文档库 最新最全的文档下载
当前位置:文档库 › 初中学生数学建模能力调查与分析

初中学生数学建模能力调查与分析

初中学生数学建模能力调查与分析
初中学生数学建模能力调查与分析

初中学生数学建模能力调查与分析

(一)调查目的

《全日制义务教育课程标准》指出:“义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展”,“强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释和应用的过程,使学生获得数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。

因此培养学生运用数学知识分析和解决实际问题的能力成为初中阶段数学教学的

首要任务之一,而数学建模教学正是为培养学生解决实际问题能力提供的一种有效途

径。笔者为了了解碧莲学区初级中学学生数学建模能力的现状及存在的问题,选取二所初中八年级各一个教学班学生进行测试和问卷调查,并对调查结果加以整理,以便为开展数学建模教学研究提供较可靠的资料。

(二)调查的对象

碧莲镇中学与大若岩镇中学初二年级的各一个教学班,共96名学生。(三)调查方式

采用数学建模能力测试题(共有3题,每题满分为20分)及数学建模学习状况问卷调查。

(四)学生的测试题及结果分析

测试要求学生在45分钟内完成三道数学建模题,每题满分为20分,要求学生在解答过程中,无论用什么方法解答,无论解答对否,均要写下解题过程或思考过程。

1、测试题

(1)某校校长暑假将带领该校市级“三好学生”去旅游,甲旅行社说:“如果校长买全价票一张,则其余学生可享受半价优待”,乙旅行社说:“包括校长在内全部按全

票价的6折优惠”(即按全票价的60%收费),若全票价为240元,

①设学生数为x,甲旅行社收费为y

甲,乙旅行社收费为y

,分别计算两家旅行

社的收费(建立表达式);

②当学生数是多少时,两家旅行社的收费一样?

③就学生数x讨论哪一家旅行社更优惠?

(2)某边防站接到情报,近海有一可疑

船只A正向公海方向行驶,边防部队迅速派

出快艇B追赶,在追赶过程中,设快艇B相

对于海岸的距离为y1(海里),可疑船只A相

对于海岸的距离为y2(海里),追赶时间为

t(min),图1中l a、l b分别表示y2、y1与t之间的关系。结合图像回答下列问题:图1

①请你根据图中标注的数据,分别求出y1、y2与t之间的函数关系式,并写出自变量t的取值范围;

②15min内B能否追上A?说明理由;

③已知当A逃到离海岸12海里的公海时,B将无法对其进行检查。照此速度计算,B能否在A逃入公海前将其拦截?

(3)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台。先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区。两地区与该农机租赁公司商定的每天的租赁价格见下表:

①设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;

②若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600,说明有多少种分配方案,并将各种方案设计出来;

③如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议。

2.测试结果

从整体上看,测试成绩不理想,特别是第三题,得分率相当低,具体成绩见表一、表二、表三。

表二测试题目得分情况表

表三测试成绩结果统计表

3.测试结果分析

①从表一可以看出,两个班的平均分都没有及格,而且两班及格率都没有超过50%,高分很少,两个学校总分高于45分的人数均不超过10%,而总分低于20分的两所学校分别有4人和5人。也就说明两校96个同学中共有9人一道建模题都无法完成,占了参加测试学生人数的10%。

②从表二可以看出,第一题和第二题的得分较高,得满分的人数也较多,这是因为,虽然在这两个问题中,一道是利用方程来解决问题,一道是利用函数图象来解决实际问25题,从学生写的解答过程分析,考虑的方向不尽相同,但由于题目比较直观,条件清楚准确,不多不少,原始问题模型化的过程明了。所以不少同学能解答得较好,特别是第一题,两个学校得满分的同学均超过五分之一。

从表二中还可看出第三题的得分很低,两所中学这题的平均分分别是7.89和8.48,得满分的学生八中只有1人,三十七中有2人,从学生的答卷可以看出,测试题中第三题所涉及的量比较多,学生不会列表分析这些量之间的数量关系。有的能列表找出数量关系,列出方程了,但又不会确定自变量的取值范围。最终导致大部分同学在这道题中只得到几分。通过测试后访谈,发现不少学生已经正确理解题意,但不能根据学过的数学知识建立数学模型。这说明学生缺乏生活经验,遇到陌生情景问题时,不善于将之转化为熟悉的问题,进行条件的梳理,不善于将实际问题连接到相应的数学模型。

③从表三中可以看出,每道题都有学生得零分,三道题的平均得分别是13.8、

11.8、8.4分,特别是第三题,平均分没有超过满分的一半。说明大部分学生对条件略为复杂的建模题的建模能力还是比较差。尽管新的课程标准已经颁布实施了几年,《标准》指出:“要让学生亲身亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。使学生体会数学与现实世界和人类进步的密切联系,也就是要求同学们有较强的数学建模能力。但从本人对学生的建模能力测试的结果可以得出,初中学生的数学建模能力的培养亟待加强。新教材上面有很多关于数学建模的实际问题,如最近线路问题,最省运费问题等等,学生在上到这些内容时,往往不知所措,对所罗列的条件不知道如何分析,学生害怕解决条件复杂的建模应用题目。因此在中学开展数学建模教学的研究势在必行。

(五)学生问卷调查结果分析

通过制定的一份以学生数学建模学习状况为对象的学生调查表(问卷见附录一),以原来参加测试题测试的96名同学为调查对象。调查前声明不记名,务必实事求是地回答,调查后共收回问卷96份。问卷选择题的调查情况如下:(见表四)

表四初中学生数学建模学习状况调查结果统计表

从上述表格可得出以下结论:

①认为学习数学目的是工作和生活中有用的同学仅占被调查学生的32.3%,有助于训练思维的学生占40.6%,为了升学考试的学生占了27.1%,而对于了解数学在现实生活的应用价值这道题,只有18%的同学认为有很大应用价值。有

53.1%的同学了解有一些应用价值,而还有28.1%的同学根本不清楚。

②有54.2%的同学知道在初中数学中有数学建模题,对数学建模题感兴趣的同学也占了被调查同学的51.1%。但对数学模型在生活中的应用,有24%的学生表示经常用,有47.9%的学生表示偶尔用,而有28.1%的同学表示从来不用。因此从问卷中可以看出学生的兴趣和应用是有些脱节的。学生有兴趣却不会用,兴趣是最好的老师,既然学生对用数学模型解决实际问题有强烈的好奇心,我们就应该抓住这一点,将生活中数学问题引入到课堂中来,引导学生通过建立数学模型把数学知识与现实问题联系起来,改变学生数学建模能力薄弱的现状。

③有46.9%的同学表示非常愿意参加数学建模的实践活动。有39.6%的同学认为数学建模能显著激发自己强烈解决问题的欲望。

④对于数学建模题目,有37.5%的同学认为很难,有43.8%的同学认为比较难。只27有关18.7%的同学认为不难。不能合理建立模型的主要原因,认为是心理上怕做的有31.2%,有39.6%的同学认为是读不懂题,对应用题中所涉及的实际环境不熟悉的分别占了28.1%,也就是共有69.8%同学因阅读发生障碍,因此导致不能将文字语言转化为数学语言,有效建模。

⑤对于教师开展建模教学时,有20.8%的学生喜欢是教师一言堂,有38.6%的学生喜欢先听讲后练习,但也有40.6%学生喜欢先练习后听讲。从这个数据就可以看出,不少学生学习的依赖心理比较重,在学习过程中习惯于接受式学习。而数学建模教学我们更强调学生有充分的从事数学建模活动的时间和空间,在自

主探索、亲身实践、合作交流的氛围中解除困惑,更清楚地明确自己的思想,并有机会分享同学的想法。在亲身体验和探索中认识数学模型的应用,提高解决问题的能力。

⑥绝大部分学生认为教师比较重视数学建模题的教学,但也有15.6%学生认为认为教师不重视数学建模题的教学。受知识传授和灌输式教学的影响,加之选拔学生只看考试成绩,学校、教师只关注学生的考试成绩,这些因素导致对学生的限制过多,从而造成学生视野狭窄,缺乏实践能力,影响数学建模教学的开展。数学建模活动重在“建”,重在学生的参与,从数学建模的选题、收集资料,从实际问题中抽象出数学问题、建立模型、求解并检验结果是否与实际相符合这一系列过程都需要学生的积极参与,需要学生亲自动手参与实践,需要学生发挥自己的想象力,需要学生与人配合、与人交流,而这一切要求都与学生目前的现状有着很大的距离。因此,解决建模教学过程中学生面临的问题,对于初中数学建模教学的顺利实施是至关重要的。

初中数学建模

初中数学建模教学有感 摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.关键词:初中数学;数学建模;建模教学 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1]. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2]数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 数学建模的基本过程大致为: 一、初中数学建模教学宜低起点、小步子、多活动 过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中

数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”.低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维. [案例1]销售中的盈亏问题的建模教学 1、背景问题 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页) 2、数学建模 (1)问题分析 ①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元? ②假设一件衣服的进价是y元,以60元卖出,卖出后亏损25%,那么这件衣服的利润是多少元? (2)模型建立 问题1 你认为销售价与进价之间具有怎样的关系时是盈利的?

数学建模-赛题-微分方程竞赛试题

高教社杯全国大学生数学建模竞赛题目 2003高教社杯全国大学生数学建模竞赛题目 (请先阅读 “对论文格式的统一要求”) A题 SARS的传播 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型,具体要求如下: (1)对附件1所提供的一个早期的模型,评价其合理性和实用性。 (2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件2提供的数据供参考。 (3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3提供的数据供参考。 (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。 附件1: SARS疫情分析及对北京疫情走势的预测 2003年5月8日 在病例数比较多的地区,用数理模型作分析有一定意义。前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。希望这种分析能对认识疫情,安排后续的工作生活有帮助。

初中数学教学中的建模教学

初中数学教学中的建模教学 摘要:本文给出了本人关于数学建模与中学数学建模教学的一些实践体会研究,介绍了一些常用的数学模型。并通过对中学数学应用建模教学来增强学生的学习兴趣,激发创造欲望,提高学生的数学能力的分析,并就如何培养数学建模意识,提高数学建模能力。与大家交流商榷。 关键词:数学模型;数学建模;数学建模目的;数学建模能力 数学建模是一种数学的思想方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并“解决”实际问题的一种强有力的数学手段。虽然数学建模的目的是为了解决实际问题,但对于中学生,尤其是初中生来说,进行数学建模教学的主要目的并不是要他们去解决生产、生活中的实际问题,而是要培养他们的数学应用意识,掌握数学建模的方法,为将来的工作打下坚实的基础。因此,根据数学建模的过程,在教学时利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如:方程模型、直角坐标系模型、函数模型、不等式模型等。通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。 首先,在数学建模之前,把最基本的建设的基本过程介绍给学生:让学生明白建模的过程和应用。为把应用和数学课内知识的学习更好地结合起来,应特别注意向学生介绍知识产生,发展的背景;教师要引导学生了解知识的功能,在实际生活中的作用,抓住数学建模与学生观察所学知识的“切入点”,引导学生在学中用、在用中学。按照这种方式开展教学活动,可使学生了解数学建模的基本方法。下面,将就在初中数学中常见的一些数学模型,与大家一起探讨。

一、方程(或不等式)模型:方程(或不等式)是刻画现实世界数量关系(相等或大小)的数学模型。 例1:“航行问题”应用题:甲乙两地相距750公里,船从甲到乙顺水航行需30小时,船从乙到甲逆水航行需50小时,问船的速度是多少? 航行问题建立数学方程模型的基本步骤 作出简化假设(船速、水速为常数); 用符号表示有关量(x, y表示船速和水速); 用物理定律(匀速运动的距离等于速度乘以时间)列出(二元一次方程); (x+y)×30=750 (x-y)×50=750 求解得到数学解答(x=20, y=5); 回答原问题(船速每小时20公里)。 不等式在初中阶段,主要是学习一元一次不等式,实际生活中的投资决策、最优化问题常用到不等式的知识。 例2:某童装厂有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套。已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米。可获利45元;已知做一套M型号的童装需用甲种布料0.9米,

2016年数学建模大赛试题B题

2016高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) B题小区开放对道路通行的影响 2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。 除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。 城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题: 1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。 2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。交通流分配模型 3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。 4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

初中数学建模论文范文

初中数学建模论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 二、数学应用题如何建模 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力

HIMCM 2014美国中学生数学建模竞赛试题

HIMCM 2014美国中学生数学建模竞赛试题 Problem A: Unloading Commuter Trains Trains arrive often at a central Station, the nexus for many commuter trains from suburbs of larger cities on a “commuter” line. Most trains are long (perhaps 10 or more cars long). The distance a passenger has to walk to exit the train area is quite long. Each train car has only two exits, one near each end so that the cars can carry as many people as possible. Each train car has a center aisle and there are two seats on one side and three seats on the other for each row of seats.To exit a typical station of interest, passengers must exit the car, and then make their way to a stairway to get to the next level to exit the station. Usually these trains are crowded so there is a “fan” of passengers from the train trying to get up the stairway. The stairway could accommodate two columns of people exiting to the top of the stairs.Most commuter train platforms have two tracks adjacent to the platform. In the worst case, if two fully occupied trains arrived at the same time, it might take a long time for all the passengers to get up to the main level of the station.Build a mathematical model to estimate the amount of time for a passenger to reach the street level of the station to exit the complex. Assume there are n cars to a train, each car has length d. The length of the platform is p, and the number of stairs in each staircase is q. Use your model to specifically optimize (minimize) the time traveled to reach street level to exit a station for the following: 问题一:通勤列车的负载问题 在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。大多数火车很长(也许10个或更多的汽车长)。乘客走到出口的距离也很长,有整个火车区域。每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。大多数通勤列车站台有两个相邻的轨道平台。在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。假设一列火车有n个汽车那么长,每个汽车的长度为d。站台的长度是p,每个楼梯间的楼梯数量是q。使用您的模型具体来优化(减少)前往主站台的时间,有如下要求: Requirement 1. One fully occupied train's passengers to exit the train, and ascend the stairs to reach the street access level of the station. 要求1.一个满载乘客的火车,所有乘客都要出火车。所有乘客都要出楼梯抵达出主站台的路上。 Requirement 2. Two fully occupied trains' passengers (all passengers exit onto a common platform) to exit the trains, and ascend the stairs to reach the street access level

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

初中数学建模常见类型及举例

初中数学建模初探 随着经济的飞速发展和计算机的广泛应用,数学日益成为一种技术,其手段就是计算和数学建模.数学建模是解决实际问题的过程,在这一个过程中,建立数学模型是最关键、最重要的环节,也是学生的困难所在。它需要运用数学的语言和工具,对部分现实世界的信息(现象、数据等)加以简化、抽象、翻译、归纳,然后利用合适的数学工具描述事物特征的一种数学方法。 一、在初中数学教学中,要使学生初步学会建立数学模型的方法,提高学生应用数学知识解决实际问题的能力,应着重注意以 下几点: 1、审题 建立数学模型,首先要认真审题。苏联著名数学家斯托利亚尔说过,数学教学也就是数学语言的教学。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。 2、简化 根据实际问题的特征和建模的目的,对问题进行必要简化。抓住

主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。 3、抽象 将已知条件与所求问题联系起来,恰当引入参数变量或适 当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。 按上述方法建立起来的数学模型,是不是符合实际,理论 上、方法上是否达到了优化,在对模型求解、分析以后通常还要用实际现象、数据等检验模型的合理性。 二、初中数学建模的主要类型 一切数学概念、公式、方程式和算法系统等都是数学模型, 可以说,数学建模的思想渗透在中小学数学教材中。因此,只要我们深入钻研教材,挖掘教材所蕴涵的应用数学的材料,并从中总结提炼,就能找到数学建模教学的素材。例如:最大最小问题,包括面(体)积最大(小)、用料最省、费用最低、效益最好等,可以建立函数或不等式模型。行程、工程、浓度问题,可以建立方程(组)、不等式(组)模型。 1、函数模型 当涉及到总运费最少或利润最大等决策性问题时,可通过建立函数

上传高中数学建模竞赛试题

高中数学建模竞赛试题 竞赛时间共120分钟,总分150分 高20 级 班 姓名 一、选择题(每题只有一个选项正确,将正确的选择项填入题后的括号内8×7): 1、三个框中,一个装有苹果,另一个装有柑子,第三个框装有苹果和柑子,装好分别标上“苹果”“ 柑子”“混装”三个标签。后查全都装错了,现在只能打开一个框来纠正三个标签,应该打开哪个框?( D ) A 、“苹果”标签 B 、“ 柑子”标签 C 、“混装”标签 D 、都可以 2、一批旅游者决定分乘几辆大汽车旅游,每车乘22人时有一人坐不上车;若开走一辆空车,所有的旅游车刚好平均分配到余下的车;而每车最多载32人。则旅游者的人数和汽车的辆数各为( B ) A 、441,20 B 、529,24 C 、331,15 D 、414,19 3、某县所建水库最大容量为:1.28×5 10立方米,据监测,在山洪暴发中注入的水量n S 与天数n 的关系式为:n S =5000)24( n n 。水库原有水量为8×4 10立方米,泄水闸每天泄水量4×3 10立方米,那么多少天后堤坝有危险(水容量超过最大容量为危险)( B ) A 、15天 B 、9天 C 、6天 D 、12天 4、下列哪个事件不能构成数学建模的案例?( C ) A 、学生的作业完成情况。 B 、城市饮用水消费情况。 C 、学生养成中的违纪案例。 D 、老师讲解测量实践案例。 5、一商品进价为80元,销售价为100元;为增加销量,采用每卖出一个商品就赠送一个价值1元的小商品的方法,结果销量增加10%;在实践中,若礼品的价值为n+1元比礼品为n 元时销量增加10%。请设计礼品价值为多少元时,利润最大。( D ) A 、8元 B 、9元 C 、10元 D 、9或10元 6、机器人每前进一步就向左转0 30,则下列哪一次机器人会回到起点?( B ) A 、10次 B 、36次 C 、42次 D 、55次 7、有一个摊主用4个白子和4个黑子作赌,其摸彩规定:从袋子里8个子中摸4个,要交 A 、 35 8 B 、701 C 、83 D 、43 8、从宣汉到达州的公路两旁有许多的景点,但总是投入不赚钱,你认为应该从下列哪个方 向投入为最佳方案( B ) A 、追加景点 B 、打造亮点 C 、政府命令 D 、广告投入 二、填空(把每题的最后答案填入后面的横线上2×7) 1、老王向银行贷款3万元发展产业,并按银行贷款月利为0.01,且为复利。若半年还完,则每月还款 5176.4510013264426078741354282726 元(等额还款法)。 2、32位学生中仅一个患有阴性基因的传染病,最少用 5 次可找到这位病人。

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

初中数学建模案例41374

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤 1. 确定题目 选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。 2. 开展科研课题

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

初中学生数学建模能力调查与分析

初中学生数学建模能力调查与分析 (一)调查目的 《全日制义务教育课程标准》指出:“义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展”,“强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释和应用的过程,使学生获得数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。 因此培养学生运用数学知识分析和解决实际问题的能力成为初中阶段数学教学的 首要任务之一,而数学建模教学正是为培养学生解决实际问题能力提供的一种有效途 径。笔者为了了解碧莲学区初级中学学生数学建模能力的现状及存在的问题,选取二所初中八年级各一个教学班学生进行测试和问卷调查,并对调查结果加以整理,以便为开展数学建模教学研究提供较可靠的资料。 (二)调查的对象 碧莲镇中学与大若岩镇中学初二年级的各一个教学班,共96名学生。(三)调查方式 采用数学建模能力测试题(共有3题,每题满分为20分)及数学建模学习状况问卷调查。 (四)学生的测试题及结果分析 测试要求学生在45分钟内完成三道数学建模题,每题满分为20分,要求学生在解答过程中,无论用什么方法解答,无论解答对否,均要写下解题过程或思考过程。 1、测试题 (1)某校校长暑假将带领该校市级“三好学生”去旅游,甲旅行社说:“如果校长买全价票一张,则其余学生可享受半价优待”,乙旅行社说:“包括校长在内全部按全 票价的6折优惠”(即按全票价的60%收费),若全票价为240元, ①设学生数为x,甲旅行社收费为y 甲,乙旅行社收费为y 乙 ,分别计算两家旅行 社的收费(建立表达式); ②当学生数是多少时,两家旅行社的收费一样?

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

[实用参考]高中常见数学模型案例.doc

高中常见数学模型案例 中华人民共和国教育部20KK 年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数P 与按新价让利总额P 之间的函数关系是___________。 分析:欲求货物数P 与按新价让利总额P 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 4 5=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路P (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程P 和时间t 得函数关系式P (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离Pkm 与时间th 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间th 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。 解:设小矩形长为P ,宽为P ,则由图形条件可得:l y x x =++911π ∴x l y )11(9π+-= 要使窗所通过的光线最多,即要窗框面积最大,则: )44(32)442(644])11([322622 222 2ππππππ+++-+-=+-+=+=l l x x lx x xy x s

2016年全国大学生数学建模竞赛题

2001高教社杯全国大学生数学建模竞赛题目 (请先阅读“对论文格式的统一要求”) C题基金使用计划 某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。当前银行存款及各期国库券的利率见下表。假设国库券每年至少发行一次,发行时间不定。取款政策参考银行的现行政策。 校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果: 1.只存款不购国库券; 2.可存款也可购国库券。 3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多

摘要:运用基金M分成n份(M1,M2,…,Mn),M1存一年,M2存2年,…,Mn存n 年.这样,对前面的(n-1)年,第i年终时M1到期,将Mi及其利息均取出来作为当年的奖金发放;而第n年,则用除去M元所剩下的钱作为第n年的奖金发放的基本思想,解决了基金的最佳使用方案问题. 关键词:超限归纳法;排除定理;仓恩定理 1问题重述 某校基金会有一笔数额为M元的基金,欲将其存入银行或购买国库券.当前银行存款及各期国库券的利率见表1.假设国库券每年至少发行一次,发行时间不定.取款政策参考银行的现行政策. 表1 存款年利率表 校基金会计在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额.校基金会希望获得最佳的基金使用计划,以提高每年的奖金额.需帮助校基金会在如下情况下设计基金使用方案,并对M=5 000万元,n=10年给出具体结果: ①只存款不购国库券; ②可存款也可购国库券. ③学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多20%. 2模型的分析、假设与建立 2.1模型假设 ①每年发放的奖金额相同; ②取款按现行银行政策; ③不考虑通货膨胀及国家政策对利息结算的影响; ④基金在年初到位,学校当年奖金在下一年年初发放; ⑤国库券若提前支取,则按满年限的同期银行利率结算,且需交纳一定数额的手续费; ⑥到期国库券回收资金不能用于购买当年发行的国库券. 2.2符号约定 K——发放的奖金数; ri——存i年的年利率,(i=1/2,1,2,3,5); Mi——支付第i年奖金,第1年开始所存的数额(i=1,2,…,10); U——半年活期的年利率; 2.3模型的建立和求解 2.3.1情况一:只存款不购国库券(1)分析

相关文档