文档库 最新最全的文档下载
当前位置:文档库 › 实验2 晶体三极管的识别和检测

实验2 晶体三极管的识别和检测

实验2 晶体三极管的识别和检测
实验2 晶体三极管的识别和检测

实验二:晶体三极管的识别和检测

1、训练目的

①学习查阅三极管的产品手册。

②学习使用万用表检测三极管。

③加深对三极管特性和参数的理解。

2、训练器材

万用表 1 只

NPN型、PNP型三极管若干

电路实验箱 1 台

3、训练内容和步骤

⑴三极管的识别

根据三极管的型号查半导体器件手册,了解三极管的性能指标,将其主要参数填入表3.1 中。

表3.1 晶体三极管主要参数

⑵NPN和PNP型三极管及其基极、集电极、射极的识别

三极管分为NPN型和PNP型两大类,不论哪种类型的三极管,都有两个PN结,即发射结和集电结,可利用万用电表检查两个PN结的单向导电性来判断三极管的类型,同时确定基极引脚。

①置万用电表于×100 欧姆档,并调好零点。取定三极管三引脚中的一脚,将其与黑表笔联接,红表笔分别与其它两脚联接,如果万用电表的指针均有较大偏转;反过来,若取定脚与红表笔联接,黑表笔分别与其它两脚联接,如果万用电表的指针不偏转(或几乎不偏转);再用万用电表检查非取定两脚是否有内部短路,若非取定两脚没有内部短路,则表明两个PN结完好,且管型为NPN型、取定脚为基极。若没有检查出两个PN结,则换取另一脚,重复上述检查步骤。

②找出基极后,另两脚哪一脚为

射极,哪一脚为集电极,需进一

步判断。在极性不明的两脚中任

取一脚,将其与黑表笔联接,另

一脚与红表笔相联(手指不要与

该引脚和表笔接触),此时万用电

表的指针不偏转(或几乎不偏

转),其后用手指接触基极与黑表

笔,此时若表头指针发生偏转;对调表笔再测一次,对指针偏转较大的一次而言,与黑表笔相联的引脚为集电极、另一脚为发射极,如图 3.1 所示。在图 3.1 (a) 中,三极管处在放大状态,通过人体电阻给基极一个偏置电流,放大后产生一个较大的集电极电流,指针偏转较大;在图 3.1 (b)三极管的基-射PN结反偏,而基-集PN结处在正向偏置,基极仍有电流,但三极管没有放大作用,指针偏转较小。

PNP型三极管的检查与此类似,可类推。

⑶测试三极管电路电压传输特性

利用电路实验箱连接图 3.2 所示电路,接通5V 直流电源。调节电位器RP,使输入电压U I逐渐增大,采用逐点测量法,用万用表分别测量三极基射间的电压U BE,输出电压U O,将结果记于表 3.2 中。

表 3.2 三极管电压传输

U CC = V ,R C = k Ω,三极管型号:

利用表 3.2 的结果,分别计算基极集电极电压:

U BC = -(U O -UBE)

集电极电流:

C

O CC C R U U I -= 基极电流:

RB

U U I BE I B -= 线性部分的电流放大倍数:

β= I C / I B

电压放大倍数:

A u =ΔU O /ΔU I

在坐标纸上描绘出电压传输特性曲线U O =f (U I ) 和转移特性曲线 I C = f (U BE )。

4、实验报告要求

① 画出测试电路图。

② 整理表格中的测试数据。

③ 在坐标纸上描绘UO = f (UI ) 曲线和 IC = f (U BE ) 曲线。 ④ 计算电流放大倍数和电压放大倍数。

⑤ 指出三极管饱和区、放大区和截止区对应的 UI 范围。

U CC = 5.86V,R C =2 kΩ

U BE<0.6V截止,U BC>0饱和

三极管的识别检测教学方案计划设计

《三极管的识别和检测》 教 学 设 计

江苏省靖江中等专业学校 教学设计思想 对于高职院校五年制大专电子专业的学生来讲,《电子产品的装配与调试》是一门理论与实践紧密结合的课程。这门功课是学生通向就业之路的大门,也是电子类学生必须掌握的一门专业技能课。 《电子产品的装配与调试》在专业学习中占据了比较重要的地位,但是它也是很多学生学习的难点。传统的授课方式无法满足学生的学习需要,实践性强是这门功课最显著的特点,因此,如何改变传统教学模式,围绕教、学、做为一体,项目式、一体化教学一直是我们探索和实践的方向。下面我通过三极管的识别和检测这一教学章节的具体教学实践,具体阐述我的教学思想和方案。 教学思想:采用项目引领,任务驱动的模式,通过任务驱动和教师引导让学生自主学习动手参与。 一、以“情境聚焦”激发学习兴趣 学生的学习兴趣是学生学习的动力,也是学好一门功课的基础。对于一门比较枯燥的专业课来讲,如何激发学生的学习兴趣至关重要。在设计这节课的教学环节时,所

有任务的提出都采用“情境聚焦”的方式,例如:由音乐门铃引出三极管,由实物、图片引出认识三极管。通过我们日常生活中常见的现象引出课题,同时在授课过程中多采用多媒体教学手段,以播放视频、动画等方式让学生集中注意力,这样就可以把学生的学习兴趣激发出来,让他们带着热情去了解枯燥的知识点。 二、以“项目总结”梳理学习要点 这节课的教学过程总共提出了三个学习任务及拓展任务,在每个教学环节结束,我都会根据学生看一看、听一听和做一做等学习步骤得出的结论进一步进行总结和归纳,形成学习要点。学生要做的就是掌握这些知识点并把这些知识点应用到具体的实践操作中去。 三、以“思考实践”巩固学习效果 做中学,教中做,教、做、学一体式本堂课的主要教学特点。课堂中,老师把大量的教学内容用提问的方式给出,引发学生思考,引导他们自己寻求答案,而老师只需要把他们的答案进行系统的总结归纳。学习效果的巩固则依靠操作过程来完成,真正使学生做到融学于做。 教学方案

三极管型号判断

一、晶体三极管的命名方法及型号字母意义 晶体三极管的命名方法见图5-18,型号字母意义见表5-6 二、晶体三极管的种类 晶体三极管主要有NPN 型和PNP型两大类,一般我们可以从晶体管上标出的型号来识别。详见表5-6。晶体三极管的种类划分如下。 ①按设计结构分为 : 点接触型、面接触型。 ②按工作频率分为 : 高频管、低频管、开关管。 ③按功率大小分为 : 大功率、中功率、小功率。 ④从封装形式分为 : 金属封装、塑料封装。 三、三极管的主要参数 一般情况晶体管的参数可分为直流参数、交流参数、极限参数三大类。 ①直流参数 : 集电极 -基极反向电流 I CBO。此值越小说明晶体管温度稳定性越好。一般小功率管约 10μA左右,硅晶体管更小。 集电极-发射极反向电流I CEO, 也称穿透电流。此值越小说明晶体管稳定性越好。过大说明这个晶体管不宜使用。 ②极限参数:晶体管的极限参数有: 集电极最大允许电流I CM;集电极最大允许耗散功率I CM;集电极-发射极反向击穿电压V(BR)CEO。 ③晶体管的电流放大系数:晶体管的直流放大系数和交流放大系数近似相等,在实际使用时一般不再区分,都用β表示,也可用h FE表示。 为了能直观地表明三极管的放大倍数 , 常在三极管的外壳上标注不同的色标。锗、硅开关管 , 高、低频小功率管 , 硅低频大功率管所用的色标标志如表 2-9-6 所示。 表5-7 部分三极管β值色标表示 ④特性频率f T:晶体三极管的β值随工作频率的升高而下降,三极管的特性频率f是当β下降到 1 时的频率值。也就是说 , 在这个频率下的三极管,己失去放大能力,因为晶体管的工作频率必须小于晶体管特性频率的一半以下。

电子技术实验-模拟部分

《电子技术实验》课程讲稿 ---模拟部分 实验一 集成运算放大器的基本应用(I) 一 实验目的: 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+=i 1 F O )U R R (1U R 2=R 1 // R F 2 3 6 7 4 1 8 i U 10-=-=i 1 F O U R R U

图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 四 实验内容 实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。 1. 反相比例运算电路 (1) 按图1连接实验电路,接通±12V 电源。 (2) 输入f =1000Hz ,U ipp =0.5V 的正弦交流信号,测量相应的U opp ,并用示波器观察u o 和u i 的相位关系,记入表1。 表1 U ipp =0.5V ,f =1000Hz 2. 同相比例运算电路 (1) 按图2连接实验电路。实验步骤同内容1,将结果记入表2。 表2 U ipp =0.5V f =1000Hz 2 3 1 8 4 6 7

实验二极管和三极管的识别与检测实验报告

实验 二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 机械万用表及其欧姆档的内部等效电路如图所示。 图中E 为表内电源,r 为等效内阻,I 为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100?R 或K R 1?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN 结,而PN 结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100?R 或K R 1?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN 型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP 型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

三极管的判断方法

三极管的判断方法一,三极管类型

1. 先判定基极b(一般中间的就是):先假定一个管脚是b,把 红表笔接这个b,用黑表笔分别接触另两个管脚,测得或者都是高阻值时,说明假定正确。 2.因为红表笔实际是表电源的负极,所以 当测得都是低阻值时,b是N型材料, 两端是P型材料,就是PNP型。 3.所以当测得都是高阻值时,b是P型材料, 两端是N型材料,就是NPN型。 4.我们一般可以容易找到基极b,但另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO 的方法确定集电极c和发射极e。 (1) 对于NPN型三极管,用手指捏住b极与假设的c极,管脚间利用我们的手指充当电阻的作用,用黑表笔接假设的c 极,红表笔接假设的e极,万用表打到*1K档测量两极间的电阻 Rce;之 后将假 设的c ,e 极对调 再测一

次。虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极 管符号中的 箭头方向一 致,所以此时 黑表笔所接 的一定是发 射极e,红表 笔所接的一定是集电极c。 4.直流放大倍数的hFE的测量:先转动开关至晶体管调节 Adj位置上,将红黑测试笔短接,调节欧姆调零电位器,使指针对准300hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数?值。N型插入N型插座,P型插入P型插座。 5.

三极管伏安特性测量实验报告

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验_______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数 专业:___ _________ 姓名:___

值时的Ib~Ube曲线。分两种情形来讨论。 (1)从图(a)来看,Uce=0,即c、e间短路。 此时Ib与Ube间的关系就是两个正向二极管并 联的伏安特性。每改变一次Ube,就可读到一组 数据(Ube,Ib),用所得数据在坐标纸上作图, 就得到图(b)中Uce=0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib为不同常量时输出回路中的Ic~Uce曲线。测试时,先固定一个Ib,改变Uce,测得相应的Ic值,从而可在Ic~Uce直角坐标系中画出一条曲线。Ib取不同常量值时,即可测得一系列Ic~Uce曲线,形成曲线族,如图所示。 三、实验仪器 三极管,HY3003D-3型可调式直流稳压电源,万用表、

第三章《数字逻辑》(第二版)习题答案

第三章 1.根据所采用的半导体器件不同,集成电路可分为哪两大类?各 自的主要优缺点是什么? 解答 双极型集成电路:采用双极型半导体器件作为元件.主要特点是速度快、 负载能力强,但功耗较大、集成度较低。 单极型集成电路:指MOS集成电路,采用金属-氧化物半导体场效应管 (Metel Oxide Semi- conductor Field Effect Transister,简写为MOSFET)作为元件.MOS型集成电 路的特点是结构简单、制造方便、集成度高、功耗低, 但速度较慢。 2.简述晶体二极管的静态特性? 解答 “正向导通(相当于开关闭合),反向截止(相当于开关断开)”,硅管正向压降约0.7伏,锗管正向压降约0.3伏。 3.晶体二极管的开关速度主要取决于什么? 解答 晶体二极管的开关速度主要取决于反向恢复时间(二极管从正向导通到反向截止所需要的时间)和 开通时间(二极管从反向截止到正向导通所需要的时间)。相比之下,开通时间很短,一般可以忽略不计。因此,影响二极管开关速度的主要因素是反向恢复时间。 4.数字电路中,晶体三极管一般工作在什么状态? 解答 数字电路中,晶体三极管一般工作在“截止状态”(相当于开关断开)

和“饱和导通状态”(相当于开关闭合)。 5.晶体三极管的开关速度取决于哪些因素? 解答 晶体三极管的开关速度主要取决于开通时间t on(三极管从截止状态到饱和状态所需要的时间)和关闭时间t off (三极管从饱和状态到截止状态所需要的时间),它们是影响电路工作速度的主要因素。 6. TTL与非门有哪些主要性能参数? 解答 TTL与非门的主要外部特性参数有输出逻辑电平、开门电平、关门电平、扇入系数、扇出系数、平均传输时延、输入短路电流和空载功耗等8项。 7.OC门和TS门的结构与一般TTL与非门有何不同?各有何主要应用? 解答 OC门:该电路在结构上把一般TTL与非门电路中的T3、D4去掉,令T4的集电极悬空,从而把一般TTL与非门电路的推拉式输出级改为三极管集电极开路输出。OC门可以用来实现“线与”逻辑、电平转换以及直接驱动发光二极管、干簧继电器等。 TS门: 该电路是在一般与非门的基础上,附加使能控制端EN和控制电路构成的。在EN有效时为正常 工作状态,在EN无效时输出端被悬空,即处于高阻状态。TS门主要应用于 数据与总线的连接,以实现总线传送控制,它既可用于单向数据传送,也可用于双向数据传送。 8.有两个相同型号的TTL与非门,对它们进行测试的结果如下:

三极管的基极判断和类型

判断基极和三极管的类型 三极管的脚位判断,三极管的脚位有两种封装排列形式,如右图: 三极管是一种结型电阻器件,它的三个引脚都有明显的电阻数据,测试时(以数字万用表为例,红笔+,黒笔-)我们将测试档位切换至二极管档(蜂鸣档)标志符号如右图: 正常的NPN结构三极管的基极(B)对集电极(C)、发射极(E)的正向电阻是430Ω-680Ω(根据型号的不同,放大倍数的差异,这个值有所不同)反向电阻无穷大;正常的PNP 结构的三极管的基极(B)对集电极(C)、发射极(E)的反向电阻是430Ω-680Ω,正向电阻无穷大。集电极C对发射极E在不加偏流的情况下,电阻为无穷大。基极对集电极的测试电阻约等于基极对发射极的测试电阻,通常情况下,基极对集电极的测试电阻要比基极对发射极的测试电阻小5-100Ω左右(大功率管比较明显),如果超出这个值,这个元件的性能已经变坏,请不要再使用。如果误使用于电路中可能会导致整个或部分电路的工作点变坏,这个元件也可能不久就会损坏,大功率电路和高频电路对这种劣质元件反应比较明显。 尽管封装结构不同,但与同参数的其它型号的管子功能和性能是一样的,不同的封装结构只是应用于电路设计中特定的使用场合的需要。 要注意有些厂家生产一些不规范元件,例如C945正常的脚位是BCE,但有的厂家出的此元件脚位排列却是EBC,这会造成那些粗心的工作人员将新元件在未检测的情况下装入电路,导致电路不能工作,严重时烧毁相关联的元器件,比如电视机上用的开关电源。 在我们常用的万用表中,测试三极管的脚位排列图: 先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表

晶体管输入输出特性曲线测试电路实验报告

实验题目:晶体管输入输出特性曲线测试电路的设计 班级: 学号: 姓名: 日期:

一、实验目的 1. 了解测量双极型晶体管输出特性曲线的原理与方法 2. 熟悉脉冲波形的产生和波形变换的原理与方法 3. 熟悉各单元电路的设计方法 二、实验电路图及其说明 晶体管共发射极输出特性曲线如图所示,它是由函数i c=f (v CE)|i B=常数,表示的一簇曲线。它既反映了基极电流i B对集电极电流i C 的控制作用,同时也反映出集电极和发射极之间的电压v CE对集电极电流i C的影响。 如使示波器显示图那样的曲线,则应将集电极电流i C取样,加至示波器的Y轴输入端,将电压v CE加至示波器的X轴输入端。若要显示i B为不同值时的一簇曲线,基极电流应为逐级增加的阶梯波形。通常晶体管的集电极电压是从零开始增加,达到某一数值后又回到零值的扫描波形,本次实验采用锯齿波。 测量晶体管输出特性曲线的一种参考电路框图如图所示。 矩形波震荡电路产生矩形脉冲输出电压v O1。该电路一方面经锯齿波形成电路变换成锯齿波v O2,作为晶体管集电极的扫描电压;另一方面经阶梯波形成电路,通过隔离电阻送至晶体管的基极,作为积极驱动电流i B,波形见图3的第三个图(波形不完整,没有下降)。 电阻R C将集电极电流取样,经电压变换电路转换成与电流i C成正比的对地电压V O3,加至示波器的Y轴输入端,则示波器的屏幕上便会显示出晶体管输出特性曲线。 需要注意,锯齿波的周期与基极阶梯波每一级的时间要完全同步(用同一矩形脉冲

产生的锯齿波和阶梯波可以很好的满足这个条件)。阶梯波有多少级就会显示出多少条输出特性曲线。另外,每一整幅图形的显示频率不能太低,否则波形会闪烁。 选作:晶体管特性曲线数目可调: 主要设计指标和要求: 1、矩形波电压(V O1)的频率f大于500Hz,误差为±10Hz,占空比为4%~6%,电压幅度 峰峰值大约为20V。 2、晶体管基极阶梯波V O3的起始值为0,级数为10级,每极电压0.5V~1V。 3、晶体管集电极扫描电压V O2的起始电压为0V,幅度大约为10V。 三、预习 理论计算:电路设计与仿真: 1.矩形波电路:仿真图如下:

模拟电子技术实验指导

实验二常用电子仪器的使用 一、实验目的 (1)了解双踪示波器、低频信号发生器及晶体管毫伏表的原理框图和主要技术指标; (2)掌握用双踪示波器测量信号的幅度、频率; (3)掌握低频信号发生器、晶体管毫伏表的正确使用方法。 二、实验器材 双踪示波器DF4321型(或HH4310A型)低频信号发生器DF1641B型(或SG1631C型)晶体管毫伏表DF2175型 三、实验原理与参考电路 在电子技术实验里,测试和定量分析电路的静态和动态的工作状况时,最常用的电子仪器有示 示波器:用来观察电路中各点的波形,以监视电路是否正常工作,同时还用于测量波形的周期、幅度、相位差及观察电路的特性曲线等。 低频信号发生器:为电路提供各种频率和幅度的输入信号。 直流稳压电源:为电路提供电源。 晶体管毫伏表:用于测量电路的输入、输出信号的有效值。 万用表:用于测量电路的静态工作点和直流信号的值。 四、实验内容及步骤 1.低频信号发生器与晶体管毫伏表的使用 (1)信号发生器输出频率的调节方法 按下“频率范围”波段开关,配合面板上的“频率调节”旋钮可使信号发生器输出频率在0.3Hz~3MHz的范围改变。 (2)信号发生器输出幅度的调节方法 仪器面板右下方的Q9是信号的输出端,调节“输出衰减”开关和“输出调节”电位器,便可在输出端得到所需的电压,其输出为0-20V P-P的范围。 (3)低频信号发生器与毫伏表的使用 将信号发生器频率调至lkHz,调节“输出调节”旋钮,使仪器输出电压为5V P-P左右的正弦波,分别置分贝衰减开关于0dB、—20dB、—40dB、—60dB挡,用毫伏表分别测出相应的电压值。注意测量时不要超过毫伏表的量程,并且尽可能地把档位调到与被测量值相接近,以减小测量误差。 2.示波器的使用 (1)使用前的检查与校准 先将示波器面板上各键置于如下位置:“工作方式”位于“交替”(如果只观察一个波形可置于CHl通道或CH2通道);“极性”选择位于“+”;“触发方式”位于“内触发”;“DC,GND,AC"开关位于“AC”;“高频,常态,自动”开关位于“自动”位置;“灵敏度V/div"开关于“0.2V/div"档,“扫速t/div"开关于“0.2ms/div"档,亮度、辉度、位移、电平开关置中间位置,开启电源后,

晶体三极管的三极判断

《晶体三极管的三极判断》说课稿 我说课的题目是:《晶体三极管的三极判断》。我主要从说教材、说教法、说学法、说教学过程从四个方面进行阐述。 一、说教材 1、教材分析 教材:中等职业教育规划教材 国防科技大学出版社《电子技术基础》 主编:侯寅珊教授 根据教育部颁发的中等职业教育《电子技术基础》教学大纲进行编写。同时参照电气类职业技能规范,同时从目前中等职业教育学生的实际出发,淡化了理论教学,着重培养学生的学习能力、问题的能力,应用知识解决问题的能力。本书作为中等职业学校电子技术的基础教材,将课程的理论知识与实践能力相结合。 2、教学重点与难点 重点:三极管类型、及用不同符号表示 难点:三极管的内部结构、如何判别三极管的三个极的极性 3、教学目标 知识目标:了解晶体三极管的分类、符号;明确三极管的三个极的判断方法; 能力目标:培养学生观察、分析等逻辑思维能力; 独立解决问题的能力; 培养和提高口头表达能力; 培养学生的团队意识; 锻炼学生的自学能力、设计能力、手工操作能力。 情感目标:培养学生参与、合作意识,激发学生学习兴趣和乐于探究的精神。 4、教学理念 摈弃简单的说教,以生为本,紧密联系生活,关注学生实际,引导学生积极参与学习实践,在合作学习中不断提升专业理论和专业技能。

二、说教法 1、灵活多样的教学方法 对基本要了解的知识点采用直观教学法(如:三极管的分类)。 为落实重点采用开放活动式教学,引导思考法教法(如:三极管的类型和符号)。 为突破难点采用启发式,课堂互动式,多媒体辅助教学法,实践操作巩固法教法等等(三极管的极性判断)。 2、教学手段 情境导入式、活动式教学,引导思考法、实践操作巩固法。利用多媒体教学手段的优势,借助元器件实物图及使用万用表来判断三极管的极性等直观形象的画面,设计丰富有趣的课堂实践,创设宽松活泼的情景,为学生提供丰富的想象、表现、创新的空间,使学生在这种情境教学中深刻体会增强集体凝聚力、加强团队合作的重要性。 导入 话筒是将声音信号转换为电信号,经放大电路放大后,变成大功率的电信号,推动扬声器,再将其还原为声音信号。 放大电路又称放大器,是指能把微弱的电信号转换为较强的电信号的电子线路。放大器的核心元件(即放大元件)是半导体三极管。 这节课我们就来学习三极管的基础知识。 塑封型三极管大功率三极管 调整管中功率三极管 声音 图 1 扩音器示意图

实验二 二极管和三极管的识别与检测实验报告

实验二二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 万用表及其欧姆档的内部等效电路如图所示。 图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100 ? R或K R1 ?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 ( 1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100 ? R或K R1 ?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

三极管的检测及其管脚的判别

三极管的检测及其管脚的判别 使用数字万用表判断三极管管脚(图解教程) 现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。我倒认为数字万用表在测量三极管时更加的方便。以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。 手头上有一些BC337的三极管,假设不知它是PNP管还是NPN 管。 图1三极管 我们知道三极管的内部就像二个二极管组合而成的。其形式就像下图。中间的是基极(B极)。

图2三极管的内部形式 首先我们要先找到基极并判断是PNP还是NPN管。看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。这时我们可以用数字万用表的二极管档去测基极,看图3。对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。对于NPN表来说则是红表笔(连表内电池正极)连在基极上。从图4,图5可以得知,手头上的BC337为NPN管,中间的管脚为基极。

图3万用表的二极管测量档 图4判断BC337的B极和管型(1)

图4判断BC337的B极和管型(2) 找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。而利用数字表的三伋管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。 把万用表打到hFE档上,BC337卑下到NPN的小孔上,B极对上面的B字母。读数,再把它的另二脚反转,再读数。读数较大的那次极性就对上表上所标的字母,这时就对着字母去认BC337的C,E 极。学会了,其它的三极管也就一样这样做了,方便快速。 图5万用表上的hFE档

三极管状态判断

三极管状态判断 NPN管:放大状态Vc>Vb>Ve,饱和状态Vb>ve,Vb>vc,截止状态Vc=+V,Vb=0 PNP管:放大状态Ve>Vb>Vc,饱和状态VbUce. 当晶体管的Ube增大时,Ic不是明显的增大说明进入饱和状态,对于小功率管,可以认为当Uce=Ube,即Ucb=0时,处于临界饱三极管简介 晶体三极管的结构和类型 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。 三极管的封装形式和管脚识别 常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律, 底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。 目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。 晶体三极管的电流放大作用 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

第2章 模拟电路实验

第2章 模拟电子技术实验 实验2.1 电压放大电路 1. 实验目的 (1)掌握共发射极放大电路的参数对放大电路性能的影响。 (2)学习调整交流电压放大电路的静态工作点、测量电压放大倍数。 (3)熟悉数字存储示波器、交流毫伏表的使用方法。 2. 实验预习要求 (1)如何调整放大电路的静态工作点?放大电路电压放大倍数与哪些因素有关? (2)放大电路输出信号波形在哪些情况下可能产生失真?应如何消除失真? 3. 实验仪器与设备 (1)仪器设备 (2)实验板介绍 图2.1.1是放大电路实验板的印制电路,它由三个单级放大电路组成: T 1管与其周围元件可以组成一级固定偏置或分压式偏置共发射极放大电路,T 2管构成一级分压式偏置、并带有电流负反馈的共发射极放大电路,T 3管构成一级射极输出器。 第一级放大电路有两个独立的集电极电阻R C1 = 3k Ω、C1R '= 1.5k Ω,发射极电阻由E1 R '和 R E1串联构成,旁路电容C E1用来控制是否引入交流电流负反馈及控制反馈深度。 三级放大电路的上偏置电阻R B11、R B21、R B31,都是由一个固定的10 k Ω电阻串联一个电位器构成。调节各电位器,可为各级放大电路设定合适的静态工作点。 每一级放大电路相互独立,可根据需要灵活组成单级或多级阻容耦合放大电路。射极输出器既可接在末级,也可接在第一级,或作为中间级,只要改变实验板上的接线即可。 实验板上“+12V ”用来接直流电源,“输入u i ”用来外接输入信号,“输出u o ”是放大电路的输出端。每级放大电路还有各自独立的输出端u o1、u o2、u o3。实验板的印制电路已将几个“地”端固定连接在一起(电子实验要求整个实验系统共地)。 另外实验板还设有几个专用电阻供实验时使用。R L = 3k Ω可作为放大电路的外接负载。R F = 39k Ω为反馈电阻,当需要引入级间电压负反馈时,可将M 点与u o2、M '点与T 1的发射极e 1分别相连。R S = 3 k Ω可视为信号源的内阻,利用R S 可测量放大电路的输入阻抗。

三极管的识别与检测

晶体三极管的识别和检测 晶体三极管又称半导体三极管,简称晶体管或三极管。在三极管内,有两种载流子:电子与空穴,它们同时参与导电,故晶体三极管又称为双极型晶体三极管,它的基本功能是具有电流放大作用。 一、结构 NPN和PNP型两类三极管的结构如图。它有两个PN结(分别称为发射结和集电结),三个区(分别称为发射区、基区和集电区),从三个区域引出三个电极(分别称为发射极e、基极b和集电极c)。发射极的箭头方向代表发射结正向导通时的电流的实际流向。 为了保证三极管具有良好的电流放大作用,在制造三极管的工艺过程中,必须作到: ①使发射区的掺杂浓度最高,以有效地发射载流子;②使基区掺杂浓度最小,且区最薄,以有效地传输载流子;③使集电区面积最大,且掺杂浓度小于发射区,以有效地收集载流子。

半导体三极管亦称双极型晶体管,其种类非常多。按照结构工艺分类,有PNP和NPN型;按照制造材料分类,有锗管和硅管;按照工作频率分类,有低频管和高频管;一般低频管用以处理频率在3MHz以下的电路中,高频管的工作频率可以达到几百兆赫。按照允许耗散的功率大小分类,有小功率管和大功率管;一般小功率管的额定功耗在1W以下,而大功率管的额定功耗可达几十瓦以上。 1、共射电流放大系数β:β值一般在20~200,它是表征三极管电流放大作用的最主要的参数。 2、反向击穿电压值U(BR)CEO:指基极开路时加在c、e两端电压的最大允许值,一般为几十伏,高压大功率管可达千伏以上。

3、最大集电极电流I CM :指由于三极管集电极电流I C过大使β值下降到规定允许值时的电流(一般指β值下降到2/3正常值时的I C值)。实际管子在工作时超过I CM并不一定损坏,但管子的性能将变差。 4、最大管耗P CM :指根据三极管允许的最高结温而定出的集电结最大允许耗散功率。在实际工作中三极管的I C与U CE的乘积要小于P CM值,反之则可能烧坏管子。 5、穿透电流I CEO:指在三极管基极电流I B=0时,流过集电极的电流I C。它表明基极对集电极电流失控的程度。小功率硅管的I CEO约为0.1mA,锗管的值要比它大1000倍,大功率硅管的I CEO约为mA数量级。 6、特征频率f T:指三极管的β值下降到1时所对应的工作频率。f T的典型值约在100~1000MHz之间,实际工作频率。 二、半导体器件的命名方法 1.中国半导体器件的命名法 根据中华人民共和国国家标准,半导体器件型号由五部分组成,其每一部分的含义见表2-15。 表2-15 国产半导体器件的型号命名方法 第一部分第二部分第三部分第四部 分 第五部分 用数字表示器件的电极数目用汉语拼音字母表示 器件的材料和极性用汉语拼音字母表示器件 的类别 用数字 表示 器件序 号 用汉语拼音 字 母表示规格 号 符号意义 符 号 意义符号意义 4 5

晶体管工作的条件和晶体管工作状态的判断

晶体管工作的条件和晶体管工作状态的判断 晶体管是模拟电路中基础的器件,对于电子工程师来说,了解晶体管工作的条件和判断晶体管的工作状态都是非常基础的,本文将带大家一起学习或回顾一下。 一、晶体管工作的条件 1、集电极电阻Rc: 在共发射极电压放大器中,为了取出晶体管输出端的被放大信号电压Use(动态信号),需要在集电极串接一只电阻Rc。这样一来,当集电极电流Ic通过时,在Re上产生一电压降IcRc,输出电压由晶体管c-e之间取出,即Usc=Uce=Ec-IcRc,所以Use也和IcRc —样随输入电压Ui的发生而相应地变化。 2、集电极电源Ec(或Vcc): Ec保证晶体管的集电结处于反向偏置,使管子工作在放大状态,使弱信号变为强信号。能量的来源是靠Ec的维持,而不是晶体管自身。 3、基极电源Eb: 为了使晶体管产生电流放大作用,除了保证集电结处于反向偏置外,还须使发射结处于正向偏置,Eb的作用就是向发射结提供正向偏置电压,并配合适当的基级电阻Rb,以建立起一定的静态基极电流Ib。当Vbe很小时,Ib=O,只有当Vbe超过某一值时(硅管约0.5V,锗管约0.2V,称为门槛电压),管子开始导通,出现Ib。随后,Ib将随Vbe增大而增大,但是,Vbe和Ib的关系不是线性关系:当Vbe大于0.7V后,Vbe再增加一点点,Ib就会增加很多。晶体管充分导通的Vbe近似等于一常数(硅管约0.5V,锗管约0.5V)。 4、基极偏流电阻Rb: 在电源Eb的大小已经确定的条件下,改变Rb的阻值就可以改变晶体管的静态电流Ib,从而也改变了集电极静态电流Ic和管压降Vce,使放大器建立起合适的直流工作状态。二、晶体管工作状态的判断 晶体三极管工作在放大区时,其发射结(b、e极之间)为正偏,集电结(b、c极之间)为反偏。对于小功率的NPN型硅,呈现为Vbe≈0.7V,Vbc《0V(具体数值视电源电压

实验二 晶体管特性的测量

实验二 晶体管特性的测量与晶体管的测试 一、实验目的 1. 了解晶体管图示仪的基本原理和晶体管的引脚及类型判别 2. 掌握用晶体管图示仪测量晶体管特性曲线的方法 3. 掌握运用特性曲线求晶体管特性参数的方法 二、实验内容 1. 测试2AP11正反向特性 ⑴ 正向特性 a . 慢慢增大峰值扫描电压,直至I D =10mA ,把曲线绘在绘图纸上。 b . 读测I DQ =5mA 时的正向压降V DQ ,计算直流电阻R D =V DQ /I DQ 、交流电阻 r D =△V D /△I D 。 ⑵ 反向特性 a . 逐渐增大峰值扫描电压至100V ,描下反向特性曲线。 b . 读测V R =100V 时的反向电流I'R 以及I R =20μA 时的反向电压V R 。 2. 测试2CW19稳压特性 a . 读测稳压值V ZQ 。 b . 在I EQ =50mA 时,求动态电阻R=△V Z /△I Z 。 c . 读测I Zmin 值 3. 测试晶体管共射输入输出特性 (1) 测量3DG12B 的共射输出特性 a . 描下输出特性曲线族。 b . 在V CEQ =5V ,I CQ =4~6mA 求 V V B C CE I I 5Q == β ,CE Q V V B C CE I I =??= β c . 按下”零电流”开关(或断开基极) I .在V CE =10V 时,读出I CEO II .调节峰值电压,使I C =100μ A 时,读取BV CEO (2) 测量3DG12 B 的共射输入特性 a . 描下输入特性曲线族。 b . 从输入特性曲线上求输入电阻 B BE be I V r ??= (3) 测量3AX31的共射输出特性 a . 描下输出特性曲线族。 b . 在V CEQ =5V ,I CQ =3~5mA 时,求,β c . 按下”零电流”开关(或断开基极)

晶体三极管的作用

晶体三极管的电流放大作用 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。 放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。 饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。 根据三极管工作时各个电极的电位高低,就能判别三极管的工作状态,因此,电子维修人员在维修过程中,经常要拿多用电表测量三极管各脚的电压,从而判别三极管的工作情况和工作状态。 使用多用电表检测三极管 三极管基极的判别:根据三极管的结构示意图,我们知道三极管的基极是三极管中两个PN结的公共极,因此,在判别三极管的基极时,只要找出两个PN结的公共极,即为三极管的基极。具体方法是将多用电表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极。如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。这样最多没量12次,总可以找到基极。 三极管类型的判别:三极管只有两种类型,即PNP型和NPN型。判别时只要知道基极是P型材料还N型材料即可。当用多用电表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P型材料,三极管即为NPN型。如果红表笔接基极导通,则说明三极管基极为N型材料,三极管即为PNP型。

第三章 习题解答

第三章双极型三极管基本放大电路 3-1 选择填空 1.晶体管工作在放大区时,具有如下特点______________。 a. 发射结正偏,集电结反偏。 b. 发射结反偏,集电结正偏。 c. 发射结正偏,集电结正偏。 d. 发射结反偏,集电结反偏。 2.晶体管工作在饱和区时,具有如下特点______________。 a. 发射结正偏,集电结反偏。 b. 发射结反偏,集电结正偏。 c. 发射结正偏,集电结正偏。 d. 发射结反偏,集电结反偏。 3.在共射、共集、共基三种基本组态放大电路中,电压放大倍数小于1的是______组态。 a. 共射 b. 共集 c. 共基 d. 不确定 4.对于题3-1图所示放大电路中,当用直流电压表测得U CE ≈V CC 时,有可能是因为______,测得U CE ≈0时,有可能是因为________。 题3-1图 cc R L a.R B 开路 b. R C 开路 c. R B 短路 d. R B 过小 5.对于题3-1图所示放大电路中,当V CC =12V ,R C =2k Ω,集电极电流I C 计算值为1mA 。用直流电压表测时U CE =8V ,这说明______。 a.电路工作正常 b. 三极管工作不正常 c. 电容C i 短路 d. 电容C o 短路 6.对于题3-1图所示放大电路中,若其他电路参数不变,仅当R B 增大时,U CEQ 将______;若仅当R C 减小时,U CEQ 将______;若仅当R L 增大时,U CEQ 将______;若仅更换一个β较小的三极管时,U CEQ 将______; a.增大 b. 减小 c . 不变 d. 不确定 7.对于题3-1图所示放大电路中,输入电压u i 为余弦信号,若输入耦合电容C i 短路,则该电路______。 a.正常放大 b. 出现饱和失真 c. 出现截止失真 d. 不确定 8. 对于NPN 组成的基本共射放大电路,若产生饱和失真,则输出电压_______失真;若产生截止失真,则输出电压_______失真。 a.顶部 b. 低部 9. 当输入电压为余弦信号时,如果PNP 管共射放大电路发生饱和失真,则基极电流i b 的波形将___________,集电极电流i c 的波形将__________,输出电压u o 的波形将________。 a.正半波消波 b. 负半波消波 c . 双向消波 d. 不消波 10. 当输入电压为余弦信号时,如果NPN 管共射放大电路发生饱和失真,则基极电流i b 的

相关文档
相关文档 最新文档