文档库 最新最全的文档下载
当前位置:文档库 › 35kv企业变电站课程设计

35kv企业变电站课程设计

35kv企业变电站课程设计
35kv企业变电站课程设计

前言

变电所由主接线,主变压器,高、低压配电装置,继电保护和控制系统,所用电和直流系统,远动和通信系统,必要的无功功率补偿装置和主控制室等组成。其中,主接线、主变压器、高低压配电装置等属于一次系统;继电保护和控制系统、直流系统、远动和通信系统等属二次系统。主接线是变电所的最重要组成部分。它决定着变电所的功能、建设投资、运行质量、维护条件和供电可靠性。一般分为单母线、双母线、一个半断路器接线和环形接线等几种基本形式。主变压器是变电所最重要的设备,它的性能与配置直接影响到变电所的先进性、经济性和可靠性。一般变电所需装2~3台主变压器;330 千伏及以下时,主变压器通常采用三相变压器,其容量按投入5 ~10年的预期负荷选择。此外,对变电所其他设备选择和所址选择以及总体布置也都有具体要求。

本次设计为35KV变电所的电气部分,包括任务书、说明书、计算书,以及1张

电气主接线图。

目录

前言 (1)

1 电气主接线设计 (2)

1.1主接线的设计依据 (2)

1.2 主接线的基本要求 (2)

1.3 主接线的设计和论证 (2)

2 主变压器台数、容量和型号的选择 (8)

3 所用变的选择 (9)

4 电气设备的选择 (10)

4.1电气设备选择的一般条件 (10)

4.2断路器、隔离开关的选择 (12)

5 互感器的选择 (15)

5.1电流互感器的选择 (15)

5.2电压互感器的选择 (16)

6 10KV母线截面的选择 (17)

7 计算书 (18)

8 参考文献 (21)

Ⅰ、电气主接线设计

把变电站、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器,线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。

1.1主接线的设计依据

1.负荷大小和重要性

(1)对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。

(2)对于二级负荷一般要有两个独立电源供电,且任何一个失去后,能保证全部或大部分二级负荷的供电。

(3)对于三级负荷一般只需一个电源供电。

2. 系统备用容量大小

(1)运行备用容量不宜少于8-10%,以适应负荷突增,机组检修和事故停运三种情况。(2)装有两台及以上的变压器的变电所,当其中一台事故断开时,其余主变压器的容量应保证该变电所60%~70%的全部负荷,在计及过负荷能力后的允许时间内,应保证车间的一、二级负荷供电。

1.2 主接线的基本要求

电气主接线设计应满足可靠性、灵活性、经济性三项基本要求,其具体要求如下:

1、可靠性

研究可靠性应该重视国内外长期运行的实践经验和定性分析,要考虑发电厂或变电站在电力系统中的地位和作用、所采用的设备的可靠性以及结合一次设备和相应的二次部分在运行中的可靠性进行综合分析。其具体要求如下:

(1)断路器检修时不应影响供电。系统有重要负荷,应能保证安全、可靠的供电。

(2)断路器或母线故障以及母线检修时,尽量减少停运出线回数及停电时间,并且要保证全部一级负荷和部分二级负荷的供电。

(3)尽量避免发电厂、变电所全部停运的可能性。防止系统因为某设备出现故障而导致系统解裂。

(4)大机组超高压电气主接线应满足可靠性的特殊要求。

2、灵活性

主接线应满足在调度、检修及扩建时的灵活要求。从系统的长远规划来设计,应满足灵活性要求。

(1)调度时应该可以灵活地投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式,检修运行方式以及特殊运行方式以及特殊运行方式下的系统调度要求。(2)检修时可以方便地停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对车间的供电。

(3)扩建时可以容易地从初期接线过渡到最终接线。在不影响连续供电或停运时间最短的情况下,投入新装机组,变压器或线路而不互相干扰,并且对一次和二次部分的改建工作最少。

3、经济性

主接线满足可靠性,灵活性要求的前提下做到经济合理。

(1)主接线应力求简单,经节省断路器、隔离开关、电流和电压互感器、避雷器等一次设备。

(2)要能使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆。

(3)要能限制短路电流,以便于选择价廉的电气设备或轻型电器。

(4)如能满足系统的安全运行及继电保护要求,35kV及其以下终端或分支变电所可采用简易电器。

(5)占地面积少:主接线设计要为配电装置布置创造条件,尽量使占地面积减少。

(6)电能损失少:经济合理地选择主变压器的种类(双绕组、三绕组或自耦变压器)、容量、数量,要避免因两次变压而增加的电能损失。

1.3 主接线的设计和论证

依据变电站的性质可选择单母线接线、单母线分段接线、双母线接线、外桥型接线、内桥型接线、五种主接线方案,下面逐一论证其接线的利弊。

一、单母线接线

单母线接线的特点是每一回线路均经过一台断路器和隔离开关接于一组母线上。

优点:

(1)、接线简单清晰、设备少、操作方便。

(2)、投资少,便于扩建和采用成套配电装置

缺点:

(1)、可靠性和灵活性较差。任一元件(母线及母线隔离开关等)故障或检修均需使整个配电装置停电。

(2)、单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需停电,在用隔离开关将故障的母线分开后才能恢复非故障段的供电。

适用范围:单母线接线不能满足对不允许停电的重要用户的供电要求,一般用于6-220kV 系统中,出线回路较少,对供电可靠性要求不高的中、小型发电厂与变电站中。

二、单母线分段接线

2.1、用隔离开关分段的单母线接线

这种界限实际上仍属不分段的单母线接线,只是将单母线截成两个分段,其间用分段隔离开关连接起来。

这样做的好处是两段母线可以轮流检修,缩小了检修母线时的停电范围,即检修任一段母线时,只需断开与该段母线连接的引出线和电源回路拉开分段隔离开关,另一段母线仍可继续运行。但是,若两个电源取并列运行方式,则当某段母线故障时,所有电源开关都将自动跳闸,全部装置仍需短时停电,需待用分段隔离开关将故障的母线段分开后才能恢复非故障母线段的供电。可见,采用隔离开关分段的单母线接线较之不分段的单母线,可以缩小母线检修或故障时的停电范围。

2.2、用断路器分段的单母线接线

用隔离开关奋斗的单母线接线,虽然可以缩小母线检修或故障时的停电范围,但当母线故障时,仍会短时全停电,需待分段隔离开关拉开后,才能恢复非故障母线段的运行,这对于重要用户而言是不允许的。如采用断路器分段的单母线接线,并将重要用户采用分别接于不同母线段的双回路供电,足可以克服上诉缺点。

对用断路器分段的单母线的评价为:

优点:

A.具有单母线接线简单、清晰、方便、经济、安全等优点。

B.较之不分段的单母线供电可靠性高,母线或母线隔离开关检修或故障时的停电范围缩小了一半。与用隔离开关分段的单母线接线相比,母线或母线隔离开关短路时,非故障母线段可以实现完全不停电,而后者则需短时停电。

C.运行比较灵活。分段断路器可以接通运行,也可断开运行。

D.可采用双回线路对重要用户供电。方法是将双回路分别接引在不同分段母线上。

缺点:

A.任一分段母线或母线隔离开关检修或故障时,连接在该分段母线上的所有进出回路都要停

止工作,这对于容量大、出线回路数较多的配电装置仍是严重的缺点。

B.检修任一电源或出线断路器时,该回路必须停电。这对于电压等级高的配电装置也是严要

缺点。因为电压等级高的断路器检修时间较长,对用户影响甚大。

单母线分段接线与单母线接线相比提高了供电可靠性和灵活性。但是,当电源容量较大、出线数目较多时,其缺点更加明显。因此,单母线分段接线用于:

(1)电压为6~10KV时,出线回路数为6回及以上,每段母线容量不超过25MW;否则,回路数过多时,影响供电可靠性。

(2)电压为35~63KV时,出线回路数为4~8回为宜。

(3)电压为110~220KV时,出线回路数为3~4回为宜。

2.3、单母线分段带旁路母线的接线

为克服出线断路器检修时该回路必须停电的缺点,可采用增设旁路母线的方法。

当母线回路数不多时,旁路断路器利用率不高,可与分段断路器合用,并有以下两种接线形式。

(1)分段断路器兼作旁路断路器接线。

(2)旁路断路器兼作分段断路器接线。

优点:单母分段带旁路接线与单母分段相比,带来的唯一好处就是出线断路器故障或检修时可以用旁路断路器代路送电,使线路不停电。

单母线分段带旁路接线,主要用于电压为6~10KV出线较多而且对重要负荷供电的装置中;35KV及以上有重要联络线路或较多重要用户时也采用。

单母线分段接线,虽然缩小了母线或母线隔离开关检修或故障时的停电范围,在一定程度上提高了供电可靠性,但在母线或母线隔离开关检修期间,连接在该段母线上的所有回路都将长时间停电,这一缺点,对于重要的变电站和用户是不允许的。

三、双母线接线

优缺点分析:(1)可靠性高。可轮流检修母线而不影响正常供电。当采用一组母线工作、一组母线备用方式运行时,需要检修工作母线,可将工作母线转换为备用状态后,便可进行母线停电检修工作;检修任一母线侧隔离开关时,只影响该回路供电;工作母线发生故障后,所有回路短时停电并能迅速恢复供电;可利用母联断路器代替引出线断路器工作,使引出线断路器检修期间能继续向负荷供电。(2)灵活性好。为了克服上述单母线分段接线的缺点,发展了双母线接线。按每一回路所连接的断路器数目不同,双母线接线有单断路器双母线接线、双断路器双母线接线、一台半断路器接线(因两个回路共用三台断路器,又称二分之三接线)三种基本形式。后两种又称双重连接的接线,意即一个回路与两台断路器相连接,在超高压配电装置中被日益广泛地采用。

3.1、单断路器双母线接线:

单断路器双母线接线器是双母线接线中最基本的接线形式。它具有两组结构相同的母线,每一回路都经一台断路器、两组隔离开关分别连接到两组母线上,两组母线之间通过母联断路器来实现联络。

双母线接线有两种运行方式,一种运行方式是一组母线工作,一组母线备用,母联断路器在正常运行时是断开的;另一种运行方式是两组母线同时工作,母联断路器在正常运行时是接通的,这时每一回路都固定连接于某一组母线上运行,故亦称固定连接运行方式。这两种运行方式在供电可靠性方面有所差异,当母线短路时,前者将短时全部停电;后者母线继电保护动作,只断开故障母线上电源回路的断路器和母联断路器,并不会使另一组母线中断工作。

3.2、双断路器双母线接线

双断路器双母线这种接线,每回路内接有两台断路器,采取双母线同时运行的方式。双断路器双母线接线的优点是:

A.任何一组母线或母线隔离开关发生故障或进行检修时都不会造成停电。

B.任何一台断路器检修时都不需停电。

C.任一电源或出线可方便地在母线上配置,运行灵活,能很好地适应调度要求,有利于系统潮流的合理分布和电力系统运行的稳定。

D.隔离开关只用于检修时隔离电源,不作为操作电器,因而减少了误操作的可能性。

双断路器双母线接线的主要缺点是投入使用的断路器大多,设备投资大,配电装置占地面积和维护工作量都相应地增大了许多,故在220KV及以下配电装置中很少采用。但随着电力系统容量的增大,输电距离的增加,出于对系统运行稳定性的考虑,这种接线在330KV 及以上超高压变电站中的应用将日益广泛。

3.3、“一台半”断路器接线

“一台半”断路器这种接线的特点是在两组母线之间串联装设三台断路器,于两台断路器间引接一个回路,由于回路数与断路器台数之比为2:3,固称为一台半断路器接线或二分之三接线。这种接线的正常运行方式是所有断路器都接通,双母线同时工作。

"一台半"断路器接线的优点是:

A. 检修任一台断路器时,都不会造成任何回路停电,也不需进行切换操。

B. 线路发生故障时,只是该回路被切除,装置的其他元件仍继续工作。

C. 当一组母线停电检修时,只需断开与其连接的断路器及隔离开关即可,任何回路都不需作切换操作。

D. 母线发生故障时,只跳开与此母线相连的断路器,任何回路都不会停电。

E.操作方便、安全。隔离开关仅作隔离电源用,不易产生误操作。断路器检修时,倒闸操作的工作量少,不必像双母线带旁路接线那样要进行复杂的操作,而是够断开待检修的断路器及其两侧隔离开关就可以了,也不需要调整更改继电保护整定值。

F.正常时两组母线和全部断路器都投入工作,每串断路器互相连接形成多环状接线供电,所以,运行调度非常灵活。

G.与双母线带旁路母线接线和双断路器双母线接线相比,"一台半"断路器接线所需的开关电器数量少,配电装置结构简单,占地面积小,投资也相应减少。

缺点就是二次线和继电保护比较复杂,投资较大。

另外,为提高运行可靠性,防止同名回路同时停电,一般采用交替布置的原则:重要的同名回路交替接入不同侧母线;同名回路接到不同串上;把电源与引出线接到同一串上,这样布置,可避免联络断路器检修时,因同名回路串的母线侧断路器故障,使同一侧母线的同名回路一起断开。同时,为使一台半断路器接线优点更突出,接线至少应有三个串才能形成多环接线,可靠性更高。

一台半断路器接线,目前在国内、外已较广泛实用于大型发电厂和变电站的330~500KV 的配电装置中。当进出线回路数为6回及以上,并咋系统中占重要地位时,宜采用一个半断路器接线。

四、外桥型接线

外桥接线,桥回路置于线路断路器外侧,变压器经断路器和隔离开关接至桥接电,而线路支路只经隔离开关与桥接点相连。

外桥接线的特点为:

(1)变压器操作方便。如变压器发生故障时,仅故障变压器回路的断路器自动跳闸,其余三回路可继续工作,并保持相互的联系。

(2)线路投入与切除时,操作复杂。如线路检修或故障时,需断开两台断路器,并使该侧变压器停止运行,需经倒闸操作恢复变压器工作,造成变压器短时停电。

(3)桥回路故障或检修时两个单元之间失去联系,出线侧断路器故障或检修时,造成该侧变压器停电,在实际接线中可采用设内跨条来解决这个问题。

外桥接线适用于两回进线、两回出线且线路较短故障可能性小和变压器需要经常切换,而且线路有穿越功率通过的发电厂和变电站中。

五、内桥型接线

内桥接线,桥回路置于线路断路器内侧(靠变压器侧),此时线路经断路器和隔离开关接至桥接点,构成独立单元;而变压器支路只经隔离开关与桥接电相连,是非独立单元。

内桥接线的特点:

(1)线路操作方便。如线路发生故障,仅故障线路的断路器跳闸,其余三回线路可继续工作,并保持相互的联系。

(2)正常运行时变压器操作复杂。

(3)桥回路故障或检修时两个单元之间失去联系;同时,出线断路器故障或检修时,造成该回路停电。为此,在实际接线中可采用设外跨条来提高运行灵活性。

内桥接线适用于两回进线两回出线且线路较长、故障可能性较大和变压器不需要经常切换运行方式的发电厂和变电站中。

桥形接线具有接线简单清晰、设备少、造价低、易于发展成为单母线分段或双母线接线,为节省投资,在发电厂或变电站建设初期,可先采用桥形接线,并预留位置,随着发展逐步建成单母线分段或双母线接线。

六、接线选择

根据设计任务书的要求和设计规模。在分析原始资料的基础上,参照电气主接线设计参考资料。

1、10kV出线接线方式设计

对于10KV出现侧,可选母线连接方式有分段的单母线接线,单母线带旁路母线接线,双母线接线及分段的双母线接线。

根据要求,单母线分段接线方式满足“不进行停电检修”和经济性的要求,

因此10KV 母线端选择单母线分段接线方式。

2、35kV 进线方式设计

设计任务书中有两台变压器和两回输电线路,故需采用桥形接线,可使断路 最少。可采用的桥式接线种类有内桥接线和外桥接线。

外桥形接线的特点为:①供电线路的切入和投入较复杂,需动作两台断路 器并有一台变压器停运。②桥连断路器检修时,两个回路需并列运行,③变压器检修时,变压器需较长时间停运。

内桥形接线的特点为:①变压器的投入和切除较为复杂,需动作两台断 器,影响一回线路的暂时供电②桥连断路器检修时,两个回路需并列运行,③出线断路器检修时,线路需较长时间停运。

其中外桥形接线满足 “输电线路较短,两变压器需要切换运行”的要求,因此选择外桥接线。

3、总主接线设计图

图1

Ⅱ、主变压器台数、容量和型号的选择

1、主变台数选择

根据题目条件可知,主变台数为两台。 2、主变压器容量

变电所主变压器的容量一般按照变电所建成后5-10年的规划负荷考虑,并应按照其中一台停用时其它变压器能满足变电所最大负荷S max的70%~80% 即: S N=0.7Smax/(N-1) 式中N为变电所主变压器台数,此设计N=2。

∴ S N=5952.9KVA (具体计算见计算书)

3、主变型号选择

本变电所有35kV、10kV两个电压等级,根据设计规程规定,“具有两个电压等级的变电所中,首先考虑双绕组变压器。根据以上条件,最终选择SZ7-6300/35双绕组有载调压变压器.其技术参数如下表:

表1. 主变参数

Ⅲ、所用变的选择

所用变的设计应以设计任务书为依据,结合工程具体的特点设计所用变的接线方式,因变电站在电力系统中所处的地位,设备复杂程度(电压等级和级次,主变压器形式、容量及补偿设备有无等)以及电网特性而定。而所用变压器和所用配电装置的布置,则常结合变电站重要电工构建物的布置来确定。一般有重要负荷的大型变电所,380/220V系统采用单母线分段接线,两台所用变压器各接一段母线,正常运行情况下可分列运行,分段开关设有自动投入装置。每台所用变压器应能担负本段负荷的正常供电,在另一台所用变压器故障或检修停电时,工作着的所用变压器还能担负另一段母线上的重要负荷,以保证变电所正常运行。

一、用电电源和引接原则如下

(1)当变电所有低压母线时;

(2)优先考虑由低压母线引接所用电源;

(3)所用外电源满足可靠性的要求;

(4) 即保持相对独立;

(5)当本所一次系统发生故障时;

(6)不受波及;

(7)由主变压器低绕组引接所用电源时;

(8)起引接线应十分可靠;

(9)避免发生短路使低压绕组承受极大的机械应力;

二、所用变接线一般原则

(1)一般采用一台工作变压器接一段母线;

(2)除去只要求一个所用电源的一般变电所外;

(3)其他变电所均要求安装两台以上所用工作变压器;

(4)低压10KV母线可采用分段母线分别向两台所用变压器提供电源;

(5)以获得较高的可靠性;

由于所用电的总容量S N=85.085KVA (详见计算书)

故所用变设在10KV侧,所用变选择两台S9—100/10型所用变压器。

Ⅳ、电气设备的选择

1、电气设备选择的一般条件

1.1电气设备选择的一般原则

1 应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展;

2 应按当地环境条件校核;

3 应力求技术先进和经济合理;

4 与整个工程的建设标准应协调一致;

5 同类设备应尽量减少品种;

6 选用的新产品均应具有可靠的试验数据,并经正式鉴定合格。在特殊情况下,选用未经正式鉴定的新产品时,应经上级批准。

1.2电气设备选择的技术条件

选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。

1长期工作条件

(1)电压选用的电器允许最高工作电压U max不得低于该回路的最高运行电压Ug,即

Umax≥Ug

(2)电流选用的电器额定电流Ie不得低于所在回路在各种可能运行方式下的持续工作电流Ig,即Ie≥Ig

由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。高压电器没有明确的过载能力,所以在选

择其额定电流时,应满足各种可能运行方式下回路持续工作电流的要求。

(3)机械荷载

所选电器端子的允许荷载,应大于电器引线在正常运行和短路时的最大作用力。

2短路稳定条件

(1)校验的一般原则

① 电器在选定后应按最大可能通过的短路电流进行动、热稳定校验。校验的短路电流一般取三相短路时的短路电流,若发电机出口的两相短路,或中性点直接接地系统及自耦变压器等回路中的单相、两相接地短路较三相严重时,应按严重情况校验。

② 用熔断器保护的电器可不验算热稳定。当熔断器保护的电压互感器回路,可不验算动、热稳定。

(2)短路的热稳定条件

k t Q t I >2 (1-1)

式中 k Q —在计算时间t s 秒内,短路电流的热效应(kA 2*S );

I t —t 秒内设备允许通过的热稳定电流有效值(kA );

t —设备允许通过的热稳定电流时间(s )。

(3)短路的动稳定条件

df sh i i ≤ (1-2)

I sh ≤df I (1-3)

式中sh i —短路冲击电流峰值(kA );

I sh —短路全电流有效值(kA );

df i —电器允许的极限通过电流峰值(kA );

df I —电器允许的极限通过电流有效值(kA )。

3绝缘水平

在工作电压和过电压的作用下,电器的内、外绝缘应保证必要的可靠性。电器的绝缘水平,应按电网中出现的各种过电压和保护设备相应的保护水平来确定。当所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算,选用适当的过电压保护设备。

1.3环境条件

按《交流高压电器在长期工作时的发热》(GB763-74)的规定,普通高压电器在环境最高温度为+40C ?时,允许按额定电流长期工作。当电器安装点的环境温度高于+40C ?(但不高于+60C ?)时,每增高1C ?,建议额定电流减少1.8%;当低于+40C ?时,每降低1C ?,建议额定电流增加0.5%,但总的增加值不得超过额定电流的20%。普通高压电器一般可在环境最低温度为-30C ?时正常运行。在高寒地区,应选择能适应环境温度为-40C ?的高寒电器。在年最高温度超过40C ?,而长期处于低湿度的干热地区,应选用型号带“TA ”字样的干热带型产品。

本次设计的变电所所在地区最低气温C ?-=9.5min θ;最热月地面0.8M 处土壤平均气温C avy ?=7.26θ;最热月平均最高温度C avm ?+=9.29θ。对于屋外安装场所的电器最高温度选择年最高温度,最低温度选择年最低温度,可见,由规定知电器设备可正常运行。

2、 断路器、隔离开关的选择

2.1 35KV 侧进线断路器、隔离开关的选择

本设计中35kV 侧采用少油式断路器。它的特点是:油量少,油主要用作灭弧介质,对地绝缘主要依靠固体介质,结构简单,制造方便,开断电流大,对35KV 以下可采用加并联回路以提高额定电流;全开断时间短;易于维护。

流过断路器和隔离开关的最大持续工作电流 N N U S I 3/)2(max ?= =)353/(63002??A 85.207=

额定电压选择 N U =≥g U 35kV

额定电流选择 A I I N 85.207max =≥

开断电流选择 KA I I K Nbr 08.8)3(=>

因此断路器选择SW2-35/1000型户外高压少油断路器。

选用的断路器额定电压为35kV ,最高工作电压为40kV ,系统电压35kV 满足要求。

选用的断路器额定电流1000A ,大于最大持续工作电流,满足要求。

选用的断路器额定短路开断电流15.5kA ,大于短路电流周期分量有效值8.08kA ,满足要求。

动稳定校验。i sh =20.6kA

热稳定校验。由《电力工程电气设计手册电气一次部分》表6—5知,选用高速

断路器,取继电保护装置保护动作时间0.6S ,断路器分匝时间0.03S ,则校验热效应计算时间为0.63S (后面热稳定校验时间一样)。因此

Q k =t I 2∞=8.082?0.63=41.13[(kA )2S]。断路器t I t 2=16.52?4=1089[(kA )2S]。满足要求。

表2 SW2-35/1000具体参数比较表

隔离开关选GW5-35GD/600型号户外隔离开关。

选定的隔离开关额定电压为35kV ,系统电压35kV 满足要求。

选用的隔离开关额定电流600A ,大于最大持续工作电流,满足要求。 动稳定校验sh i =20.6kA

热稳定校验Q k =41.13 [(kA )2S],设备t I t 2=2024?=1600[(kA )2S],满足要求。

表3 GW5—35GD/600具体参数比较表

2.2 35KV 主变压器侧断路器、隔离开关的选择

流过断路器和隔离开关的最大持续工作电流

N N U S I 3/)05.1(max ?= =)

(353/630005.1??=109.12A 额定电压选择 N U =≥g U 35kV

额定电流选择 A I I N 12.109max =≥

开断电流选择 A I I K Nbr k 08.8)3(=>

由上面表格知SW2-35/1000型断路器和GW5-35GD/600型隔离开关同样满足主变侧断路器和隔离开关的要求,动、热稳定校验也一样,所以选择同样的型号。这也满足了选择设备同类设备应尽量较少品种的原则。

2.3 10KV 主变压器侧断路器、隔离开关的选择

10kV 侧选用SN10-10/1000型户内少油断路器。

流过断路器和隔离开关的最大持续工作电流

N N U S I 3/)2(max ?==)(

103/63002??=727.48A 额定电压选择 N U =≥g U 10kV

额定电流选择 A I I N 48.727max =≥

开断电流选择 kA I I K Nbr 32.7)3(=>

所选断路器额定电压为10kV ,最高电压11.5kV ,系统电压10kV 满足要求。 选用的断路器额定电流1000A ,大于最大持续工作电流,满足要求。

选用的断路器额定短路开断电流20kA ,大于短路电流周期分量有效值

7.32kA ,满足要求。

动稳定校验。i sh =13.47kA

热稳定校验。Q k =t I 2∞=7.322?0.63=33.76[(kA )2S]。电气设备

t I t 2=162?2=512[(kA )2S](注:此断路器热稳定电流为:16KA/2秒)满足要求。

表4 SN10-10/1000具体参数比较表

隔离开关选择GN5-10/1000型隔离开关

选用的隔离开关额定电压10kV ,系统电压10kV ,满足要求。

选用的隔离开关额定电流1000A ,大于最大持续工作电流727.48A ,满足要求。

动稳定校验。i sh =13.47kA

热稳定校验。Q k =t I 2∞=7.322?0.63=33.76[(kA )2S]。电气设备

t I t 2=202?5=2000[(kA )2S]。(注:此隔离开关热稳定电流20KA/5s)满足要求。

表5 具体参数比较表

2.4 选择的断路器、隔离开关型号表

Ⅴ、互感器的选择

1.电流互感器的选择。

1.1电流互感器选择的原则

电流互感器的选择应满足变电所中电气设备的继电保护、自动装置、测量仪表及电能计量的要求。

选择的电流互感器一次回路允许最高工作电压Umax 应大于或等于该回路的最高运行电压,即

g U U ≥max

式中max U —电流互感器最高电压,单位为kV ;

g U —回路工作电压,即系统标称电压,单位kV 。

其一次侧额定电流应尽量选择得比回路正常工作电流大1/3以上,以保证测量仪表的最佳工作,并在过负荷时使仪表有适当的指示。二次额定电流有5A 和1A 两种,强电系统一般选5A ,弱电系统一般选用1A 。

电流互感器动稳定可按来下式校验

sh i i >max

式中max i —为电流互感器允许通过的最大动稳定电流,单位kA ;

sh i —系统短路冲击电流,单位kA 。

电流互感器短时热稳定应大于或等于系统短路时的短时热稳定电流。

1.2 35kV 侧电流互感器的选择

35KV 侧桥上电流A U S I N N 9.15593.1035.13/5.1max =?=?=

一次侧额定电流应尽量选择得比回路正常工作电流大1/3以上,所以 一次侧选:max )200~75(I A I al >=

二次侧选强电系统的 A I N 52= 准确级0.5

综上选定为:LZZB6-10

主变35KV 侧电流互感器同样选择:LZZB6-10

LZZB6-10参数为: 额定电流比:200/5 级次组合:0.5/B 二级负荷:0.4Ω 10%倍数:10 秒热稳定倍数:122.5 动稳定倍数:220

1.3 10KV 侧电流互感器

10KV 侧电流A U S I N N 61.54510*3/63005.13/5.1max =?=?=

一次侧选:max )600~15(I A I al >=

二次侧选强电系统的 A I N 52= 准确级0.5

综上选定为:LZZJB6-10

LZZJB6-10参数为:额定电流比:1000/5 级次组合:0.5/B 二级负荷:0.4Ω 10%倍数:10 秒热稳定倍数:41 动稳定倍数:74

2.电压互感器的选择。

(1)主变35KV 侧电压互感器

KV U U NS N 35=≥ 综合选择为:JDX-35

其参数为:电压级次:35KV 额定电压:一次为35000/3 二次为100/3 额定容量:80V A (0.2级)

(2)主变10KV 侧电压互感器

KV U U NS N 10≥= 综合选择为:JSJW-10 三相五柱式电压互感器

其参数为:电压级次:10KV 额定电压:一次为10000/3 二次为100/3 额定容量:120V A (0.5级)

Ⅵ、10KV 母线截面的选择

10kV 母线长期工作电流

N N U S I 3/)2(max ?==)(

103/63002??=727.48A 选用80?10型立放矩形铝母线,,长期允许电流为1535A,母线平放乘以0.95,则允许电流为1458A ,满足要求。

按经济电流密度选择导体的经济截面。对于全年负荷利用小时数较大,母线长度超过20M 且传输容量较大的回路(如变电所的降压变压器至6~10KV 配电装置之间的连接导线等),通常按经济电流密度选择截面。

所以导体的经济截面为: S ec =I max /J ec =727.48/1.15=632.59(mm 2) 注:由导线经济电流密度表查得所选母线为:1.15A/mm 2

Ⅶ 计算书

一、主变和所变容量的计算

1、根据任务书提供的资料,主变和所变容量的计算如下:

一二类负荷:

7506KW 58171789=+=∑P

KVar Q 37322834898=+=∑

6.838237327506)()(2222=+=+=∑∑Q P S (KVA )

所用电:

S 所=

=20/0.88+5.8/0.85+2*11/0.79+10.5/0.5+14.6/0.8+14+11=121.55KVA ∴ S 总=S+ S 所=8382.6+121.55=8504.15(KVA)

主变容量:KVA S S N 9.5952%70==总

根据计算结果应选择SZ7-6300/35型变压器。

所变容量: KVA S S N 085.85%70==所

根据计算结果应选择S9-100/10型变压器。

2、所选变压器的型号及技术数据见下表:

二、短路电流计算

取 S B =100MVA ,V B =V ac (U c1=37KV ,U c2=10KV )

I d1= S B 13/Uc =1.56(KA)

I d2=S B 23/Uc =5.77(KA )

电力系统: Soc=1080MVA (母线短路功率)

X1*=100/1080=0.093

架空线:(取0.4Ω/km)

X2*=0.4*7*100/(37*37)=0.2

变压器:

X3*= X4*=7.5*100*1000/(100*6300)=1.19

短路等效电路如下图所示:

图1 短路等效电路图

d1点三相短路(如图一所示):

X∑*= X1*+ X2*/2=0.193

短路电流周期分量有效值: I k=I d1/ X∑*=1.56/0.193=8.08(KA)其他三相短路电流:I”=I∞=I k=8.08KA

冲击电流:i sh=8.08*2.55=20.6KA

第一个周期短路全电流: Ish=1.51* I”=12.2KA

三相短路容量:S k=S B/ X∑*=100/0.193=518.12(MVA)

d2点三相短路(如图1所示):

X∑*= X1*+ X2*/2+ X3*∥X4*=0.093+0.1+1.19/2=0.788

短路电流周期分量有效值:I k=I d2/ X∑*=5.77/0.788=7.32KA 其他三相短路电流:I”=I∞=I k=7.32KA

冲击电流:i sh=7.32*1.84=13.47KA

第一个周期短路全电流: I sh=1.09* I”=7.98KA

三相短路容量:S k=S B/ X∑*=100/0.788=126.9(MVA)

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

35kv变电所设计任务书要点

35KV变电所毕业设计任务书 一、设计原始资料 1.1某35KV变电所主要供电用户基础资料 1.工厂情况及扩建计划 工厂三班工作制。由于工厂受环境限制,有增加30% 负荷扩建可能。 2.工厂负荷性质 工厂电力负荷情况分析:铸铁车间Ⅰ为一级负荷、化工厂(转供)为二级负荷,锅炉房、铸铁车间Ⅱ、空压机站、热处理车间为二级负荷,其余车间为三级负荷;住宅区为3级负荷。工厂昼夜负荷变化较大。 1.2水文资料 1.厂区砂质粘土,土壤允许承载能力为20吨/米2。中等含水量时,实得土壤电阻率为0.8×104Ω/cm。 2.地下水位3.5~5m。 3.最热月平均温度为23℃,极端温度为38℃,极最低温度为-26.5℃。 4.本地区年雷暴日数为36.5天。

5. 最热日地下0.8m 处,土壤平均温度为19.5℃,冬季冷却 冻结深度为1.2m 。 6. 本地区夏季主导风向为西南风,最大风速为15m/s 。 1.3电气工程技术指标及各材料供应情况 由于本地区的电力供应的特定条件,供电部门要求本厂从东北方向45km 的地区变电所用35KV 的两回线路向本厂供电。该电 源短路电抗21.0)* 3(max . k X 电源出口过电流保护时间最大为2.0s 。 1.4工厂与供电部门达成的“供电协议”内容: 1. 在本厂总变电所高压侧计量。 2. 功率因数>0.92。 3. 对本厂(按大型工业用电企业基本电费)按最大需要量收 取为25.00元/KW.月,表计电价(或电度电价)为0.525元/KW.h 。大工业电价适用范围:凡以电为原动力,或以电冶炼、烘熔、熔焊、电解、电化的一切工业生产,受电变压器容量在315kVA 及以上者,均执行大工业电价。大工业电价均实行二部制电价,即按电表抄见电度计算的电度电费和按变变压器容量(或最大需量)计算的基本电费。

35kV箱式变电站设计(样本)

目录 摘要 (Ⅰ) Abstract (Ⅱ) 第1章绪论 (1) 1.1 供配电技术的发展 (1) 1.2箱式变电站的类型、结构与技术特点 (1) 1.2.1 箱式变电站的类型 (1) 1.2.2 箱式变电站的结构 (1) 1.2.3 箱式变电站的技术特点 (2) 1.2.4 箱式变电站与常规变电站的对比分析 (3) 1.3 箱式变电站的技术要求与设计规范 (5) 1.3.1 额定值 (5) 1.3.2 设计和结构 (6) 1.3.3 使用条件 (7) 1.3.4 箱体要求 (8) 1.3.5箱式变电站内部电器设备 (8) 1.4 本课题的主要任务 (8) 第2章35kV箱式变电站总体结构设计 (9) 2.1 电气主接线的确定 (9) 2.1.1 主接线的基本形式 (9) 2.1.2 箱式变电站对主接线的基本要求 (9) 2.1.3 主接线的比较与选择 (10) 2.1.4 高压接线方式 (11) 2.2 箱式变电站箱体的确定 (11) 2.2.1 箱体的结构的确定 (11) 2..2.2 合理配置 (11) 2.3 变压器 (12) 2.3.1 变压器容量、接线组别的确定 (12) 2.3.2 变压器的散热处理 (13) 2.3.3 用负荷开关—熔断器组合电器保护变压器 (13)

2.4 箱式变电站总体布置 (14) 第3章35kV箱式变电站一次系统设计及设备选型 (15) 3.1 主电路设计 (15) 3.1.1 概述 (15) 3.1.2 一次系统设计原则 (15) 3.1.3 一次系统设计 (15) 3.2 设备选型 (16) 3.2.1 箱式变电站设备选型应注意的方面 (16) 3.2.2 设备选型的基本原理 (17) 3.2.3 高低压电器设备选择的要求 (18) 3.2.4 断路器的选型 (19) 3.2.5 熔断器的选型 (19) 3.2.6 互感器的选型 (21) 3.2.7 隔离开关的选型 (22) 3.2.8 开关柜的选型 (22) 第4章35kV箱式变电站二次系统设计 (23) 4.1 电气二次系统设计 (23) 4.1.1 二次系统定义及分类 (23) 4.1.2 电气测量仪表 (23) 4.1.3 二次系统设计 (23) 4.2 二次系统总体方案 (24) 4.3 断路器控制与信号回路 (25) 4.3.1 概述 (25) 4.3.2 控制回路设计 (26) 4.3.3 信号回路设计 (26) 4.4 电气测量与信号系统 (26) 第5章箱式变电站智能监控功能设计 (28) 5.1 箱式变电站的监控内容 (28) 5.1.1 电量监测与保护 (28) 5.1.2 防凝露保护 (28) 5.1.3 变压器室温度保护 (28)

35KV降压变电所设计方案

35KV降压变电所设计方案 第一篇任务书 一、设计要求 1、建立工程设计的正确观点,掌握电力系统设计基本原则和方法。 2、培养独立思考、解决问题的能力。 3、学习使用工程设计手册和其他参考书的能力,学习撰写工程设计说明书。 二、原始资料 1、某国营企业为保证供电需求,要求设计一座35KV降压变电所,以10KV电缆给各车间供电,一次设计并建成。 2、距本变电所6Km处有一系统变电所,由该变电所用35KV双回路架空线路向待定设计的变电所供电,在最大运行方式下,待设计的变电所高压母线上的短路功率为1000MVA 。 3、待设计的变电所10KV无电源,考虑以后装设的组电容器,提高功率因素,故要求预留两个间隔。 4、本变电所10KV母线到各个车间均用电缆供电,其中一车间和二车间为一类负荷,其余为二类负荷,Tmax=4000h ,各馈线负荷如表1—1 序号车间名称计算用有功功率 (kw) 计算用无功功率 (kvar) 1 一车间 1046 471

2 二车间 735 487 3 机械车间 808 572 4 装配车间 1000 491 5 锻工车间 920 276 6 高压站 1350 297 7 高压泵房 737 496 8 其他 931 675 5、所用电的主要负荷见表1—2 序号车间名称额定容 量(KW) 功率因 素 (cos ) 安 装 台 数 工 作 台 数 备注 1 主充电机20 0.88 1 1 周期性负 荷 2 浮充电机 4.5 0.85 1 1 经常性负 荷 3 蓄电池室通 风2.7 0.88 1 1 经常性负 荷 4 室装配装置 通风110.79 2 2 周期性负 荷 5 交流焊机10.5 0.5 1 1 周期性负 荷

变电站任务书

变电站安全设计任务书 第一部分工程概况 某220kV输变电工程由湖北省电力公司建设,位于湖北省荆门市城北。包括变电站和线路两部分。其中变电站主变本期规模为1×180MV A(终期2×180MV A),采用三相三绕组有载调压变压器,三侧电压等级为220/110/10kV。220kV线路终期6回,本期2回(分别至500kV双河变、荆门电厂)。线路部分主要将220kV荆双Ⅱ回π进220kV南桥变,形成南桥变~双河变约为25km,南桥变~荆门电厂约为15.2km,新建线路部分全长约5km。工程动态总投资约7045.94万元。以该工程变电站部分为对象进行安全设计。 一、公司地理位置简介 该变电站站址位于荆门城北,距中心城区约14km,西邻207国道。站址隶属东宝区子陵镇何院村。 二、水文地质条件及气象资料 1、站址地貌 站址属丘陵地貌,地面呈缓坡状起伏。地貌形态表现为南北向山岗与冲沟相间,场地地面自然标高84.50~109.60m。现山地以旱地为主,局部有数棵杂树;冲沟地段以水田为主。 2、地质条件 本工程站址区域地震动峰值加速度为0.05g,对应地震基本烈度为6度,地震动反应谱特征周期为0.35s。 站址地基岩土分布有:人工填土;第四系全新统冲洪积粘性土;第四系残坡积粘性土及白垩-第三系紫红色砂岩。场地表层分布耕植土约0.3~0.5m。 站址挖方区为稳定岩石,属Ⅰ类建筑场地;填方区多为中软场地土,以Ⅱ类建筑场地为主。站址挖方区属抗震有利地段,填方区及半挖半填区属抗震不利地段。 3、水文条件 站址区域附近没有大的天然水体,站址汇水经自然地形汇入小沟小港,并最终排入汉江。 本工程站址地下水分布主要为上层滞水和基岩裂隙水。 地下水对混凝土结构无腐蚀性,对混凝土结构中的钢筋无腐蚀性,对钢结构等金属具弱腐蚀性。 4、主要建(构)筑物 本变电站站内建筑物包括:主控制楼1幢,10kV屋内配电室1幢。 全站建筑面积指标:主控制楼784m2(包括电缆层),10kV屋内配电室421 m2,总建筑面积1205 m2。 5、气象条件 荆门气象站1958~2000年实测累年各月气象资料统计特征值见表1。 表1 荆门气象站1957~2000年累年气象资料统计特征值 序号项目单位特征值出现时间资料年限 1 多年平均气温℃16.0 1958~2000 2 多年平均气压hPa 1003. 3 1958~2000 3 多年平均风速m/s 3.2 1958~2000 4 多年平均相对湿度%74 1958~2000 5 雷暴日数 d 30. 6 1958~2000 6 历年极端最高气温℃40.0 1959.08.23 1958~2000

供配电 专变 设计任务书

供配电(专变)设计任务书 (2014年编制) 上海区设计部 二O一四年九月

设计依据及基础资料 1.1项目定位 简述项目定位。 1.2项目经济技术指标 序号项目描述 1.总用地面积 2.可建设用地面积 3.总建筑面积 4.裙楼地上商业建筑面积 5.裙楼地下建筑面积 6.容积率 7.建筑密度 8.建筑限高 1.3项目业态组合 序号楼层/楼号业态描述 1. 一层/1#楼业态1面积、设计需求等 2.业态2 3.二层/1#楼 4.三层/2#楼 5.四层/3#楼 6.五层/4#楼 7.六层/5#楼 8.负一层/6#楼 9.负二层/7#楼 10.负三层/8#楼 设计范围 2.1设计范围 10KV线路侧开关下桩头至0.4KV低压出线柜下桩头内的电气设计

(不包括土建设计)但提供土建设计要求资料图。 设计要求 3.1产品设计标准 参照以下的产品设计标准开展设计相关工作。 3.2.1变电所 1)材料包装应符合以下规定;变电所选址首先建筑物的地下层(如无地下层或地下层不能满足要求则需设置在首层),但不宜设置在最底层。当地下只有一层或建筑条件限制只能将变电所设置在最底层时,应采取适当抬高变电所的地面500mm~1000mm等防水措施及防洪水、消防水或积水从其他渠道腌渍配变电所的措施。 2)变电所不应设置在卫生间、浴室或其他经常积水场所的正下方,变电所内不得有给排水,通风等一切金属管道的布置,且不宜与上述场所贴邻。 3)变电所宜靠外墙设置,以方便外线的进入,并宜设置两PU堵外墙,在期间设置排水设备,避免外墙浸水时水直接进入变电所。 4)变电所设置电缆夹层,夹层层高考虑建筑层高,线路优先采用下进下出形式,以方便使用及管理维护,设有夹层的变电室层高要求梁下净高3.5m,若条件不允许设置电缆夹层则变电室层高要求梁下净高4m。线路采用上进上出形式。 5)变电所宜和主要机房,如冷冻机房、消防泵房、锅炉房和柴发机房相近设置。 6)变电所的面积与建筑规模的关系与产品标准相符。 3.2.2高压部分 1)双路高压电源,引自不同的上级变电所或不同的开闭站,开闭站宜设置在首层靠近道路,便于抢修及开关电方便的地方,高压供电方案由当地供电部门决定。 2)若供电部门只能提供一路10kv高压电源,则需设置柴油发电机组作为第二路电源。应急照明设备由EPS提供第二路电源。注:因工程需要必须采用其他电压等级时,应与当地供电部门协商确定。 3)当一路电源发生故障时,另一路电源可以保证低压部分重要设备(包括所有消防符合和安防符合,如消防泵、消防电梯、防排烟设备、防盗设备、监控设备、电信网络设

35kV箱式变电站设计开题报告

重庆大学网络教育学院 学生毕业设计(论文)开题报告 一、课题的目的及背景: 目的:了解研究箱式变电站的智能监控系统。箱式变电站作为一种新型的变电站,与常规变电站相比,具有占地面积小、现场安装工作量少、安装周期短、可以自由移动、减少线路损耗、投资少等优点,被广泛应用于城区、农村10~110kv中小型变(配)电站、厂矿及流动作业用变电站的建设与改造。因其易于深入负荷中心,减少供电半径,提高末端电压质量,特别适用于农村电网改造,被誉为21世纪变电站建设的目标模式。其广泛的运用,有利于实现自动化,智能化,减少人为造成的故障,提高国家电网的供电质量。为此应该对变电站进行很好的监控及保护。 背景:随着市场经济的发展,在城乡电网建设和改造中,要求高压直接进入负荷中心,形成高压受电—变压器降压—低压配电的供电格局,所以供配电要向节地、节电、紧凑型、小型化、安全、无人值守的方向发展。箱式变电站就是为适应这种发展要求设计的一种新式供电设备,又称户外成套变电站,也有称做组合式变电站,它是发展于20世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备。 箱式变电站就是为适应这种发展要求设计的一种新式供电设备,又称户外成套变电站,也有称做组合式变电站,它是发展于20世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备。国外相关研究综述:箱式变电站是60年代从国外发展起来的一种新式供电设备,从结构上来说,基本上可分为欧洲式和美国式两种。 二、基本原理: 箱式变电站通常可分为一次设备和二次设备俩大类,主接线所连接都是一次设备,而二次设备是指测量表计、控制及信号设备、继电保护设备。 三、结构组成: 箱式变电站的发展应用及箱式变电站的结构分类;掌握箱式变电站一次系统设计及其设备选型、二次系统设计;箱式变电站有美式箱式变电站和欧式箱式变电站。美式预装式变电站在我国

35KV变电站设计 - 副本 (2)

目录

摘要 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。变电站是把一些设备组装起来,用来切断、接通、改变或者调整电压的。在系统中,变电站成了输电和配电的集节点。 本次设计首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,并进行了短路电流计算等内容,从而完成了35kV电气一次部分的设计。 关键词:主变压器,电气主接线,短路电流,电气设备

第1章概述 1.1变电站概述 变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,直接影响整个电力系统的安全与经济运行。电气主接线是变电站设计的首要任务,也是构成电力系统的重要环节。电气主接线的拟订直接关系着全站电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 根据《电力系统技术规程》中的有关部分,特别是: 第1.0.2条:系统设计应在国家计划经济的指导下,在审议后的中期、长期电力规划的基础上,从电力系统整体出发,进一步研究提出系统设计的具体方案;应合理利用能源,合理布局电源和网络,使发、输、变电及无功建设配套协调,并为系统的继电保护设计,系统自动装置设计及下一级电压的系统等创造条件。设计方案应技术先进、过度方便、运行灵活、切实可行,以经济、可靠、质量合格和充足的电能来满足国民经济各部门与人民生活不断增长的需要。 第1.0.6条:系统设计的设计水平可为今后第五年至第十年的某一年,并应对过度年进行研究(五年内逐年研究),远景水平可为第10~15年的某一年,且宜与国民经济计划的年份相一致。系统设计经审查后,2~3年进行编制,但有重大变化时,应及时修改。 1.2 变电站的作用和主要设备组成 水力、火力以及和核能等发出的电能,由于经济上的原因把电压升高,用输电线送到变电站,在这里将电压降低,用输电线再送到其它变电站,或通过输电线和配电线路送到用户。这样,在变电站除了把输电线送来的电压和电流进行变换,集中和分配外,为了使电能的质量良好以及设备安全,还要进行电压调整电力潮流控制以及输配电线和变电站的保护。 1.2.1 变电站主要设备组成 变电站为了起到电能再分配的作用,有主变压器、输电线和开关设备、控制装置与互感器、避雷器、调相器设备和其它设备组成。 1.2.2 变压器 变压器是变换电压的主要设备,一般在变电站用于降低电压。变压器由单相变压器和三相变压器。一般使用经济上有利的三相变压器,单相变压器仅在高电压、大容量的500kV变电站等由于受到搬运上的限制而被采用。 1.2.3 输电线和开关设备 在变电站内汇集着许多集中和分配电力的输配电线,与主变压器一起接在母线上,在每一条线路的引出口除装设断路器和隔离开关。断路器通常用于电路的

35KV降压变电站设计

[目录] 前言 第一篇任务书 一、设计要求 二、原始资料 三、设计任务 四、设计成果 第二篇说明书 第一章概述 第二章主接线设计方案 第三章主变台数和容量的选择 第四章所变的选择和所用电的设计 第五章短路电流计算 第六章导体及电气设备的选择. 第三篇计算书 一、主变容量的计算 二、短路电流计算 参考资料

第一篇任务书 一、设计要求 1、建立工程设计的正确观点,掌握电力系统设计基本原则和方法。 2、培养独立思考、解决问题的能力。 3、学习使用工程设计手册和其他参考书的能力,学习撰写工程设计说明书。 二、原始资料 1、某国营企业为保证供电需求,要求设计一座35KV降压变电所,以10KV电缆给各车间供电,一次设计并建成。 2、距本变电所6Km处有一系统变电所,由该变电所用35KV双回路架空线路向待定设计的变电所供电,在最大运行方式下,待设计的变电所高压母线上的短路功率为1000MVA 。 3、待设计的变电所10KV无电源,考虑以后装设的组电容器,提高功率因素,故要求预留两个间隔。 4、本变电所10KV母线到各个车间均用电缆供电,其中一车间和二车间为一类负荷,其余为二类负荷,Tmax=4000h ,各馈线负荷如表1—1

5、所用电的主要负荷见表1—2

6、环境条件 1)当地最热月平均最高温度29.9°c,极端最低温度-5.9°c,最热月地面0.8m 处土壤平均26.7°c ,电缆出线净距100mm。 2)当地海拔高度507.4m。雷暴日数36.9日/年:无空气污染,变电所地处在 P≤500m·Ω的黄土上。 三、设计任务 1、设计本变电所的主电路,论证设计方案是最佳方案,选址主变压器的容量和台数。 2、设计本变电所的自用电路,选择自用变压器的容量和台数。 3、计算短路电流。 4、选择导体及电气设备。 四、设计成果 1、设计说明书和计算书各一份 2、主电路和所用电路图各一份 第二篇说明书 第一章概述 一、设计依据 根据设计任务书给出的条件。 二、设计原则

35变电站设计任务书

科学技术学院 毕业设计任务书 (工科及部分理科专业使用) 题目:35kV变电站电气部分初步设计 学科部: 专业: 班级: 学号: 学生姓名: 起讫日期: 指导教师:杨胡萍职称:教授 学科部主任: 审核日期:

说明 1.毕业设计任务书由指导教师填写,并经系或专业学科组审定,下达到学 生。 2.进度表由学生填写,每两周交指导教师签署审查意见,并作为毕业设计 工作检查的主要依据。 3.学生根据指导教师下达的任务书独立完成开题报告,1个月内提交给指 导教师批阅。 4.本任务书在毕业设计完成后,与论文一起交指导教师,作为论文评阅和 毕业设计答辩的主要档案资料,是学士学位论文成册的主要内容之一。

一、毕业设计的要求和内容(包括原始数据、技术要求、工作要求) 本次设计任务内容是XX市新建35kV降压变电站电气部分初步设计,本次设计的主要任务是电气部分的初步设计和计算。此过程中,首先要对电力系统和变电站基本概况做总体分析,再进行负荷计算。依据负荷分析的数据,选择合适主变压器容量及主变压器型式。依据负荷出线的多少及用户的负荷级别,初步设计电气主接线的形式,经过对比后择取最佳的主接线方案。然后绘等值电路图,计算各母线上的最大短路电流和冲击电流,合理的选择电气设备。在具体计算后,进行配电装置及电气总平面的布置设计,使建站合理化,为使得变电站安全可靠运行,就必需进行防雷设计,以保证变电站的运行不受雷电的袭击。 1.其中原始数据: 电压等级:35kV/10kV; 进出线回路数:35kV出线共2回;10kV出线共8回,4回备用; 该变电站主要以35kV和10kV电压对该市企业供电,用电负荷比较分散,将系统电压降低后分配给各地区用户,因此该变电站为降压变电站。 2.技术工作要求: (1).变电站电气部分总体分析; (2).电气主接线设计 (3).短路电流计算 (4).主变压器的选择 (5).电气设备的选择和校验 (6).防雷设计 (7).电气二次部分设计

35kV箱式变电站工程设计

35kV箱式变电站工程设计成人高等教育 毕业设计 题目:35kV箱式变电站设计 学生姓名:张立佳 专业:电气工程及其自动化 完成时刻:2012年4月20日

箱式变电站又称户外成套变电站,立即高压受电、变压器降压、低压配电等功能有机地组合在一起,安装在一个防潮、防锈、防尘、防鼠、防火、防盗、隔热、全封闭、可移动的钢结构箱体内,机电一体化,全封闭运行,专门适用于矿山、住宅小区等都市公用设施,用户可按照不同的使用条件、负荷等级选择箱式变电站。箱式变电站进展于20世纪60年代至7 0年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备,进入20世纪90年代中期,国内开始显现简易箱式变电站,并得到了迅速进展。随着中国都市现代化建设的飞速进展,都市配电网的持续更新改造,必将得到广泛的应用。 本课题的要紧内容包括箱式变电站的进展应用,箱式变电站的结构分类,以及箱式变电站一次系统设计极其设备选型以及二次系统设计。35kV 箱式变电站的设计高压侧额定电压为35kV,低压侧额定电压为10kV,主变压器容量为5000kV A。主接线采纳单母线分段接线。 关键词:箱式变电站;结构,一次系统,二次系统

摘要Ⅰ 目录Ⅰ 第一章引言1 第二章箱式变电站的类型、结构与技术特点2 2.1 箱式变电站的类型2 2.2 箱式变电站的技术特点2 2.3 箱式变电站的箱体要求 3 第三章35kV箱式变电站的总体结构设计5 3.1 箱式变电站对主接线的差不多要求 5 3.2 主接线的选择 5 3.3 高压接线方式 6 3.4 箱式变电站箱体的确定6 3.5 变压器的散热处理6 3.6 箱式变电站总体布置 7 第四章35KV箱式变电站一次系统设计与设备选型8 4.1 一次系统设计 8 4.2 箱式变电站设备选型应注意的方面 8 4.3 设备选型的差不多原理8 4.4 高压一次设备的选型 8 4.5 低压一次设备选型9 4.6 高压熔断器的选择13 4.7 开关柜的选型 13 第五章35kV箱式变电站二次系统设计13 5.1 二次系统的定义及分类14 5.2 电气测量外表及测量回路14 5.3 二次系统设计 15 5.4 断路器操纵与信号回路15 5.5 操纵回路设计 23

变电站课程设计任务书(8)

题目:220kV 降压变电所设计 一、原始资料: 1.变电所性质:区域性枢纽变电所。 2.所址条件:位于沿海大城市近郊,向市区及较大工业用户供电。所区地势属半山区,海拔300m,交通比较便利,有铁路、公路经过。最高气温+38℃, 最低温度-20℃, 年平均温度+15℃, 最大风速20m/s ,覆冰厚度10 mm,地震烈度<6级,土壤电阻率<500Ω. m ,雷电日30,周围环境较好,易受台风影响,冻土深度1 .2 m ,主导风向夏东南,冬西北。 3.负荷资料: 1)220kV侧共4回线与系统相连。 2)110kV侧共10回架空出线,负荷同时率0.85,线损率5%,cosф=0.85。 3)35kV侧共12回架空线,同时率0.85,线损率5%, cosф=0.85。

4.系统情况: 180KM 150KM 二、设计任务 1.变电站总体分析, 2.负荷计算 3.选择变压器的台数、容量、型号、参数。 4.电气主接线设计。 5.计算短路电流。 6.高低压电器设备的选择。 三、成品要求 1、说明书(附计算书)1份。 2、电气主接线图1张(2# 图纸)。 3、课程设计答辩。 附: 1、要求选择的电器设备包括: 1)220kV配电装置中的主母线、高压断路器、高压隔离开关、电压互感器、电流互感器、避雷器、接地刀闸; 2)110kV配电装置中的主母线、高压断路器、高压隔离开关、电压互感器、电流互感器、避雷器、接地刀闸; 3)35kV侧配电装置中的主母线、高压断路器、高压隔离开关、避雷器、接地刀闸。 2、要求设计:说明书书写字迹清晰、规范。电气主接线图比例合适、图面整洁、绘图规范。 3、参考资料:《发电厂电气部分》教材,熊信银主编 《发电厂电气部分课程设计参考资料》,天津大学黄纯华主编 《工业企业供电课程设计及实验指导书》,天津大学黄纯华主编 《电力工程电气设计手册》,西北电力设计院编,电力出版社1995 《电力工程电气设备手册》,西北电力设计院编,电力出版社1995, 《变电所所址选择与总布置》张玉珩,水电出版社,1986 4、课程设计说明书规格(见附录)

变电站的设计

目录 设计任务书 (4) 第一部分主要设计技术原则 (5) 第一章主变容量、形式及台数的选择 (6) 第一节主变压器台数的选择 (6) 第二节主变压器容量的选择 (7) 第三节主变压器形式的选择 (8) 第二章电气主接线形式的选择 (10) 第一节主接线方式选择 (12) 第三章短路电流计算 (13) 第一节短路电流计算的目的和条件 (14) 第四章电气设备的选择 (15) 第一节导体和电气设备选择的一般条件 (15) 第二节断路器的选择 (18) 第三节隔离开关的选择 (19) 第四节高压熔断器的选择 (20) 第五节互感器的选择 (20) 第六节母线的选择 (24) 第七节限流电抗器的选择 (24) 第八节站用变压器的台数及容量的选择 (25) 第九节10kV无功补偿的选择 (26) 第五章10kV高压开关柜的选择 (26) 第二部分计算说明书 附录一主变压器容量的选择 (27) 附录二短路电流计算 (28) 附录三断路器的选择计算 (30) 附录四隔离开关选择计算 (32) 附录五电流互感器的选择 (34) 附录六电压互感器的选择 (35) 附录七母线的选择计算 (36) 附录八10kV高压开关柜的选择 (37) (含10kV电气设备的选择) 第三部分相关图纸 一、变电站一次主结线图 (42) 二、10kV高压开关柜配置图 (43) 三、10kV线路控制、保护回路接线图 (44) 四、110kV接入系统路径比较图 (45) 第四部分 一、参考文献 (46) 二、心得体会 (47) ?

设计任务书 一、设计任务: ***钢厂搬迁昌北新区,一、二期工程总负荷为兆瓦,三期工程总负荷为31兆瓦,四期工程总负荷为20兆瓦。一、二、三、四期工程总负荷为兆瓦,实际用电负荷兆瓦,拟新建江西洪都钢厂变电所。本厂用电负荷设施均为Ⅰ类负荷。 ? 第一部分主要设计技术原则 本次110kV变电站的设计,经过三年的专业课程学习,在已有专业知识的基础上,了解了当前我国变电站技术的发展现状及技术发展趋向,按照现代电力系统设计要求,确定设计一个110kV综合自动化变电站,采用微机监控技术及微机保护,一次设备选择增强自动化程度,减少设备运行维护工作量,突出无油化,免维护型设备,选用目前较为先进的一、二次设备。 将此变电站做为一个终端用户变电站考虑,二个电压等级,即110kV/10kV。 设计中依据《变电所总布置设计技术规程》、《交流高压断路器参数选用导则》、《交流高压断路器订货技术条件》、《交流电气装置的过电压保护和绝缘配合》、《火力发电厂、变电所二次接线设计技术规程》、《高压配电装置设计技术规程》、《110kV-330kV变电所计算机监控系统设计技术规程》及本专业各教材。

美式箱变设计.

美式箱变设计 随着城市建设规模的扩大及对环境的考虑,过去的那种集中降压、长距离配电以及架空电网已经不能适应现代城市的供电发展。城网改造要求高压直接进市区,变电设备深入负荷中心,电能通过地下电缆传输,配电设备与周围环境协调一致。同时因为配电设备深入到负荷中心,要求运行可靠性高,高性能(低损耗、低噪声、高抗短路强度),体积要小型化,安装简便,免维护。由此组合变压器应运而生。 组合变压器是20世纪90年代初从美国引入的技术,(所以也熟称为美式箱变)。因其结构紧凑,安装便捷,运行灵活,安全可靠,维护简单等优点而迅速被接受。目前,组合变压器已经有了飞速的发展,生产厂家不完全统计已有上百家,相关元器件配套厂家也发展有数十家,包括可配套高电压元器件。 性能优良:性能水平高,采用10、11型系列或非晶合金系列,损耗低、噪声低,抗短路能力强。 功能齐全、简单可靠:可切断负荷电流,进行全范围的电流保护,高压进线方式灵活(环网、终端),可实现断相(欠压保护),具有变电站的基本功能。 投入少、占地小、安装方便、见效快;体积小,约为同容量组合式变电站体积的1/3,省时,安装方便,现场安装只需要拧紧四个螺栓及接好进出电缆即可; 安全性好。全封闭,外表无任何导电部件,因此无需考虑绝缘距离,能保证人身安全,采用全绝缘的肘型电缆插头配合固定在支座上的高压套管接头,插拔方便。 定义:将变压器器身、开关设备、熔断器、分接开关及辅助设备进行组合的变压器。组合式变压器(成套性强、体积小、占地少、能深入负荷中心、提高供电质量、减少损耗、送电周期短、选址灵活、对环境适应性强、安装使用方便、运行可靠、投资少、见效快) 型号标注 额定容量 电压等级 产品型号字母顺序及含义

学校电气设计任务书全解

设计任务书 一、强电设置系统 (1)10/0.4 KV配变电所及配电系统设计和配电能源监测管理系统 (2)电力配电及控制系统 (3)照明配电及控制系统 (4)建筑物防雷 (5)接地及安全措施 二、10/0.4 KV配变电所及配电系统设计和配电能源监测管理系统 1.负荷等级 本工程校园建筑,总建筑面积约 3.32万平方米,单体建筑高度不超24米。根据本工程的功能及规模,负荷等级按二级负荷考虑。 2.供电电源 设置一座10kV配变电室,内设置2台1000KVA的变压器,由10kV市政电网为本工程提供两路独立10kV电源, 10kV电缆埋地进入本工程红线之后由设计院 统一规划路由。电源分界点为本工程10kV配变电所10kV电源进线柜的进线开关。正常工作时,两路电源同时供电,互为备用,各负担50%负荷,一路电源故障时,另一路电源供全部二级负荷。 3、功率因数补偿 (1)采用低压集中调谐滤波补偿技术(既作功率因数补偿,又用于抑制谐波),进行无功功率自动补偿,使补偿后的变压器10kV侧功率因数达到0.9以上。 (2)直管荧光灯等采用就地补偿,要求补偿后的功率因数达到0.9以上。 4、电能计量 (1)本工程电费以高压计量为主,低压计量为辅。在10kV配变电室内设置10kV计量柜,柜内仪表、设备等型号由电力公司确定。各变压器低压柜的馈电回 路均设电力仪表, 并设置电力监控系统,监视各种电气参数和开关状态变化,减 少故障风险,促进节能减排。 (2)为实现低碳绿色示范建筑功能,下列系统/设备运行均设有低压计量仪表,并进行远传监测,以便实现有效节能控制,促进节能降费。

1)电梯设备计量表计; 2)生活给水系统设备计量表计; 3)中水系统设备计量表计; 4)热水系统设备计量表计; 5)教学用电计量表计; 7)办公用电计量表计; 8)宿舍用电计量表计; 9)厨房设备及餐厅照明计量表计; 10)排风机组、新风机组计量表计; (3)在配变电所低压开关柜出线处设置计量仪表,并在层箱处设置计量仪表,以便进行用电分项计量。 (4)在每个功能区的总配电柜安装带计量功能的数字仪表,以便进行内部收 费管理。 5.应急电源容量及性能要求 (1)火灾自动报警系统、剩余电流火灾报警系统、安全防范系统等用电,为 保证供电中断时间为毫秒级,设置UPS电源。 (2)消防监控室,消防水泵房和排烟机房等在事故情况下继续工作场所照明, 设置EPS电源,其蓄电池连续供电时间不小于180 min。 (3)本项目各单体建筑内应急疏散照明系统采用蓄电池作为备用电源,连续 供电时间不小于30min。应急照明箱均为双路电源互投供电,火灾时由消防监控装置自动控制点亮。 (4)疏散通道、疏散通道转折处、公共出口等处设置疏散指示灯、出口标志灯。照度要求及灯具选型原则如下: 1)消防控制室、消防水泵房、防排烟机房、变电所等场所以及发生火灾时仍 需坚持工作的场所,其应急照明的照度按100%正常工作照度考虑,采用直管荧光灯; 2)多功能厅设置备用照明,照度按20%正常照明考虑; 3)风雨操场,阶梯教室,餐厅等人员密集场所设置备用照明,照度按10%正常照明考虑; 4)建筑内内疏散照明的地面最低水平照度值:疏散走道不低于 1.0 lx;人员

35kV箱式变电站设计

中国地质大学(北京) 现代远程教育 专科实习报告 题目35kV箱式变电站设计 学生姓名都春起批次112 专业电气工程及其自动化学号1129301910010学习中心安徽合肥学习中心 2012 年11 月

中国地质大学(北京)继续教育学院现代远程教育专科生毕业论文设计 摘要 在我国目前箱式变电站使用的广泛、各行各业都在使用,箱式变电站又称户外成套变电站,即将高压受电、变压器降压、低压配电等功能有机地组合在一起,安装在一个防潮、防锈、防尘、防鼠、防火、防盗、隔热、全封闭、可移动的钢结构箱体内,机电一体化,全封闭运行,特别适用于负荷集中的经济开发区、工厂、矿山、住宅小区等城市公用设施,用户可根据不同的使用条件、负荷等级选择箱式变电站。 关键词:箱式变电站;一次系统,二次系统、设计、选型。 2

中国地质大学(北京)继续教育学院现代远程教育专科生毕业论文设计 ABSTRACT In a wide range of industries in our country at present, box-type substation use are in us e, a ls o k n o wn a s ou td oo r bo x-typ e su bs ta tio n c om pl e te s ub sta ti on, th e hi gh voltage electric, step-down transformer, low voltage distribution functions are organically combined together, mounted in a waterproof,rustproof, dustproof, rat proof, fire prevention, anti-theft, heat insulation, all closed, can mobile steel structure box body,electromechanical integration, closed operation, especially suitable for load concentrated economic development zone,factories, mines, the residential areas in city public facilities, the user can be used according to different conditions, load level selection of box-type substation. Keywords: Box-type substation; a system, the two system, design,selection. 3

110KV变电站任务书

毕业设计任务书 课题名称110kV变电站设计 指导教师(签名)年月日 教研室主任(签名)年月日 任务书填写要求 1、毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系主管领导签字后生效。此任务书应在毕业综合实践开始前一周内填好并发给学生;

2、任务书内容必须用黑墨水笔工整书定或按统一设计的电子文档标准格式打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴; 3、任务书内填写的内容,必须和学生毕业设计(论文)任务完成的情况相一致,若有变更,应当经过所在专业及系统主管领导审批后方可重新填写; 4、任务书内有关“系”、“专业”等名称的填写,应写中文全称,不能写数字代码,学生的“学号”要写全号,请规范化填写; 5、任务书内“主要参考文献”的填写,应按国标GB7714—87《文后参考文献著录规则》的要求书写,不能有随意性; 6、有关年月日等日期的填写,应当按国标GB/T7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2002年4月2日”或“2002-04-02”。 毕业设计(论文)的有关说明 一、毕业设计(论文)的性质和目的 毕业设计(论文)是高等职业学校培养工科应用型学生的一个重要实践性教学环节,是在学生学完全部课程,并完成必要的课程设计和实习、实训的基础上进行的。毕业

综合实践作为高等职业教育教学过程中的最后一个教学环节,与其他教学环节彼此配合,是前面各个教学环节的继续、深化和提高,其内容应符合专业培养目标与规格要求。毕业设计(论文)环节,除可以培养和锻炼学生综合应用所学的专业理论和技能、独立工作的能力和创造能力外,还能培养学生良好的职业道德、意志品质、心理承受能力和团结协作精神等,使他们毕业后能尽快地适应工作岗位。 毕业设计(论文)的基本教学目的是培养学生综合运用所学的基础理论、专业知识和基本技能,提高分析与解决生产、建设、服务、管理第一线的实际问题的能力和形成综合职业素质。 二、毕业设计(论文)的选题 毕业设计(论文)课题应符合专业培养目标与规格要求,高等职业教育主要面向基层,培养生产、服务和管理第一线的高等技术应用性人才。毕业综合实践教学不应仅仅是研究、开发和设计类课题,而应更多地结合生产实际项目选择有关工艺及装备的设计与改进,或产品的制作、现场管理的优化及与本专业相关的岗位技能训练等课题,或侧重学生综合能力和全面素质的培养与提高,特别是创新意识和创新能力的培养。 一、课题的内容和要求 本设计内容是对某110kV降压变电站的电气部分进行初步设计,部分内容可达技术设计的要求深度,具体设计内容要求如下: 1)主变压器的选择:根据负荷情况、电压等级、出线回路数等技术数据选择选择 变压器的台数、容量、形式、接线组别及型号。 2)电气主接线方案的选择比较与确定:根据负荷情况、电压等级、出线回路数、 主变的台数等拟定变电站的主接线形式。(要求有3个方案进行技术、经济比较

35kV箱变技术要求

35kV欧式箱变技术要求2014年07月

说明 ※本此技术要求为通用版本,由于具体项目条件存在差异,设备具体参数存在不确定性,因此仅对设备主要参数及功能要求进行要求,具体项目需根据项目的条件对环境条件、海拔高度、额定电压、额定电流等具体参数进行修改。 技术要求中标记为“※”的项目为必须响应的条款。 文件中黄色标记的文字可以根据项目情况进行修改。

目录

第1章一般规定与规范 总则 1.1.1本技术要求提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准的条文,投标方应提供符合本规范和有关最新工业标准的优质产品。 1.1.2投标方应参加招标设备在现场的调试运行,试运行中如出现质量问题应负责及时处理。 1.1.3偏差(无论多少)都必须清楚地表示在投标文件的“技术条件偏差表”中,技术条件偏差表应以汇总的形式放置在投标书正文的首页。如未对本规范书提出偏差,将认为投标方提供的设备和服务完全符合本技术要求书和相关标准的要求。 1.1.4合同签订时,投标方应指定负责本工程的项目经理和技术专员,负责协调投标方在工程中的各项工作,如设计图纸、工程进度、设备制造、包装运输、现场交付、指导安装、调试验收等,指定的项目经理和技术专员在整个工程期间不得更换。 1.1.5本设备技术要求书经招、投标双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.1.6本技术要求未尽事宜由招投标双方与设计单位共同协商解决,投标方设计完毕即通知用户召开设计联络会。 1.1.7如果出现投标方在投标文件中承诺但在签订技术协议时拒绝承诺或不满足投标文件条款的情况,招标方有权更换中标人。 1.1.8招标方保留对本技术要求书提出补充要求和修改的权利,投标方应予以配合。如招标方提出修改,将根据实际需要通知投标方召开设计联络会,具

变电站课程设计任务书(1)

题目:220kV 降压变电所设计 一.原始资料: 1.变电所性质:本所为枢纽变电所,以110KV电压等级向地区用户供电。 2.所址条件:建于大城市近郊,除供市区用电外,还向大工业用户供电。所区地势平坦,海拔400m,交通便利,有铁路、公路经过。最高气温+38℃, 最低温度-30℃, 年平均温度+10℃, 最大风速30m/s ,覆冰厚度10 mm,地震烈度<6级,土壤电阻率<500Ω. m ,雷电日30,周围环境较清洁,不受各类污染的影响,冻土深度1 .5 m ,主导风向夏南,冬北。 3.负荷资料: 1)220kV侧共2回线与系统相连。 2)110kV侧共9回架空出线,负荷同时率0.85,线损率5%,cosф=0.9。 3)10kV侧共8回架空线,负荷同时率0.85,线损率5%,5年后增加3回线,负荷为28MW。

4.系统情况: 二、设计任务 1.变电站总体分析, 2.负荷计算 3.选择变压器的台数、容量、型号、参数。 4.电气主接线设计。 5.计算短路电流。 6.高低压电器设备的选择。 三、成品要求 1、说明书(附计算书)1份。 2、电气主接线图1张(2# 图纸)。 3、课程设计答辩。 附: 1、要求选择的电器设备包括: 1)220kV配电装置中的主母线、高压断路器、高压隔离开关、电压互感器、电流互感器、避雷器、接地刀闸; 2)110kV配电装置中的主母线、高压断路器、高压隔离开关、电压互感器、电流互感器、避雷器、接地刀闸。 3)10kV配电装置中的主母线、高压断路器、高压隔离开关、避雷器、接地刀闸。 2、要求设计:说明书书写字迹清晰、规范。电气主接线图比例合适、图面整洁、绘图规范。 3、参考资料:《发电厂电气部分》教材,熊信银主编 《发电厂电气部分课程设计参考资料》,天津大学黄纯华主编 《工业企业供电课程设计及实验指导书》,天津大学黄纯华主编 《电力工程电气设计手册》,西北电力设计院编,电力出版社1995 《电力工程电气设备手册》,西北电力设计院编,电力出版社1995, 《变电所所址选择与总布置》张玉珩,水电出版社,1986 4、课程设计说明书规格(见附录)

相关文档
相关文档 最新文档