文档库 最新最全的文档下载
当前位置:文档库 › WorldDEM数据购买DEM高程数据价格

WorldDEM数据购买DEM高程数据价格

WorldDEM数据购买DEM高程数据价格
WorldDEM数据购买DEM高程数据价格

W orldDEM数据购买DEM高程数据价格

北京揽宇方圆信息技术有限公司是国内领先的遥感影像数据服务企业,他们的WorldDEM产品有望改写DEM领域的游戏规

则,WorldDEM分辨率12米是全球数字高程模型DEM领域的一项重要突破。而且WorldDEM数据在中国区域的高度统一性以及无缝覆盖性,提高了国际合作以及跨边境执行任务的规划。

这款产品的数据基础,源自德国雷达卫星TerraSAR-X 和TanDEM-X,其精确度接近激光雷达产品,能够提供极高分辨率的地理信息数据。这两颗卫星组成了世界上第一个在太空自由飞翔的高精度雷达干涉仪。它们编队飞行,距离很近,最小相对距离只有几百米,从技术角度而言,这是前所未有的探索。为确保最终产品始终如一的高质量与高精度,这两颗卫星会对全球的任意一片区域采集两到四遍

的数据。在卫星开始对较为地形较为复杂的区域进行拍摄前,已完成了两次全球拍摄的任务。

这两个合成孔径雷达(SAR)传感器独获取到的数据非常可靠,因为它们是在有云覆盖和光照的两种条件下进行作业的。这一代全球DEM产品,在区域或者国界线处没有任何断线,且没有因不同的测量程序或者操作耽搁而导致差异性。

这款产品必将提升一系列的应用,从影像的正射校正,基础地形测绘,到国防、情报和军事工程领域专门的地理信息需求。这些数据的3D属性,为军队和情报规划以及复杂任务的预演提供了理想化的可视化工具。WorldDEM?可以为军队人员提供自然和人工环境的准确信息,包括任何区域的海拔、基础设施、植被和水体。这些数据便于开展地形的评估与介意工作,支持了移动选择规划(包括为那些能停止、阻碍或者迫使军事行动改道的障碍物测绘),并为军事工程项目的评估工作提供支持。

此外,军事航空(有/无人驾驶航天器)是WorldDEM?大显身手的另一个领域。高精度的全球数字高程模型,与机场信息相配合,能够为防碰撞系统、近地告警和飞行管理系统提供更好的输入数据。即便是偏远且难以进入的区域,WorldDEM?仍旧可以为飞行路线、着陆地点规划提供支持。

DEM数据获取方法

一、DEM数据获取方法: 定义:地形图指的是地表起伏形态和地物位置、形状在水平面上的地物和地貌按水平投影的方法,并按照一定的比例缩绘到图纸上,这种图称为地形图。 特点: (1)具有统一的大地坐标系统的高程系统 (2)具有完整的比例尺系列和分幅编号系统:国家基本地形图含1:5千、1:1万、1:2:2.5/1:5万、1:10万、1:25万、1:50万、1:100万8种比例地形图。 缺点: (1)地形图现势性较差:纸质地形图制作工艺复杂,更新周期比较长,一般不及时反映局部地形地貌的变化情况 (2)地形图存储介质单一,容易变形:传统地形图多为纸质存储介质,存放环境(温湿度)导致地形图图幅产生不同程度的变形,这种变形表现在不同方向上的长度变形和图幅面积上的变形 (3)地图精度有限:地图精度决定这地形图对实际地形表达的可信度,与地形图比例尺、等高线密度(由等高距表示),成图方法有关。不同比例尺的地形图,其所表示的几何精度和内容详细程度有很大的差别。 在应用DEM的时候要考虑DEM分辨率、存储格式、数据精度和可信度等因素。 二、DEM数据采样策略与采样方法:

采样:确定在何处需要测量点的过程,这个过程有三个参数。 决定:点的分布、点的密度和点的精度。 1.采样数据的分布:由数据位置和结构(分布)来确定,指数据点的分布形态 位置有地理坐标系统中经纬度或者网格坐标系统中坐标决定。 结构的形式很多,因地形特征、设备、应用的不同而不同。 2.数据的密度:是指采样数据密集程度,与研究区域的地貌类型和地形复杂程度有关。用于刻画地形形态所必须的最少的数据点。 表示方式:相邻的两点之间的距离、单元面积内的点数、截止频率(采样数据所能表示的最高频率)、单位线段上的点数等。 采样距离:相邻两点之间的距离,也称采样间隔。 ·通常数字加单位来表示,如采样距离为20米,表示规格网分布的采样数据 ·另一种表示法是单位面积内的点数,如每平方米500点,描述随机分布的采样数据 ·描述数据分布是沿等高线或特征等线状分布采样点,常用单位线段

dem数据使用教程

DEM高程数据 (2013-11-12 15:06:40) 转载▼ 标签: 杂谈 DEM高程数据包括两个部分:ASTER GDEM30米分辨率高程数据和SRTM90米分辨率高程数据。ASTER GDEM数据来源于NASA,数据覆盖范围为北纬83°到南纬83°之间的所有陆地区域,时间范围为2000年前后;SRTM数据来源于CIAT,数据覆盖范围为北纬60°至南纬60°之间的所有陆地区域,时间范围为2000年前后。 ASTER GDEM 30米分辨率高程数据 本数据集利用ASTER GDEM第一版本(V1)的数据进行加工得来,是全球空间分辨率为30米的数字高程数据产品。由于云覆盖,边界堆叠产生的直线,坑,隆起,大坝或其他异常等的影响,ASTER GDEM第一版本原始数据局部地区存在异常,所以由ASTER GDEMV1加工的数字高程数据产品存在个别区域的数据异常现象,可以和全球90米分辨率数字高程数据产品互相补充使用。ASTER GDEM数据采用UTM/WGS84投影,数据格式为IMG栅格影像,数据的值域范围为-152-8806米之间,比例尺为1:25万,其垂直精度20米,水平精度30米。 数据命名规则:ASTER GDEM基本的单元按1度X1度分片。每个GDEM数据包有两个文件,一个数据高程文件和一个质量评估(QA)文件。每个文件的命名是根据影像几何中心左下角的经纬度产生。例如,ASTGTM_N29E091代表左下角坐标是北纬29度,东经91度。ASTGTM_N29E091_dem和ASTGTM_N29E091_num对应的分别是高程数据和质量控制数据。 SRTM 90米分辨率高程数据 SRTM(ShuttleRadarTopographyMission)90米分辨率高程数据由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号航天飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。SRTM系统获取的雷达影像的数据量约为9.8万亿字节,经过两年多的数据处理,制成了数字地形高程模型(DEM),即现在的SRTM地形产品数据。SRTM因插值算法不同,存在不同版本,本平台发布数据为V4.1版本。 SRTM数据采用WGS84椭球投影,使用16位的数值表示高程数值的(-32767米),空数据用-32726表示。数据格式为IMG栅格影像,数据的值域范围为-12000-9000米之间,水平精度20米,高程精度16米。 SRTM的数据组织方式为:每5度经纬度方格划分一个文件,共分为24行(-60至60度)和72列(-180至180度)。文件命名规则为srtm_XX_YY.zip,XX表示列数(01-72),YY表示行数(01-24)。示意图如下: 高程数据处理方法 第一次使用DEM高程数据的朋友常常遇到这个问题,IMG是压缩包么?怎么不能解压呢?为什么我打开之后数据是灰色的呢?明明是平原地区,为什么显示的高程范围却在-32767-32767之间呢?为什么展示图里是五颜六色的,而我打开的却是灰色影像呢? 首先IMG不是压缩包,“.img”作为一种栅格影像格式,可以直接在ArcMap、ENVI、ERDAS等遥感软件中打开使用,无需解压。 其次,怎么去除高程影像中的空值(如-32767),让它在一个正常的范围内显示呢?小编这里以TIF格式的DEM高程影像为例(IMG的处理方式同样),一步步带大家来操作。 1. 在ARCMAP里打开一幅DEM高程数据(ADD DATA),可以从左边看到其显示的数据范围是-32767-32726,右侧为灰色影像。 2. 在ArcMap里打开Spatial analyze工具,选择Raster Calculator,设置DEM高程数据值为0并进行计算(点击Evaluate按钮),页面如下:

获取室内模型流域DEM数据的实用方法

获取室内模型流域DEM 数据的实用方法 杨超1 赵军2 高佩玲2 (11中国农业大学水利与土木工程学院,北京100083;21中国科学院、水利部水土保持研究所,陕西杨凌712100) 收稿日期:2004210216 基金项目:教育部重大项目中国科学院知识创新重要方向项目(KZCX32SW 2422)作者简介:杨超,硕士研究生,主要从事土壤侵蚀机理及计算机模拟研究。 摘 要 为获得模型流域的高精度DEM 数据,自制了高程测量仪,对6519m 2流域模型进行011m ×011m 网格的逐点测量,获得高程数据,并利用GIS 软件生成模型流域的DEM 。降雨强度100mm/h 和降雨历时40min 条件下,降雨前后DEM 处理后得到的模型流域土壤侵蚀量为4465kg ,相对人工采样误差715%。处理所得DEM 与原模型流域地形特征点数据比较误差为±01005m 。模型流域降雨侵蚀后高程的对比计算结果表明,该测量方法在室内小模型流域的降雨侵蚀定量研究中是可行的。关键词 模型流域;GIS ;地形测量;土壤侵蚀 中图分类号 S 29 文章编号 100724333(2005)0120013203 文献标识码 A Practical method for DEM of a laboratory watershed model Y ang Chao 1,Zhao J un 2,Gao Peiling 2 (11College of Water Conservancy and Civil Engineering ,China Agricultural University ,Beiing 100083,China ; 21I nstitue of Soil and Water Conservation ,Chinese Academy of Sciences ,and M inistry of Water Resources ,Y angling 712100,China ;) Abstract It is well known that it is difficult to get the morphological data for a laboratory watershed model in s oil ero 2sion study by the traditional methods and the RS ,GPS and GI technologies.A practically us eful app aratus was devel 2op ed to quantify the digital elevation of a laboratory watershed model for a 66m 2 watershed with 10by 10cm grids.A GIS s oftware was us ed to generate the DE M of the watershed and the meas ured elevation values were verified with the actual ones at control p oints ,which indicated that the error was less than 5mm.This method can be us ed for geomor 2phologic determination of a watershed and for quantifying the s oil erosion in a rainfall event by comp aring the elevation changes. K ey words watershed model ;GIS ;elevation meas urement ;s oil erosion 目前,流域次降雨侵蚀研究多在野外条件下进 行。由于野外条件复杂,影响因子较多,不利于流域侵蚀与各影响因子之间关系和侵蚀在流域内分布情况的分析;而室内次降雨侵蚀研究多在坡面上进行,反映的是坡面相关因子与侵蚀之间的关系。在室内可控条件下进行模型流域的次降雨侵蚀研究,有利于确定流域侵蚀与各影响因子间的定量关系和侵蚀在流域中的分布情况。 室内模型流域次降雨总侵蚀量通常由流域出口处流量和水流含沙量的测量值换算得到,侵蚀量在流域内的空间分布一般采用REE (稀土元素)法进行分块研究[1],或采用侵蚀针观测法布点研究,但 REE 法受REE 种类的限制分块不可能很小,侵蚀 针在全流域的高密度布设也不现实。野外传统数字化地形测绘法因操作原因[2],不能对模型流域进行非破坏性测量,而目前流行的3S (遥感RS 、全球定位系统GPS 和地理信息系统GIS )技术因运行空间不足而无法对室内小型流域进行测量[3]。进行室内坡面土壤侵蚀研究通常使用的激光微地貌扫描仪,测量宽度限制在1m 内[4],无法满足较大面积模型流域的测量要求。 为获得大面积(6519m 2)模型流域次降雨的侵蚀量和侵蚀分布,本试验用自制高程测量仪(图1)测量模型流域高程数据,结合GIS 技术获取模型流 中国农业大学学报 2005,10(1):13-15Journal of China Agricultural University

DEM高程数据处理教程

DEM高程数据 DEM高程数据包括两个部分:ASTER GDEM30米分辨率高程数据和SRTM90米分辨率高程数据。ASTER GDEM数据来源于NASA,数据覆盖范围为北纬83°到南纬83°之间的所有陆地区域,时间范围为2000年前后;SRTM数据来源于CIAT,数据覆盖范围为北纬60°至南纬60°之间的所有陆地区域,时间范围为2000年前后。 ASTER GDEM 30米分辨率高程数据 本数据集利用ASTER GDEM第一版本(V1)的数据进行加工得来,是全球空间分辨率为30 米的数字高程数据产品。由于云覆盖,边界堆叠产生的直线,坑,隆起,大坝或其他异常等的影响,ASTER GDEM第一版本原始数据局部地区存在异常,所以由ASTER GDEMV1加工的数字高程数据产品存在个别区域的数据异常现象,可以和全球90米分辨率数字高程数据产品互相补充使用。ASTER GDEM数据采用UTM/WGS84投影,数据格式为IMG栅格影像,数据的值域范围为-152-8806米之间,比例尺为1:25万,其垂直精度20米,水平精度30米。 数据命名规则:ASTER GDEM基本的单元按1度X1度分片。每个GDEM数据包有两个文件,一个数据高程文件和一个质量评估(QA)文件。每个文件的命名是根据影像几何中心左下角的经纬度产生。例如,ASTGTM_N29E091代表左下角坐标是北纬29度,东经91度。ASTGTM_N29E091_dem和ASTGTM_N29E091_num对应的分别是高程数据和质量控制数据。 SRTM 90米分辨率高程数据 SRTM(ShuttleRadarTopographyMission)90米分辨率高程数据由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号航天飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。SRTM 系统获取的雷达影像的数据量约为9.8万亿字节,经过两年多的数据处理,制成了数字地形高程模型(DEM),即现在的SRTM地形产品数据。SRTM因插值算法不同,存在不同版本,本平台发布数据为V4.1版本。 SRTM数据采用WGS84椭球投影,使用16位的数值表示高程数值的(+-32767米),空数据用-32726表示。数据格式为IMG栅格影像,数据的值域范围为-12000-9000米之间,水平精度20米,高程精度16米。 SRTM的数据组织方式为:每5度经纬度方格划分一个文件,共分为24行(-60至60度)和72列(-180至180度)。文件命名规则为srtm_XX_YY.zip,XX表示列数(01-72),YY表示行数(01-24)。示意图如下:

DEM数据采集

DEM数据采集 为了建立DEM,必需量测一些点的三维坐标,这就是DEM数据采集或DEM数据获取,被量测三维坐标的这些点称为数据点或参考点。 一、DEM数据点的采集方法 l.地面测量 利用自动记录的测距经纬仪(常称为电子速测经纬仪或全站经纬仪)在野外实测。这种速测经纬仪一般都有微处理器,它可以自动记录与显示有关数据,还能进行多种测站上的计算工作。其记录的数据可以通过串行通讯,输入其它计算机(如PC机)进行处理。 2.现有地图数字化 这是利用数字化仪对已有地图上的信息(如等高线、地性线等)进行数字化的方法。目前常用的数字化仪有手扶跟踪数字化仪与扫描数字化仪。 (1)手扶跟踪数字化仪 将地图平放在数字化仪的台面上,用一个带有十字丝的鼠标,手扶跟踪等高线或其它地形地物符号,按等时间间隔或等距离间隔的数据流模式记录平面坐标,或由人工按键控制平面坐标的记录,高程则需由人工按键输入。其优点是所获取的向量形式的数据在计算机中比较容易处理;缺点是速度慢、人工劳动强度大。 (2)扫描数字化仪 利用平台式扫描仪或滚筒式扫描仪或CCD阵列对地图扫描,获取的是栅格数据,即一组阵列式排列的灰度数据(也就是数字影像)。其优点是速度快又便于自动化,但获取的数据量很大且处理复杂,将栅格数据转换成矢量数据还有许多问题需要研究,要实现完全自动化还需要做很多工作。目前可采用半自动化跟踪的方法,即采用交互式处理,能够由计算机自动跟踪的部分由其自动完成,当出现错误或计算机无法处理的部分由人工进行干预,这样既可以减轻人工劳动强度,又能使处理软件简单易实现。 3.空间传感器 利用GPS(Global Positioning System)、雷达和激光测高仪等进行数据采集。 4,数字摄影测量方法 这是DEM数据点采集最常用的一种方法。利用附有自动记录装置(接口)的立体测图仪或立体坐标仪、解析测图仪及数字摄影测量系统,进行人工、半自动或全自动的量测来获取数据。 二、数字摄影测量的DEM数据采集方式 数字摄影测量是空间数据采集最有效的手段,它具有效率高、劳动强度低等优点。利用计算机辅助系统可进行人工控制的采样,即X,Y,Z三个坐标的控制全部由人工操作;利用解析测图仪或机控方式的机助测图系统可进行人工或半自动控制的采样,其半自动的控制一般是由人工控制高程Z,而由计算机控制平面坐标X,Y的驱动;利用自动化测图系统则是利用计算机立体视觉代替人眼的立体观测。 在人工或半自动方式的数据采集中,数据的记录可分为“点模式”与“流模式”,前者是根据控制信号记录静态量测数据,后者是按一定规律连续性地记录动态的量测数据。 1.沿等高线采样 在地形复杂及陡峭地区,可采用沿等高线跟踪的方式进行数据采集,而在平坦地区,则不易采用沿等高线的采样。沿等高线采样可按等距离间隔记录数据或按等时间间隔记录数据方式进行。当采用后者时,由于在等高线曲率大的地方跟踪速度较慢,因而采集的点较密集,而在等高线较平直的地方跟踪速度较快,采集的点较稀疏,故只要选择恰当的时间间隔,所记录的数据就能很好地描述地形,又不会有太多的数据。

DEM数据的介绍,获取,处理

DEM网格单元大小的确定 简单方法1 由地形图上的等高线生成DEM时,DEM网格大小的粗略估计: CELL Size = Scale分母/ 纸张分辨率纸张分辨率为300bpi(一般为200bpi),即一英寸纸张上面可以印刷300条线,以1:5万地形图为例:cell size = 50000/300 (inch) = 4.24 (meter) 方法2 地图比例尺,航空摄影测量、影像分辨率的关系带来的启示航摄规范(GB/T 15661-1995)中规定航摄仪有效使用面积内镜头分辨率“每毫米内不少于25 线对”。根据物镜分辨率和摄影比例尺可以估算出航摄影像上相应的地面分辨率D,即D=M/R。(其中M 为摄影比例尺分母,R 为镜头分辨率。)根据航摄规范中“航摄比例尺的选择”的规定和以上公式,可得下表。 成图比例尺航摄比例尺影像地面分辨率(m) 1:5000 1:10,000~1:20,000 0.4~0.8 1:10,000 1:20,000~1:40,000 0.8~1.6 1:2,5000 1:25,000~1:60,000 1.0~2.4 1:50,000 1:35,000~1:80,000 1.4~3.2 补充:卫星影像分辨率的选择考虑不同比例尺成图对影像分辨率要求和对应规格商用卫星影像产品的稳定货源。 卫星QuickBird-2 IKONOS-2 SPOT-5 SPOT-4 Landsat-7 最高分辩率(m) 0.61 1 2.5 10 15 成图比例尺卫星影像(分辨率) 1:5000~1:10,000 QuickBird(0.61m) IKONOS-2 (1m) 1:25,000 QuickBird-2(0.61m) IKONOS-2 (1m) SPOT-5(2.5m) 1:50,000 SPOT-5(2.5m) DEM生成方法- ANUDEM 模型 水是地貌形成的主要侵蚀因素。ANUDEM (Australian National University Digital Elevation Model) 采用了这一思想,使用地貌与水文数据作为插值约束条件,插值等高线高程。大大减少了DEM中的凹陷数据错误,显著提高了DEM在水文特征方面的质量。插值方法为递归有限元差分插值技术,拟合样条曲面。 ANUDEM插值处理方法: 等高线是最常见的高程信息表达方法,也最难适用各种通用插值方法进行处理,处理要点:(1) 地表曲面形态:等高线->等高线局部最大曲率->坡度最陡区域->山脊线/河流径网->确认输出DEM的水文地貌特征/验证DEM的精确度。 (2) 地表曲面插值:每个网格单元的插值计算,使用临近等值线上的点。 (3) 多分辨率逐级插值:低分辨率DEM->高分辨率DEM->用户定义分辨率DEM。每级分辨率插值操作,水系限制条件都用于DEM凹陷生成的控制,保留下的凹陷会纪录在log文件中 等高线插值的举例(arcinfo: topogrid) Arc: topogrid laodem20 20 TopoGrid: datatype contour TopoGrid: contour laocontour elev TopoGrid: stream laostream TopoGrid: enforce on TopoGrid: end Arc: 其中:laodem20 –输出DEM的文件名

相关文档