼处仍难免有少量的水聚集,在管壁上还会有0.1~0.2mm厚的水膜。通常发送能吸水的泡沫清管器,在清扫管道的同时擦掉管壁上的水。在擦水的过程中可以连续发送泡沫清管器,在管道的出口观察泡沫清管器的吸水程度,或通过发球前和

收球后对清管器称重,检验擦水的效果。③注气干燥经过擦水之后,管道内基本不存在积水,管壁上的水膜也大大减薄。这种程序的含水量在管道输气时,仍有可能形成水合物,因此还需要进一步干燥。在管道的一端注入经过干燥的空气,吸收管道中的水分,在管道的另一端检测流出空气的水露点,判断管道中水分的含量。为了加快施工进度,在擦水的过程中也可以同时进行干燥作业。

④封闭、惰化管道管道干燥完成后在正式输气前应保持管道中有0.1~0.2MPa(表压)的正压,并封闭管道防止空气中的水分再进入管道。如果有条件也可以向管道内充入氮气,对管道进行惰化。

⑤清管器速度用压缩空气推动清管器排水时,清管器的运行速度控制在0.4~1.Om/s为宜,可以采用控制管道出口水流量的方法控制流速。在擦水阶段,清管器的运行速度应控制在5m/s左右为宜,速度过快擦水效果不佳。影响清管器速度的因素有管道施工质量、地形条件、管道存水情况、清管器的类型、清管器的过盈量等,可以通过调整管道进出口压差控制清管器的运行速度。

5.真空干燥法工艺与技术参数

真空干燥法在管道干燥的过程与超干空气法不同。真空干燥过程可以有几个阶段:排气降低阶段、水分蒸发阶段、真空干燥阶段。

抽气至管内压力为使用装置所能承担的最低压强时停止抽气。密闭稳定24h,空气的水露点达到-20℃时,管道的干燥合格。

四、天然气管道水合物堵塞的处理在输气管道运行中还需经常监控天然气的气质,通过系统监测及对管道运行参数的分析,判断管道内是否出现水合物及可能堵塞的部位,及时采取防治措施。(一)输气管道运行中气质监控

输气管道的进气口应配备气质监控仪表,包括微水分析、硫化氢和二氧化碳分析仪等。对天然气的水露点、烃露点、硫化氢和二氧化碳含量等进行检测。

天然气中上述有害成分超过高报警限的设定值时,气质监控仪表应给出报警信号,提醒操作员监督来气质量或要求天然气供气方加强净化处理,若超过最高允许值时,可以切断进气。例如,当H2S含量超过最高允许值时,分析仪可以发出一个关断来气管线流程截断阀的指令信号,自动关断来气流程上的阀门,停止H2S含量超标的天然气进入输气干线或进气支线。

另外,运行中若发现天然气的水露点超标,或由水力、热力参数分析得出管内可能有积水时,一方面要求供气方提高天然气脱水质量;另一方面应加大输气管道清管力度。可以采用连续多次清管,尽可能排除管内积水。在压力、环境温度等条件可能时,增大输气量,以带走管内较多水分。

冬季,特别是北方的冬季,由于取暖供热的需要,天然气用量要增加很多,管道在高压输气工况下运行,容易生成水合物。在冬季到来之前,应加强上述工作,保证在低温、高压的工况下,不致出现水合物堵塞的情况。

(二)天然气管道水合物堵塞的处理

(1)干线冰堵处理措施

①准确判断冰堵的位置。根据情况通知上游减量供气或是停止供气;下游减量用气或是停止用气。

②关断冰堵上下游阀室的截断阀,并进行放空。通常情况下,放空后将解堵。

③在冰堵点的高处注缓解剂,如甲醇、丙三醇等。

④利用热源加热天然气,提高天然气的温度,破坏水合物形成的条件,对局部管段冰堵进行解堵。

(2)场站冰堵处理措施①准确判断冰堵的位置,根据情况通知相应用户减量用气或是停止用气,减少冰堵两端的压差。

②利用热源对冰堵位置进行加热,破坏水合物形成的条件进行解堵,如浇注热水,增加电伴热等。

③在冰堵点上游处注缓解剂,如甲醇、丙三醇等。

④关断冰堵位置上下游阀门,并进行放空解堵。

天然气水合物开采技术对比与展望

Open Journal of Nature Science 自然科学, 2019, 7(5), 398-405 Published Online September 2019 in Hans. https://www.wendangku.net/doc/152748760.html,/journal/ojns https://https://www.wendangku.net/doc/152748760.html,/10.12677/ojns.2019.75049 Comparison and Prospect of Natural Gas Hydrate Exploitation Technology Tong Jia, Xinyan Wang, Yijie Shang Department of Roommate Engineering, Yanshan University, Qinhuangdao Hebei Received: Aug. 26th, 2019; accepted: Sep. 10th, 2019; published: Sep. 17th, 2019 Abstract Natural gas hydrate is a new type of clean energy, and has huge reserves in the seabed permafrost. It is of great significance to alleviate the energy crisis facing mankind and comply with the trend of world green development. Therefore, the formation and exploitation mechanism of natural gas hydrate have attracted worldwide attention. Up to now, only Mesoyaha gas field in Russia has been commercially exploited for gas hydrate, which indicates that the exploitation technology of gas hydrate still needs further development. In this paper, the advantages and disadvantages of several successful small-scale trial production methods are introduced and compared. Keywords Natural Gas Hydrate, Mining Technology, Comparison of Mining Methods 天然气水合物开采技术对比与展望 贾童,王鑫炎,商一杰 燕山大学石油工程系,河北秦皇岛 收稿日期:2019年8月26日;录用日期:2019年9月10日;发布日期:2019年9月17日 摘要 天然气水合物是一种新型清洁能源,且在海底冻土层储量巨大,对于缓解人类面临的能源危机以及顺应世界绿色发展潮流有重要意义,因此其形成和开采机理受世界广泛关注。截止到现在天然气水合物实现商采仅有俄罗斯麦索亚哈气田,这说明天然气水合物的开采技术仍需进一步发展。本文介绍了目前小规模试采成功的几种方法的优缺点及对比,以及对未来技术的发展做出展望。

天然气水合物的危害与防止(2021年)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 天然气水合物的危害与防止 (2021年) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

天然气水合物的危害与防止(2021年) 一、天然气水合物 在一定的温度和压力条件下,含水天然气可生成白色致密的结晶固体,称为天然气水合物(NGHnaturalgashydrate),其密度约为0.88~0.99g/cm3 。天然气水合物是水与烃类气体的结晶体,外表类似冰和致密的雪,是一种笼形晶状包络物,即水分子借氢键结合成笼形晶格,而烃类气体则在分子间作用力下被包围在晶格笼形孔室中。NGH共有两种结构,低分子的气体(如CH4 ,C2 H6 ,H2 S)的水合物为体心立方晶格;较大的气体分子(如C3

H8 ,iC4 H10 )则是类似于金钢石的晶体结构。当气体分子充满全部晶格的孔室时,天然气各组分的水合物分子式可写为CH4 ·6H2 0,C2 H6 ·6H2 0,C3 H8 ·17H2 0,iC4 H10 ·17H2 0,H2

S·6H2 0,CO2 ·6H2 0。水合物是一种不稳定的化合物,一旦存在的条件遭到破坏,就会分解为烃和水。天然气水合物是采输气中经常遇到的一个难题之一。 二、天然气水合物的危害及成因 1.天然气水合物的危害 在天然气管道输送过程中,天然气水合物是威胁输气管道安全运行的一个重要因素。能否生成水合物与天然气组成(包括含水量)、压力、温度等条件有关。天然气通过阻力件(如节流阀、调压器、排污阀等)时,天然气压力升高,气体温度下降。温度的降低会使管路、阀门、过滤器及仪表结霜或结冰降低管道的输送效率,严重时甚至会堵塞管道,以导致管道上游压力升高,引起不安全的事故发生,造成设备及人员的伤害,从而影响正常供气。天然气水合物一旦形成后,它与金属结合牢固,会减少管道的流通面积,产生节流,加

国内天然气水合物相平衡研究进展

国内天然气水合物相平衡研究进展 摘要:分析了目前国内天然气水合物相平衡领域的五大主要研究热点,认为含醇类和电解质体系中天然气水合物的相平衡是研究中最活跃的领域,而多孔介质中天然气水合物的相平衡研究是未来天然气水合物相平衡研究的热点和难点问题。 关键词:天然气;水合物;相平衡;替代能源 Review of the Phase Equlibria on The Natura1 Gas Hydrate at home Abstract: According to the literature investigation at home,the five main researeh hot spots for the phase equllibria are analysed.The phase equilibria in aqueous solutions containing electrolytes and/or alcohol is the most active in all the research fields.While the Phase equilibria in natura1 Porous media is one of the essential hot spots and difficult problems during the phase equllibria researeh in future. Key words: natural gas;hydrate;phase equilibria ;alternative energy 1、前言 天然气水合物具有能量密度高、分布广、规模大、埋藏浅、成藏物化条件优越等特点,是21世纪继常规石油和天然气能源之后最具开发潜力的清洁能源,在未来能源结构中具有重要的战略地位。由于天然气水合物处于亚稳定状态,其相态转换的临界温度、压力和天然气水合物的组分直接制约着天然气水合物形成的最大深度和矿层厚度。天然气水合物的生成过程,实际上是一个天然气水合物—溶液—气体三相平衡变化的过程,任何能影响相平衡的因素都能影响天然气水合物的生成或分解过程[1]。因此,研究各种条件下天然气水合物—溶液—气体的三相平衡条件及其影响因素,可提供天然气水合物的生成或分解信息。因此,天然气水合物相平衡研究是天然气水合物勘探、开发和海洋环境保护研究中最基础和最重要的前沿问题。天然气水合物相平衡的研究主要是通过实验方法和数学预测手段确定天然气水合物的相平衡条件。随着透明耐高压材料的出现和相关实验测试技术的进步,科学家们对天然气水合物的相平衡条件的研究不断深入。 2、国内目前天然气水合物相平衡的主要五大研究热点 2.1 研究热点一:含醇类和电解质体系中天然气水合物的相平衡研究 长庆石油勘探局第三采油厂的严则龙(1997年)在长庆油田林5井采用井口注醇防止油管和地面管线天然气水合物堵塞,取得了良好的效果[2]。 中国石油大学(北京)梅东海和廖健等人:(1)(1997)在温度262.6~285.2K范围内分别测定了甲烷、二氧化碳和一种合成天然气在纯水、电解质水溶液以及甲醇水溶液中天然气水合物的平衡生成压力[3]。(2)(1998)对36个单一电解质水溶液体系及41个混合电解质水溶液体系中气体水合物的生成条件进行了预测。但对于二元以上的混合电解质水溶液体系,该模型的预测精度还有待改进[4];在温度260.8~281.5K和压力0.78~11.18MPa下,研究了含盐以及含盐和甲醇水溶液体系中的水合物平衡生成条件。认为无论对于单盐或多盐水溶液体系,甲醇对天然气水合物的生成均有显著的抑制作用;当溶液中甲醇增加至20%质量时,KCI 的抑制作用强于CaCl2[5];采用在Zuo一Golunesen一Guo水合物模型的基础上简化和改进的模型应用于含有盐和甲醇的水溶液体系中气体水合物生成条件的预测[6]。 华南理工大学的葛华才等人(2001)在模拟蓄冷空调的实验系统中研究了一元醇类添加

天然气水合物典型特征综述

作者:樊浩 单位:中国石油辽河油田海南油气勘探分公司124010 作者简介:樊浩(1979-),男,湖北潜江市人,硕士,中级工程师,现从事海洋油气勘探。标题:天然气水合物典型特征综述 摘要:概述国内外天然气水合调查研究的勘探进展情况,详细地介绍判识天然气水合物的地球物理和地球化学特征。 关键词:天然气水合物;现状;特征 0 引言 天然气水合物, 也称“气体水合物”, 是由天然气与水分子在高压、低温条件下形成的一种固态结晶物质。由于天然气中80%~99.9%的成分是甲烷, 故也有人将天然气水合物称为甲烷水合物。天然气水合物多呈白色或浅灰色晶体, 外貌似冰状, 易点燃, 故也称其为“可燃冰”。在天然气水合物晶体化学结构中, 水分子构成笼型多面体格架, 以甲烷为主的气体分子包裹于其中。这是一种新型的潜在能源, 全球资源量达2.1×1015m3, 是煤炭、石油和天然气资源总量的两倍,具有巨大的能源潜力。因此, 世界各国尤其是各发达国家和能源短缺国家均高度重视天然气水合物的调查研究、开发和利用研究。 1 国内外天然气水合物勘探现状 1.1国外天然气水合物勘探历史及现状 天然产出的水合物矿藏首次在1965年发现于俄罗斯西西伯利亚永久冻土带麦索亚哈油气田。1972—1974年,美国、加拿大也在阿拉斯加、马更些三角洲冻土带的油气田区发现了大规模的水合物矿藏。同期,美国科学家在布莱克海岭所进行的地震探测中发现了“拟海底反射层(BSR)”。1979年,国际深海钻探计划(DSDP)第66、67航次在中美洲海槽危地马拉的钻孔岩芯中首次发现了海底水合物。此后,水合物的研究便成为DSDP和后续的大洋钻探计划(ODP)的一项重要任务,并相继在布莱克海岭、墨西哥湾、秘鲁—智利海沟、日本海东北部奥尻脊、南海海槽、北美洲西部近海—喀斯喀迪亚陆缘等地发现了BSR或水合物。德国在20世纪80年代中后期以联邦地学与资源研究中心、海洋地学研究中心为首的一些单位,结合大陆边缘等研究项目,开展了水合物的地震地球物理、气体地球化学调查。在各国科学家的努力下,海底水合物物化探异常或矿点的发现与日俱增,迄今已达80处。从1995年开始,日本、印度、美国、德国先后投巨资,实施了大规模的研究发展计划,韩国、俄国、加拿大、法国、英国、挪威、比利时、澳大利亚等国也正在制订计划或积极调查中。 1.2国内天然气水合物勘探历史及现状 与国外的发展历程相似, 中国天然气水合物也起始于实验室研究, 然后再扩展到资源调查领域。中国在1999年正式实施试验性调查前还经历了一段短暂的预研究阶段, 中国大洋矿产资源研究开发协会于1995年设立了“西太平洋气体水合物找矿前景与方法的调研”课题, 这是中国天然气水合物资源领域的第一个调研课题, 中国地质科学院矿产资源研究所等单位就天然气水合物在世界各大洋的分布特征及找矿方法进行了分析和总结, 并对西太平洋的找矿远景进行了初步评价。随后原地质矿产部于1997年设立了“中国海域天然气水合物勘测研究调研”课题, 国家863计划820主题也于1998年设立了“海底气体水合物资源勘查的关键技术”课题, 中国地质科学院矿产资源研究所、广州海洋地质调查局、中国科学院地质与地球物理研究所等单位对中国近海天然气水合物的成矿条件、调查方法、远景预测等方面进行了前期预研究, 为中国开展天然气水合物调查做好了资料和技术准备。 2 识别天然气水合物的标志特征 2.1地球物理标志 2.1.1 海底模拟反射层( BSR )来自水合物稳定带底面的反射也大致与海底平行,通常称为

天然气水合物的开采方法

天然气水合物的开采方法

天然气水合物的开采方法 天然气水合物的开采是很大的难题。通用的方法是先用各种方法将水合物分解再回收游离的气体。前苏联的麦索亚哈水合物气藏最早进入了试验性工业开采。2001年10月~2002年3月,在加拿大的Mallik气藏钻了一口生产试验井和两口观察井,成功地进行了为期79d的降压开采和加热开采试验。目前提出的天然气水合物的开采方法基本上还是概念性的,这方面的研究尚处于试验阶段。 1 热力开采法 热力开采法又称热激法。是研究最多、最深入的天然气水合物开采技术。其利用钻探技术在天然气水合物稳定层中安装管道,对含天然气水合物的地层进行加热,提高局部储层温度,破坏水合物中的氢链,从而促成天然气水合物分解,再用管道收集析出的天然气f见图1。对含天然气水合物的地层加热有两种途径:一是将蒸汽、热水、热盐水或其他热流体通过地面泵注入水合物地层:二是采用开采重油时使用的火驱法或利用钻柱加热器。

热开采技术的主要缺陷是会造成大量热损失,效率很低,特别是在永久冻土区,即使利用绝热管道.永冻层也会降低传递给储集层的有效热量。蒸汽注入和火驱技术在薄水合物气层的热损失很大,只有在厚段(大于15m)水合物气层热效率较高。注入热水的热损失较蒸汽注人和火驱小,但水合物气层内水的注入率限制了该方法的使用。采用水力压裂工艺可改善水的注入率,但由于连通效应,又要产生较低的传质效率。 研究表明,电磁加热法是一种比常规加热方法更为有效的方法 1,其有效性已在开采重油方面得到了显示。此法是在垂直(或水平)井中沿井的延伸方向,在紧邻水合物带的上下(或水合物层内)放入不同的电极,再通以交变电流使其生热并直接对储层进行加热。储层受热后压力低.通过膨胀产生气体。此外,电磁热还很好地降低了流体的黏度.促进了气体的流动。其中,最有效的电磁加热法当属微波加热。因为天然气水合物对微波有一定的吸收作用。在微波的辐射下会产生热效应而加快天然气水合物的分解。使用微波加热法时可直接将微波发生器置于井下,利用仪器自身重力使发生器紧贴水合物层。同时发生器可附加驱动装置,使其在井下自由移动。此方法适于各类天然气水合物的开采。 2 降压法 降压法是通过降低压力破坏天然气水合物稳定状态,促使其分解。其最大的特点是不需要昂贵的连续激发,仅通过调节天然气的提取速度就可控制储层压力,进而控制水合物分解的效果。降压法一般是通过降低水合物层之下的游离得不稳定而分解见图2。也可以通过采取矿层中流体的方法来降低水合物矿层的层压。实际上,如果天然气水合物气藏与常规天然气藏相邻,开采水合物层之下的游离气是降低储层压力的一

天然气水合物形成条件和影响因素研究进展

天然气水合物形成条件及影响因素研究进展 陈德栋 (荆楚理工学院化工与药学院,湖北荆门 448000) 摘要:目前能源资源的开发和利用变得日益重要,世界各国加大力度对天然气水合物的研究和探索。本文综述了温度、压强、气体成分和含量及其他因素对天然气水合物的形成和影响。 关键词:天然气水合物;能源开发;形成条件;影响因素;综述 The research progress of Natural gas hydrate formation conditions and influencing factors CHEN De-dong (The college of chemical engineering and pharmacy Jingchu university of technology ,Hubei province Jingmen city 448000,China ) Abstract: At present, it have become extraordinary significant to exploit and utilize of the new energy resource. All the countries in the world spare no effort to explore as well research about natural gas hydrate. The article summarize the factors, including temperature、pressure、the contend and constituent of the gas and other factors, which are connected to the influence and formation of natural gas hydrate. Keyword:Natural gas hydrate,energy resource exploitation,formation Conditions,influence factor,summarization 天然气水合物 ,也称为气体笼形化合物 ,是天然产出的包裹天然气分子的刚性固体物质 ,笼形结构由氢键连接的水分子组成[1]。石油资源是不可再生资源,世界上的煤炭存储量也有限,燃烧石油和天然气会造成环境的污染,而地球上的天然气水合物的含量巨大。据估计 ,目前世界海域内有 60 余处直接或间接发现了天然气水合物,在单个海域天然气水合物的资源量就可达数万至几百万亿立方米。为了经济的可持续发展和环境的保护,所以对天

天然气水合物调查和研究现状

天然气水合物调查和研究现状 摘要:天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,本文简介了天然气水合物和各国对其合物资源调查和研究现状。 1 什么是天然气水合物 天然气水合物又称固态甲烷,它是由天然气与水所组成,呈固体状态,其外貌极象冰雪或固体酒精,点火即可燃烧,因此有人称其为”可燃冰”、”气冰”、”固体瓦斯”。天然气水合物的结晶格架主要由水分子构成,在不同的低温高压条件下,水分子结晶形成不同类型多面体的笼形结构。其分子式为MnH2O加表示甲烷等气体,n为水分子数)。天然气水会物的结构类型有:I、11和H型。I型为立方晶体结构、Ⅱ型为菱型晶体结构、H型为六方晶体结构。Ⅰ型天然气水合物在自然界颁最广,而Ⅱ及H型水合物更为稳定。它是在低温高压条件下,由水与天然气(主要是甲烷气,每平方米的天然气水会物可释放出164立方米甲烷和立方米的水)结合形成一种外观似水的白色结晶固体,主要存在于陆地上的永久冻土带和海洋沉积物中。 2 国际上天然气水合物资源调查、研究现状 随着世界上石油、天然气资源的日渐耗尽,各国的科学家正在致力于寻找新的接替能源。天然气水合物被称为ZI世纪具有商业开发前景的战略资源,正受到各国科学家和各国政府的重视。 自60年代开始,俄、美、巴德、英、加等许多发达国家,甚至一些发展中国家对其也极为重视,开展了大量的工作。 俄罗斯自60年代开始,先后在白令海、鄂霍茨克海、千岛海沟、黑海、里海等开展了天然气水合物调查,并发现有工业意义的矿体。即使近期经济比较困难,仍坚持在巴伦支海和鄂霍茨克海等海域进行调查或研究工作。位于西西伯利亚东北部的Messoyakha天然气水合物矿田已成功生产了17年。 美国科学家早在1934年首次在输气管道中发现了天然气水合物,它堵塞了管道,影响了气体的输送而开始了对水合物结构及形成条件的研究。随后美、加在加拉斯加北坡、马更些三角洲冻土带相继发现了大规模的水合物矿藏。70年代初英国地调所科学家在美国东海岸大陆边缘所进行的地震探测中发现了”似海底反射层”(Bottom Similating,Reflector,英文称 BSR)。紧接着于1974年又在深海钻探岩芯中获取天然气水合物样品,并释放出大量甲烷,证实了”似海底反射”与天然气水含物有关。1979年美国借助深海钻探计划(DSDP)和大洋钻探

天然气水合物的研究与开发的论文

天然气水合物的研究与开发的论文 【摘要】人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 一、天然气水合物是人类未来能源的希望 人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 核聚变能主要寄希望于3he,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100-500万t)。氢能是清洁、高效的理想能源,燃烧耐仅产生水(h2o),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3以上,蕴藏量大。天然气水合物的主要成分是甲烷(c4h)和水,甲烷气燃烧十分干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能撅的最佳候选。 天然气水合物(gas hydrate)是一种白色固体结晶物质,外形像冰,有极强的燃烧力,可作为上等能源,俗称为”可燃冰”。天然气水合物由水分子和燃气分子构戚,外层是水分子格架,核心是燃气分子(图1)。燃气分子可以是低烃分子、二氧化碳或硫化氢,但绝大多数是低烃类的甲烷分子(c4h),所以天然气水合物往往称之为甲烷水合物(methane hydrate)。据理论计算,1m3的天然气水合物可释放出164m3的甲烷气和m3的水。这种固体水合物只能存在于一定的温度和压力条件下,一般它要求温度低于0~10℃,压力高于10mpa,一旦温度升高或压力降低,甲烷气则会逸出,固体水合物便趋于崩解。 天然气水合物往往分布于深水的海底沉积物中或寒冷的永冻±中。埋藏在海底沉积物中的天然气水合物要求该处海底的水深大于300-500m,依赖巨厚水层的压力来维持其固体状态。但它只可存在于海底之下500m或1000m的范围以内,再往深处则由于地热升温其固体状态易遭破坏。储藏在寒冷永冻土中的天然气水合物大多分布在四季冰封的极圈范围以内。煤、石油以及与石油有关的天然气(高烃天然气)等含碳能源是地质时代生物遗体演变而成的,因此被称为化石燃料。从含碳量估算,全球天然气水合物中的含碳总量大约是地球上全部化石燃料的两倍。因此,据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为×108亿m3,约合11万亿t(11×1012t)。数冀如此巨大的矿物能源是人类未来动力的希望。 二、天然气冰合物的研究现状 1.分布与环境效应 世界上绝大部分的天然气水合物分布在海洋里,储存在深水的海底沉积物中,只有极其少数的天然气水合物是分布在常年冰冻的陆地上。世界海洋里天然气水合物的资源量是陆地上的100倍以上。到目前为止,世界上已发现的海底天然气水合物主要分布区有大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、日本海、四国海槽、日本南海海槽、冲绳海槽、南

天然气水合物资源开发现状及最新进展

天然气水合物资源开发现状及最新进展 中国新能源网| 2009-3-3 9:57:00 | 新能源论坛| 我要供稿 特别推荐:《中国新能源与可再生能源年鉴》(2009)征订 摘要:天然气水合物是20世纪发现的一种新型后备能源,被喻为21世纪石油天然气的理想替代资源,是目前地球上尚未开发的最大未知能源库。本文介绍了天然气水合物的开发历程、资源状况、现有的开发技术方法与发展趋势,同时也总结了天然气水合物开发领域取得最新成果和认识。最后得出天然气水合物的研究方向,并建议广泛的参与国际合作。 关键词:开发天然气水合物资源现状开发技术最新进展 一、天然气水合物开发历程 天然气水合物是以甲烷CH4为主的气态烃类物质(含少量CO2、H2S等非烃分子)充填或被束缚在笼状水分子结构中形成的冰晶状化合物,是在高压、低温条件下形成的。它是继煤、石油和天然气等能源之后的一种潜在的新型能源,广泛存在于沟盆体系、陆坡体系、边缘海盆陆缘和北极地区的永久冻土区。 20世纪60年代初,前苏联借助地球物理方法首次在西伯利亚永冻层中发现了天然气水合物,随后美、加在加拉斯加北坡、马更些三角洲冻土带相继发现了大规模的水合物矿藏。70年代初英国地调所科学家在美国东海岸大陆边缘所进行的地震探测中发现了“似海底反射层”(Bottom Similating Reflector,英文称BSR)。紧接着于1974年又在深海钻探岩芯中获取天然气水合物样品并释放出大量甲烷,证实了“似海底反射”与天然气水含物有关。70年代和80年代,深海钻探计划(DSI)和大洋钻探计划(ODP)陆续实施,在全球多处海底发现了天然气水合物,大规模的国际合作相继开展,天然气水合物研究以及综合普查勘探工作进人全面发展阶段。1991年美国能源部组织召开“美国国家天然气水合物学术讨论会”。1995年冬ODP64航次在大西洋西部布莱克海台组织了专门的天然气水合物调查,打了一系列深海钻孔,首次证明天然气水会物广泛分布,肯定其具有商业开发的价值。同时指出天然气水会物矿层之下的游离气也具有经济意义。如今,新技术、新方法的大量应用使天然气水合物的研究朝着更全面、更精深的方向发展。 二、天然气水合物资源现状 1.天然气水合物储量 图1 世界有机碳分布(单位:1015吨) 天然气水合物资源总估算值的差别非常大,从标准温度压力下的1×1015立方米到5×1015立方米,再到21×1015立方米。这远比常规天然气资源的总估算值(57×1013立方米)大得多。天然气水合物估算值为天然气地质储量值,实际产量仅仅是这一数量的百分之几。但是,天然气的可能生产量仍然会高于常规天然气资源的产量(如图1)。目前各国科学家对全球天然气水合物资源量较为一致的评价为2×1016,是剩余天然气储量(156×1014m3)的136倍。 2.天然气水合物产量

天然气水合物的研究进展

天然气水合物的研究进展 天然气水合物的研究进展 摘要:天然气水合物是一种继煤,石油与天然气等能源之后的新型能源物质,它被誉为21世纪最清洁的能源物质。本文章介绍了天然气水合物的概念以及形成条件,追溯了天然气水合物的发展历程。重点分析了国内外的研究情况,这为指导我国天然气水合物事业奠定了坚实的基础。天然气水合物的研究对于人类有着非比寻常的意义,还存在着一些难关有待于我们去探索。 关键词:天然气水合物进展能源物质意义探索 一、引言 1.1天然气水合物的概念 天然气水合物就是我们熟称的“可燃冰”或者固体“瓦斯”是因为它的外观像冰一样而且遇火燃烧。天然气水合物是天然气与水在一定的高亚低温条件下形成的类似冰状的结晶物质,其主要是分布在深海沉积物和陆域的永久冻土,岛屿的斜坡地带等地域。天然气水合物的研究起源于20世纪的一次科学考察中发现的矿产资源,虽然其成分与天然气相似但是较之更为纯净,开采时只需要将固体的“天然气水合物”升温减压就可以释放出大量的甲烷气体。天然气水合物作为一种新型的高效能源当之无愧的被誉为“21世纪最具有商业开发前景的战略资源”。 1.2天然气水合物的形成条件及优点 天然气水合物的分子结构式为CH4?8H2O,其分子结构就像一个一个由若干水分子组成的笼子。形成可燃冰有三个基本条件:温度,压力和原材料。首先需要低温的环境,天然气水合物在在0―10℃时生成,在超过20℃的温度时便会分解。其次需要高压的条件:在0℃时只需要30个大气压就可以满足可燃冰的生成然而在海洋深处,30个大气压是很容易满足的并且气压越大水合物越不容易分解。最后充足的气源是必不可少的。在海底深处经常会有很多有机物的沉淀,这些有机物质中含有丰富的碳,经过生物转化后可以产生充足的气源。

天然气水合物发展历程

天然气水合物发展历程 1810年,首次在实验室发现天然气水合物。 1934年,前苏联在被堵塞的天然气输气管道里发现了天然气水合物。由于 水合物的形成,输气管道被堵塞。这一发现引起前苏联人对天然气水合物的重视。 1965年,前苏联首次在西西伯利亚永久冻土带发现天然气水合物矿藏,并 引起多国科学家的注意。 1970年,前苏联开始对该天然气水合物矿床进行商业开采。 1970年,国际深海钻探计划(DSDP)在美国东部大陆边缘的布莱克海台实施 深海钻探,在海底沉积物取心过程中,发现冰冷的沉积物岩心嘶嘶地冒着气泡,并达数小时。当时的海洋地质学家非常不解。后来才知道,气泡是水合物分解引起的,他们在海底取到的沉积物岩心其实含有水合物。 1971年,美国学者Stoll等人在深海钻探岩心中首次发现海洋天然气水合物,并正式提出“天然气水合物”概念。 1974年,前苏联在黑海1950米水深处发现了天然气水合物的冰状晶体样品。 1979年,DSDP第66和67航次在墨西哥湾实施深海钻探,从海底获得91.24米的天然气水合物岩心,首次验证了海底天然气水合物矿藏的存在。 1981年,DSDP计划利用“格罗玛·挑战者号”钻探船也从海底取上了3英尺长的水合物岩心。 1992年,大洋钻探计划(ODP)第146航次在美国俄勒冈州西部大陆边缘Cascadia海台取得了天然气水合物岩心。 1995年,ODP第164航次在美国东部海域布莱克海台实施了一系列深海钻探,取得了大量水合物岩心,首次证明该矿藏具有商业开发价值。 1997年,大洋钻探计划考察队利用潜水艇在美国南卡罗来纳海上的布莱克 海台首次完成了水合物的直接测量和海底观察。同年,ODP在加拿大西海岸胡安-德夫卡洋中脊陆坡区实施了深海钻探,取得了天然气水合物岩心。至此,以美国为首的DSDP及其后继的ODP在10个深海地区发现了大规模天然气水合物聚集:秘鲁海沟陆坡、中美洲海沟陆坡(哥斯达黎加、危地马拉、墨西哥)、美国东南大西洋海域、美洲西部太平洋海域、日本的两个海域、阿拉斯加近海和墨西哥湾等海域。

天然气水合物开采研究现状

天然气水合物开采研究现状* 吴传芝1,赵克斌1,孙长青1,孙冬胜2,徐旭辉2,陈昕华3,宣玲1 (1.中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡214151; 2.中国石油化工股份有限公司石油勘探开发研究院,北京100083; 3.中国石油化工股份有限公司石油勘探开发研究院西部分院,乌鲁木齐830011) 摘要:随着天然气水合物基础研究的不断深入,天然气水合物开采研究空前活跃。在技术方法方面,传统的热激发开采法、减压开采法与化学抑制剂注入开采法获得了不断的发展与改进;新型开采技术如CO2置换法与固体开采法引起了学者们的极大关注;最近我国还研制出适合于海洋天然气水合物开采的水力提升法。在开采研究实践方面,全世界已在3处冻土区进行了天然气水合物试采研究。介绍了天然气水合物开采技术的研究进展与冻土区天然气水合物试采研究结果,分析了天然气水合物开采研究中可能涉及的环境问题,展现了现阶段天然气水合物开采研究领域的最新成果,总结了这一领域取得的经验与认识,强调了国际天然气水合物开采研究对我国天然气水合物研究的启示。 关键词:天然气水合物;开采技术;开采试验;麦索亚哈气田;M allik地区 中图分类号:T E31文献标识码:A文章编号:1000-7849(2008)01-0047-06 天然气水合物具有巨大的资源潜能,但只有解决了其开采问题,天然气水合物才能成为一种真正的能源。近10年来,对天然气水合物研究起步较早的一些国家,明显加速了天然气水合物开采研究的步伐,在开采技术、开采工艺、开采面临的环境问题等方面做了大量工作,并在冻土区进行了天然气水合物开采试验。 我国近年来也已介入天然气水合物开采研究领域,但总体上,国内天然气水合物开采研究才刚刚开始,尚没有进行试采研究。 笔者拟介绍天然气水合物开采技术的发展、试采研究结果与开采涉及的环境问题等内容,展现现阶段世界天然气水合物开采研究领域的最新成果,总结这一研究领域已取得的经验与认识,强调国际天然气水合物开采研究对我国天然气水合物开采研究的启示。 1开采方法的改进与发展 天然气水合物是一种由天然气和水组成的亚稳定态矿物,存在于特定的温压条件下。一旦赋存条件发生变化,天然气水合物藏的相平衡就会被破坏,引起天然气水合物分解。传统的天然气水合物开采技术就是根据天然气水合物的这种性质而设计的,主要包括热激发开采法、减压开采法与化学试剂注入开采法[1-15]。随着天然气水合物基础研究的不断深入,近些年又涌现出一些新的开采技术,如CO2置换法与固体开采法等[8,12-13,16-20]。 1.1传统开采方法的改进与技术缺陷 (1)热激发开采法热激发开采法是直接对天然气水合物层进行加热,使天然气水合物层的温度超过其平衡温度,从而促使天然气水合物分解为水与天然气的开采方法。这种方法经历了直接向天然气水合物层中注入热流体加热、火驱法加热、井下电磁加热以及微波加热等发展历程[4-6,8-15]。热激发开采法可实现循环注热,且作用方式较快。加热方式的不断改进,促进了热激发开采法的发展。但这种方法至今尚未很好地解决热利用效率较低的问题,而且只能进行局部加热,因此该方法尚有待进一步完善。 (2)减压开采法减压开采法是一种通过降低压力促使天然气水合物分解的开采方法。减压途径主要有两种:1采用低密度泥浆钻井达到减压目的;o当天然气水合物层下方存在游离气或其他流体时,通过泵出天然气水合物层下方的游离气或其他流体来降低天然气水合物层的压力[4,6,8-10,12-13,15]。减压开采法不需要连续激发,成本较低,适合大面积开采,尤其适用于存在下伏游离气层的天然气水合物藏的开采,是天然气水合物传统开采方法中最有前景的一种技术。但它对天然气水合物藏的性质有 第27卷第1期2008年1月 地质科技情报 Geolog ical Science and Technolog y Information Vol.27No.1 Jan.2008 *收稿日期:2007-04-28编辑:禹华珍 基金项目:中国石油化工股份有限公司项目/天然气水合物勘探与开发现状调研0(P05072)作者简介:吴传芝(1966)),女,工程师,主要从事油气地球化学勘探领域的科技情报工作。

天然气水合物

化学选修3《物质结构与性质》P85选题2 天然气水合物 (一种潜在的能源) 天然气水合物——可燃冰 一、可燃冰相关概念 可燃冰:天然气与水在高压低温条件下形成的类冰状结晶物质。(又称笼形化合物)甲烷水合物(Methane Hydrate):用M·nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。 又因外形像冰,而且在常温下会迅速分解放出可燃的甲烷,因而又称“可燃冰”或者“固体瓦斯”和“气冰”)。 因为可燃冰的主要成分为甲烷,为甲烷水合物,而甲烷在常温中为气体,熔、沸点低,所以甲烷为分子晶体,因而可燃冰也为分子晶体。 可燃冰存在之处:天然气水合物在自然界广泛分布在大可燃冰 陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。 天然气水合物在全球的分布图 在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因

而其是一种重要的潜在未来资源。 笼状化合物(Clathrate):在天然气水合物晶体中,有甲烷、乙烷、氮气、氧气二氧化碳、硫化氢、稀有气体等,它们在水合物晶体里是装在以氢键相连的几个水分子构成的笼内,因而又称为笼状化合物。 天然气分子藏在水分子中 水分子笼是多种多样的 二、可燃冰的性质 可燃冰的物理性质: (1)在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。 (2)它可存在于零下,又可存在于零上温度环境。 (3)从所取得的岩心样品来看,气水合物可以以多种方式存在: ①占据大的岩石粒间孔隙; ②以球粒状散布于细粒岩石中; ③以固体形式填充在裂缝中;或者为大块固态水合物伴随少量沉积物。 可燃冰的化学性质: 1、在冰的空隙(“笼”)中可以笼合天然气中的分子的原因: (1)气水合物与冰、含气水合物层与冰层之间有明显的相似性: ①相同的组合状态的变化——流体转化为固体; ②均属放热过程,并产生很大的热效应——0℃融冰时需用的热量,0~20℃分解天然气 水合物时每克水需要~的热量; ③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%; ④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物; ⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层; ⑥含冰层与含水合物层的电导率都小于含水层; ⑦含冰层和含水合物层弹性波的传播速度均大于含水层。 (2)天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子) 则充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。 2、经发现的天然气水合物结构有三种: 即结构 I 型、结构 II 型和结构H型。结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S 等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为

天然气水合物研究历程及现状样本

天然气水合物研究历程及现状 1.世界天然气水合物研究历程回顾 从1810 年英国Davy在实验室首次发现气水合物和1888 年Villard人工合成天然气水合物后, 人类就再没有停止过对气水合物的研究和探索。在这将近2 的时间内, 全世界对天然气水合物的研究大致经历了 3 个阶段, 如表1-1[2]所示。 第一阶段是从1810 年到20 世纪30 年代初。( 18 , Davy 合成氯气水合物并于次年发表文章正式提出水合物一词。) 在这120 年中, 对气水合物的研究仅停留在实验室, 且争议颇多。 第二阶段是大致可看作是自1934年起始的。当年美国Hammerschmidt发表文章, 提出天然气输气管道堵塞与水合物有关, 从负面加深了对气水合物及其性质的研究。在这个阶段, 研究主题是工业条件下水合物的预报和清除、水合物生成阻化剂的研究和应用。 第三阶段是从上世纪60年代至今, 全球天然气水合物进入大范围勘探普查开发的格局。上世纪60 年代特罗费姆克等发现了天然气能够以固态形式存在于地壳中。特罗费姆克等的研究工作为世界上第一座天然气水合物矿田——麦索雅哈气田的发现、勘探与开发前期的准备工作提供了重要的理论依据, 从而大大拓宽了天然气地质学的研究领域。美国学者在上世纪70年代也开始重视气水合物研究, 并于1972年在阿拉斯加获得世界上首次确认的冰胶结永冻层中的气水合物实物。天然气水合物成藏理论预测的成功、测得成藏理论区气水合物地球物理, 地球化学异常, 以及经过钻探取得水合物实样, 这一系列的成果被认为是上世纪能源问题的重大发现。能够说, 从上世纪60 年代至今, 全球气水合物研究跨入了一个崭新的阶段——第三个阶段(把气水合物作为一种能源进行全面研究和实践开发的阶段) , 世界各地科学家对气水合物的类型及物化性质、自然赋存和成藏条件、资源评价、勘探开发手段以及气水合物与全球变化和海洋

天然气水合物形成条件预测及防止技术

天然气水合物形成条件预测及防止技术 李长俊 西南石油学院 四川省南充市 637001 杨 宇 西南地质局川西采输处 【摘要】在天然气的输送和处理过程中,经常会形成水合物堵塞管道和设备而严重地影响正常生产。本文介绍了输气管道中形成水合物的原因。为了避免水合物堵塞,需要知道水合物压力及温度条件。综述了水合物压力、温度预测的经验图解法、相平衡计算法和统计热力学方法。简述防止水合物的常用四种方法。 关键词:天然气 管道 水合物 形成条件 技术状况 中图分类号:TE83212 1 天然气水合物的结构 天然气水合物(Gashydrates)也称水化物。它是一种包裹着小气体分子的水的固体结晶物,是一种复杂的、但又不稳定的白色结晶体,一般用M?nH2O表示, M为水合物中的气体分子,n为水分子数,如CH4?6H2O,CH4?7H2O,C2H6?7H2O等。也有多种气体混合的水合物。大量研究水合物结构表明,水合物是由氢键连接的水分子结构形成笼形结构,气体分子则在范德华力作用下,被包围在晶格中。气体水合物有Ⅰ型和Ⅱ型两种结构,如图1所示。有关水合物晶格的构造与特性列于表1中。   图1 气体水合物晶体结构 表1 水合物的结构数据 参 数 结构Ⅰ结构Ⅱ 单位晶胞中水分子数46136 单位晶胞中小孔穴数216 单位晶胞中大孔穴数68 小空穴平均直径3191!3190! 大空穴平均直径4133!4168! 单位水分子中小孔穴数,γ11/232/17 单位水分子中大孔穴数,γ23/231/172 天然气水合物形成预测 形成水合物的主要条件有两个:天然气必须处于适当的温度和压力下;天然气必须处于或低于水汽的露点,出现“自由水”。因此对于一定组分的天然气,在给定压力下,就有一水合物形成温度,低于这个温度将形成水合物。而高于这个温度则不形成水合物。随着压力升高,形成水合物的温度也随之升高。如果天然气中没有自由水,则不会形成水合物。除此之外,形成水合物还有一些次要的条件,包括气体流速及扰动,晶种的存在等。 天然气形成水合物有一个最高温度,即临界温度,若超过这个温度,再高的压力也不能形成水合物。表2列出各种天然气组分形成水合物的临界温度。 表2 天然气组分形成水合物的临界温度名 称CH4C2H6C3H8iC4H10nC4H10CO2H2S 形成水 合物临界 温度(℃) 21151415515215110102910 天然气在管道中流动,随着压力、温度变化,有可能形成水合物。如图2所示,曲线1、2分别代表气体沿管线压力和温度变化曲线,曲线3为根据天然气组分和压力沿线分布所确定的生成水合物的温度曲线。设天然气的露点为T d,当天然气输入管道后,由于温度高于露点,气体未被水蒸汽饱和,因此,当x

相关文档