文档库 最新最全的文档下载
当前位置:文档库 › OLS估计量的性质的推导证明(一些补充)

OLS估计量的性质的推导证明(一些补充)

OLS估计量的性质的推导证明(一些补充)
OLS估计量的性质的推导证明(一些补充)

OLS 估计量的性质的推导证明(一些补充)

1、 线性:

2

2

2

2

2

2

(()()0)

i

i

i

i

i

i

i

i i i i i

i

i

i

i

i i

i i

i

x y x Y Y x Y Y x x x x x x Y x kY k x X X X n X x x

ββΛ

Λ

-===-==-=-===∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑i

由于(1)证明斜率系数估计量是Y的线性函数。 , 其中=

22

2222

(0)(1,0)01,1·0,0()1()101,1

i i i

i i i i i i i i i i i i i i

i i i i i i i i i i i i i i x k x x k x x x k x x x x k X k x X k x X k k X x x k x k k X k X =========+=+=+====∑∑

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ 注意: (由于对确定量而=()=故又故言是定值)前已证前已证记得与对后面的故证明会有用。

211

),i i i i i i Y Y X k X Y w Y w k X

n n

ααβΛ

Λ

Λ

=-=-==-∑∑() 证明截距系数估计量是的线性函数。

(其中

11

)111):(0)10(1;)1,i i i i

i i i i i i i i i i i i i i w k X n k X X k n n

w X k X X X X k X n n X k k X w w X X n

=-=-=-===-=-====-=∑∑∑∑∑∑∑∑∑∑∑∑∑ 注意 ( 前已证前已证注意 0,对后面的 1;(证明有用。

2、无偏:

112211221122)()(...)()()...()()()...(1,0)()i i i i i i

i

i n n n n n n kY k X k k X k k E k E k k k E k E k E k k E k E k E k X k E βββαβεαβεβεεεεεεεεεεεΛ

Λ

==++=++=+==+++=+++=++=+∑∑∑∑∑∑∑∑∑iiiii i 

iii(1) 是的无偏估计量。

( 由于 (前已证注 意假设 0())((0)i i i k E E k ββεεεβββ

Λ

Λ

==+=+=∑∑ii 所以对等式 =两边取期望有,)

(1,i

i i i i w w E w X k ααεαααααεα

Λ

ΛΛ

Λ

==+=+∑∑∑∑ii课件上有错误:(2) 是的无偏估计量,即) 证明方法同上,参考课=应改为=注意利用 件0。

3、有效性:

**

***

(),,((()()i i Var cY E Var Var βββββββββαβαβαβΛΛ

ΛΛΛΛΛΛΛΛ

Λ

Λ

Λ

Λ

==≥∑证明思路:先计算的方差再证明对任一线性无偏估计量即满足

且) ),均满足。对的有效性证明思路同。

对,的最小方差性证明上课件已经说的比较清楚,也没有错误。这里仅仅对,的计算作一些说明。

112222112211()()()(...)()()()...()().(()

..())i i n n i n n n i n i k Var k Var k k k Var k Var k Var k k Va Var Var k r k Var ββεβεβεεεβαβεεεεεεεεΛΛ

ΛΛ

=+=+==+++=++=+∑∑∑iii注意前面证明无偏性的时候已证 注意到为常数注意到随机变量独立(1) 计算与的方差。

(注意到随机变量 2

22

22

2222

2

2

2

22

2

22222()1

()()()1)1

,,()()2(,)

12()()(i i i i i i i

i i i i

i i i i i i Var x

Var w k X n

k x x x k k k x x x x k X n n X k X k n n k X n

σβσσασσσσΛ

Λ

====

===-=-+=-+=∑∑∑∑∑∑∑∑∑∑∑∑∑ i22

2

2

222所以 前几步思路同上这里课件方上有错误请差相同,为 注意到=故,见课 件注意 注意前2

2

2

2

2

22

2

2

2

2

2

2

2

2

10,)()211()i i i

i

i i i

i

i i i i i i X X n x n x k k x X x X n x n x x X x nX X

n x n x σσ==+=

=

++=+

=+=∑∑∑∑∑∑∑

∑∑∑∑∑∑22

已证 最后一个等号处,用逆推比较清楚:

 

,,,,,,cov ,)cov(,),cov(,)cov(,)cov(,)cov(,)cov(,)cov()0;cov(j j X Y Z W a b c d X a Y b X Y aX bY cW dZ ac X W ad X Z bc Y W bd Y Z αβεεεεεΛΛ

++=++=+++≠==i i i 4、关于,的协方差计算:课本的证明方法略显复杂:

在证明前先注意两个公式:若是随机变量,是常数,则有(

并注意两个对随机变量的假设:

对i j,有,对i j,,11221122111121

1

(,cov[(.)..),(...)]

cov()0,c cov()()cov()cov(,)cov(,)ov(,)cov(n n n n i i i i j j j n

n

i j w w w k Var w k w k k k w k εεεσαβαεβεεαβεεεεεεεεεεεΛ

Λ

====++++≠===+=++==∑∑∑∑i i i i ii注意到为常数) (由于对i j,有,所以只需考虑i=j 的情况) ,故 ,2222111122222222

2

11221

1

1

1

,)...cov(,)cov(,)cov(,)....cov(,)cov()()1

1,)0i i n n n n n n n n i i i

i n

n

n

n

i i i i n

n

i i w k w k w k w k w k Var k k wk Xk k k X k n

n εεεεεεεεεεεεσσσσσ

ε======+=+++=====-==

-∑∑∑∑∑∑i i i ii (注意到有同方差假设,,) (注意到前面已证(22

1

2

1)

i

i

n

i n

i x

x X

σ===-

∑∑

2

2

2

2

,()()()[()]cov(,){[()][()]}[()]·Var()(Var())

i

i Y X E Y E X E X E E E E X E E X x

X x αβαβααββαβααββββσβββσΛ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

=-=--=--=--=--=-=-=-∑∑

2一种比较简单的算法如下:

由于所以,故 在证明的有效性时已求得

2

2

2

2

2

22

2

2

()()()()2()()

()

2

2

22(),()()((),()i i i i i

i i i i i i i i i

i

i

i i s

e Y Y X e X X w k E Va e r E e n n X σααββεααββεααββεααεβααεββεαααβββΛΛ

Λ

Λ

Λ

Λ

ΛΛ

ΛΛΛ

Λ

ΛΛ

Λ

==

=-=-+-+=-+-++------=---==-=--∑∑∑∑2

课件上误作

课件上此处有误,请注意)5、证明 由于前面已算得: 又因为 2112222

2

222

(),()()()cov(,),()()()0

[()][(......)()[()]()()(i i j i j i j i i i i n n i i i i i i i Var E E i j E E E E E w w w w w E w E k E e Var X Var βεσααββαβεεεεεεεααεεεεεεσεββσαβΛ

ΛΛΛΛ

Λ

Λ

Λ=--=≠==-=++++==-==+ , 当独立 故 所以 同理可算得: 故 2

2

2

2

2

22

2

2

2

22

2

22

2

22

2

22

2

2

)2cov(,)2[()]2[()]

2222()22i i i i i

i i i i i i

i i i

i i i i i i

i i i

i i i X E X E X X

X X w X k n x x

x

X X E e n X n X w k X n x x x X X x

σαβεααεββσσσσσσσσσσσσσσΛ

ΛΛΛΛ

++----=++---=++---=

+

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

22

22

22 两边求和得

2

2

2

2

2

2

2

2

2

22

22

2

2

2

2

2

2

2

22

2222(4)()2(4)22(4)2(4)(2)(

2i i i i

i

i

i

i

i

i i

i

i

i

i

i

X n X x

x X

X X

n x

X x X X n x n X X x x X X

n x

n X x X n X

n n x e E n σσσσσ

σ

σσ

σσ

σσσ

+----=+-+-=+-++-=+-+-=+-=--∑∑

∑∑∑∑∑∑∑∑

∑∑∑∑∑∑

∑ 22

2

2

故 2

2

2

2

),.

2

i

e s n σσσΛ===-∑2

即为的无偏估计

第六章 从本统计量估计整体参数

第六章从样本统计量估计整体参数 学习要点 第一节点估计 第二节区间估计 第三节总体均数的估计 第四节其他总体参数的估计 本章小结 学习要点 掌握推断统计的内容和前提条件 理解统计估计的原理,掌握统计估计的方法 能够运用总体均数估计的方法解决实际问题 第一节点估计 当总休平均数或比例未知时,我们可以直接把样本平均数或比例用作它的估计值。由于样本统计量为数轴上的一个点,所以称为“点估计值” 。 科学研究不仅需要对事物特征作出一般性的描述,而且更要根据样本提供的信息去推测相应总体的情况,统计内容中的推断统计则是专门研究如何用样本去推断总体的方法。 一、什么是推断统计 一般情况下,样本统计量是不会和相应的总体参数完全相同的,两者多少都会有一定的差距,但是如果用无限多个样本的统计量来估计总体参数,平均估计误差将会等于0。 具有这一特征的统计量就无偏估计值。 例如,用样本平均数估计总体平均数时,总会有些误差,在有些样本中,它可能会大于总体平均数,而在另一些样本中它又可能会小于总体平均数,而且对于不同的样本估计误差的大小也是不同的,但是无限多个样本平均数的平均估计误差为0。换句话说,样本平均数的平均数将会等于总体平均数。 推断统计就是指由样本资料去推测相应总体情况的理论与方法。也就是由部分推全体,

由已知推未知的过程。 推断统计根据推测的性质不同而分为参数估计和假设检验两方面。参数估计(parameter estimation)就是用样本去估计相应总体的状况,其具体方法有点估计和区间估计。假设检验(hypothesis test)的主要用途是对出现差异的两个或多个现象或事物进行真实性情况的检验,又称统计检验(statistical test)。在检验中又根据是否需要依赖于对总体分布形态和总体参数检验的假设而分为参数检验和非参数检验。参数检验法在检验时对总体分布和总体参数 (μ,2 σ)有所要求,而非参数检验法在检验时则不依赖于总体的分布形态和总体参数的 情况。参数检验法主要有Z检验、t检验、F检验和q检验等,非参数检验(non-parameter test)主要有χ2检验、符号检验法、符号等级检验法、秩和检验、中位数检验等。 二、统计推断的基本问题 没有系统学过统计学的人往往有一种误解,以为只要搜集了数据资料,就可以用统计方法来处理数据。殊不知统计学是建立在概率论基础上的,而概率论是专门研究随机事件的。因此,在做统计推断之前必须考虑你所获得的资料是否能够用统计的方法来分析。通常,进行统计推断时应首先考虑以下三个方面的问题。 一是关于统计推断的基本前提。统计推断的前提是随机抽样。因此当我们利用样本统计量进行总体推断时,首先要了解抽样的方式,即了解样本是如何得来的,是随机抽取的,还是人为抽取的。随机抽样的均等性和独立性,避免了入样个体只来自总体的某一部分,从而也就避免了样本的偏倚性。可以说,样本的抽取直接关系着统计研究结果的科学性。 二是样本的规模与样本的代表性。抽样研究需要有一定的样本规模,而样本要具有代表性也需要有一定的样本规模来保证,以减少抽样误差。一般来说,在其它条件相同的情况下,样本越小,抽样的误差越大;样本越大,抽样的误差就越小。当样本增至包括总体的全部个体(即N n=)时,抽样的误差为0。因此,只要条件允许,尽可能地采用大样本,以增强样本对总体的代表性和可靠性。值得注意的样本规模和样本代表性是建立在随机抽样基础之上的,否则即使样本再大也是无意义的。 三是统计推断的错误要有一定限度。统计推断是在特定的时间、空间和条件下得出的结论,加上抽样误差的影响,在用样本推测总体时总会犯一定的错误。这种错误在统计推断中是不可避免的,也是允许的。不过这种错误要有一定的限度,超过一定限度的错误是不允许的。统计推断中允许犯错误的限度是用小概率事件来表示。 第二节区间估计 一、参数估计的定义 所谓参数估计就是根据样本统计量去估计相应总体的参数。譬如我们可以根据样本均数(X)去估计总体的均数(μ),根据样本方差(2S)去估计总体方差(2 σ),根据样本的相关系数(r)去估计总体相关系数(ρ)等等。

(整理)参数估计方法.

第七章 参数估计 第一节 基本概念 1、概念网络图 {}???? ??? ?? ???????????????????→??????单正态总体的区间估计区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体

2、重要公式和结论

例7.1:设总体),(~b a U X ,求对a, b 的矩估计量。 例7.2:设n x x x ,,,,21 是总体的一个样本,试证 (1);21 10351321x x x ++= ∧ μ (2);12541313212x x x ++=∧μ (3).12 143313213x x x -+=∧μ 都是总体均值u 的无偏估计,并比较有效性。 例7.3:设n x x x ,,,,21 是取自总体),(~2 σμN X 的样本,试证 ∑=--=n i i x x n S 1 22 )(11 是2 σ的相合估计量。

第二节 重点考核点 矩估计和极大似然估计;估计量的优劣;区间估计 第三节 常见题型 1、矩估计和极大似然估计 例7.4:设0),,0(~>θθU X ,求θ的最大似然估计量及矩估计量。 例7.5:设总体X 的密度函数为 ?????≥=--. , 0,1)(/)(其他μθ θμx e x f x 其中θ>0, θ,μ为未知参数,n X X X ,,,21 为取自X 的样本。试求θ,μ的极大似然估计量。 2、估计量的优劣 例7.6:设n 个随机变量n x x x ,,,21 独立同分布, ,)(11,1,)(1 22 12 1∑∑==--===n i i n i i x x n S x n x x D σ 则 (A )S 是σ的无偏估计量; (B )S 是σ的最大似然估计量; (C )S 是σ的相合估计量; (D )x S 与2 相互独立。 例7.7:设总体X 的密度函数为 ?????<<-=, , 0,0),(6)(3 其他θθθx x x x f n X X X ,,,21 是取自X 的简单随机样本。 (1) 求θ的矩估计量∧ θ;

参数估计在实际问题中当所研究的总体分布类型已知但分布

第六章 参数估计 在实际问题中, 当所研究的总体分布类型已知, 但分布中含有一个或多个未知参数时, 如何根据样本来估计未知参数,这就是参数估计问题. 参数估计问题分为点估计问题与区间估计问题两类. 所谓点估计就是用某一个函数值作为总体未知参数的估计值;区间估计就是对于未知参数给出一个范围,并且在一定的可靠度下使这个范围包含未知参数. 例如, 灯泡的寿命X 是一个总体, 根据实际经验知道, X 服从),(2σμN , 但对每一批灯泡而言, 参数2,σμ是未知的,要写出具体的分布函数, 就必须确定出参数. 此类问题就属于参数估计问题. 参数估计问题的一般提法: 设有一个统计总体, 总体的分布函数为),(θx F , 其中θ为未知参数(θ可以是向量). 现从该总体中随机地抽样, 得一样本 n X X X ,,,21 , 再依据该样本对参数θ作出估计, 或估计参数θ的某已知函数).(θg 第一节 点估计问题概述 内容分布图示 ★ 引言 ★ 点估计的概念 ★ 例1 ★ 评价估计量的标准 ★ 无偏性 ★ 例2 ★ 例3 ★ 有效性 ★ 例4 ★ 例5 ★ 例6 ★ 相合性 ★ 例7 ★ 例8 ★ 内容小结 ★ 课堂练习 ★ 习题6-1 内容要点: 一、点估计的概念 设n X X X ,,,21 是取自总体X 的一个样本, n x x x ,,,21 是相应的一个样本值. θ是总体分布中的未知参数, 为估计未知参数θ, 需构造一个适当的统计量 ),,,,(?2 1 n X X X θ 然后用其观察值 ),,,(?21n x x x θ 来估计θ的值. 称),,,(?21n X X X θ为θ的估计量. 称),,,(?21n x x x θ为θ的估计值. 在不致混淆的情况下, 估计量与估计值统称为点估计,简称为估计, 并简记为θ?. 注: 估计量),,,(?21n X X X θ是一个随机变量, 是样本的函数,即是一个统计量, 对不同的样本值, θ的估计值θ?一般是不同的. 二、评价估计量的标准 从例1可见,参数点估计的概念相当宽松, 对同一参数,可用不同的方法来估计, 因而得到不同的估计量, 故有必要建立一些评价估计量好坏的标准. 估计量的评价一般有三条标准:

参数估计习题课

第21讲 参数估计习题课 教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。 教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。 教学难点:矩估计,最大似然估计,正态总体参数的区间估计。 教学时数:2学时。 教学过程: 一、知识要点回顾 1. 矩估计 用各阶样本原点矩n k i i 11x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,k =L 。若有参 数2g(,(),,)k E X E X E X θ=L ()(),则参数θ的矩估计为 n n n 2i=1i=1i=1 111?(,,,)k i i i X X X n n n θ=∑∑∑L 。 2. 最大似然估计 似然函数1()(;)n i i L f x θθ==∏,取对数ln[()]L θ,从 ln() d d θθ =0中解得θ的最大似然估计θ ?。 3. 无偏性,有效性 当θθ=?E 时,称θ?为θ的无偏估计。 当21?D ?D θθ<时,称估计量1?θ比2 ?θ有效。 二 、典型例题解析 1.设,0()0, 0x e x f x x θθ-?>=?≤?,求θ的矩估计。 解 ,0 dx xe EX x ?+∞ -=θθ设du dx u x x u θ θ θ1 ,1 ,= = = 则0 0011 1()0()u u u EX ue du ue e du e θθθθ+∞+∞--+∞ --+∞????==-+=+-??? ?????=θ 1

第八章 参数估计

第八章参数估计 一、思考题 1.什么是参数估计?参数估计有何特点? 2.评价估计量优劣的准则是什么? 3.什么是点估计、区间估计?二者有何联系和区别? 4.确定必要的抽样数目有何意义?必要抽样数目受哪些因素影响? 二、练习题 (一)填空题 1.参数估计的方法有_________和_________。 2.若样本方差(s n21-)的期望值等于总体方差(σ2),则称s n21-为σ2的____________估计量 3.总体参数的估计区间是由_________和_________组成。 4.允许误差是指与的最大绝对误差范围。 5.如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是 ______,允许误差是______。 6.在同样的精度要求下,不重复抽样比重复抽样需要的样本容量。 x=5,7.设总体X的方差为1,从总体中随机取容量为100的样本,得样本均值 =2.58) 则总体均值的置信水平为99%的置信区间_____________。(Z 0.005 (二)判断题 1( )参数估计就是用样本统计量去估计总体的参数。 2( )随机抽样是参数估计的前提。 3( )参数估计的抽样误差可以计算和控制。 4( )估计量的数学期望等于相应的总体参数值,则该估计量就被称为相应总体参数的无偏估计量。 5( )区间估计就是根据样本估计量以一定的置信度推断总体参数所在的区间范围。

6( )样本统计量n x x s ∑-=22)(是总体参数2σ的无偏估计量。 7( )估计量的有效性是指估计量的方差比其它估计的方差小。 8( )点估计是以样本估计量的实际值直接作为相应总体参数的估计值。 9( )抽样估计的置信水平就是指在抽样指标与总体参数构造的置信区间中, 包含总体参数真值的区间所占的比重。 10( )样本容量一定时,置信区间的宽度随置信水平的增大而减小。 (三)单选题 1.极限误差是指样本统计量和总体参数之间( )。 A.抽样误差的平均数 B.抽样误差的标准差 C.抽样误差的可靠程度 D.抽样误差的最大可能范围 2.参数估计的主要目的是( )。 A.计算和控制抽样误差 B. 为了深入开展调查研究 C.根据样本统计量的数值来推断总体参数的数值 D. 为了应用概率论 3.参数是指基于( )计算的指标值。 A.样本 B.某一个样本 C.多个样本 D.总体 4.总体参数很多,就某一参数(如均值)而言,它的取值( )。 A.是唯一的 B.不是唯一的 C.随样本的变化而变化 D.随抽样组织形式的变化而变化 5.样本统计量很多,就某一统计量(如均值)而言,它的取值( )。 A.是唯一的 B.随样本的变化而变化 C.由总体确定 D.由抽样的组织形式唯一确定 6.以样本均值x 估计正态总体的均值μ时,如果总体方差2σ已知,这时将会需要查阅( )。 A.正态分布表 B.标准正态分布表 C.t 分布表 D.2χ分布表 7.以样本均值x 估计正态总体的均值μ时,如果总体方差2σ未知,这时将会需要查阅( )。

参数估计

选择题: 1.估计量的含义是指()。 A.用来估计总体参数的统计量的名称 B.用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体数值 2.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。这种评价标准称为()。 A.无偏性B.有效性C.一致性D.充分性 3.根据一个具体的样本求出的总体均值的95%的置信区间()。 A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C.一定包含总体均值 D.要么包含总体均值,要么不包含总体均值 4.无偏估计是指()。 A.样本统计量的值恰好等于待估的总体参数 B.所有可能样本估计值的数学期望等于待估总体参数 C.样本估计值围绕待估总体参数使其误差最小 D.样本量扩大到和总体单元相等时与总体参数一致 5.总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。 A.样本均值的抽样标准差B.样本标准差 C.样本方差D.总体标准差 6.当样本量一定时,置信区间的宽度()。 A.随着置信系数的增大而减小B.随着样本量的增大而增大 C.与置信系数的大小无关D.与置信系数的平方成反比 7.当置信水平一定时,置信区间的宽度()。 A.随着样本量的增大而减小B.随着样本量的增大而增大 C.与样本量的大小无关D.与样本量的平方根成正比 8.一个95%的置信区间是指()。 A.总体参数有95%的概率落在这一区间内 B.总体参数有5%的概率未落在这一区间内 C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数 D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9.95%的置信水平是指()。 A.总体参数落在一个特定的样本所构造的区间内的概率为95% B.在用同样的方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率为5% D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 10.一个估计量的有效性是指()。 A.该估计量的数学期望等于被估计的总体参数 B.该估计量的一个具体数值等于被估计的总体参数 C.该估计量的方差比其他估计量大 D.该估计量的方差比其他估计量小

第七章参数估计练习题

第七章参数估计练习题 一.选择题 1. 估计量的含义是指() A. 用来估计总体参数的统计量的名称 B. 用来估计总体参数的统计量的具体数值 C. 总体参数的名称 D ?总体参数的具体取值 2.一个95%的置信区间是指() A. 总体参数有95%的概率落在这一区间内 B. 总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。 D. 在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。 3.95%的置信水平是指() A. 总体参数落在一个特定的样本所构造的区间内的概率是95% B ?在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率是5% D ?在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 4. 根据一个具体的样本求出的总体均值的95%的置信区间() A .以95%的概率包含总体均值 B .有5%的可能性包含总体均值 C.一定包含总体均值 D ?要么包含总体均值,要么不包含总体均值 5. 当样本量一定时,置信区间的宽度() A .随着置信水平的增大而减小 B. .随着置信水平的增大而增大 C.与置信水平的大小无关D。与置信水平的平方成反比 6. 当置信水平一定时,置信区间的宽度() A?随着样本量的增大而减小 B..随着样本量的增大而增大 C.与样本量的大小无关D。与样本量的平方根成正比 7. 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与 总体参数的离差越小越好。这种评价标准称为() A .无偏性 B.有效性C. 一致性D.充分性 8. 置信水平(1-a)表达了置信区间的() A .准确性 B.精确性C.显著性D.可靠性 9. 在总体均值和总体比例的区间估计中,边际误差由() A .置信水平决定 B.统计量的抽样标准差确定 C. 置信水平和统计量的抽样标准差 D. 统计量的抽样方差确定 10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是() A.正态分布 B. t分布 C. x 2分布 D. F分布

Poisson分布的参数估计

Poisson 分布的参数估计 作者:高晨 指导老师:戴林送 摘要 泊松分布是概率统计学科中一种重要的离散分布,在参数估计这块,对点估计,矩估计,最大似然 估计以及近似的区间估计等,该文中对泊松分布的相关知识,包括其性质,参数的相关估计,研究了泊松分布的一些性质,参数的估计,以及一些在生活中的简单应用。 关键词 P o i s s o 分布 参数估计 性质 简单应用 1 引言 Poisson 分布是离散型随机变量X 作为大量试验中稀有事件出现的频数的概率分布的数学模型,其中X 可能取值为0,1,2,……而取各个值的概率为: {},0,1,2! k e P x k k k λ λ-== = 其中0λ>是常数,称X 服从参数为λ的泊松~(;)X P k x . 1.1相关定义 1. 离散型随机变量X 的函数分布律{},0,1,2k k P X x P k === ,若级数1k k k x p ∞ =∑绝 对收敛,称级数 1 k k k x p ∞ =∑为随机变量X 的数学期望[]E x , []E x =1k k k x p ∞ =∑. 2. 定理:Y 是随机变量X 的函数,(),(Y g x g =是连续函数),X 是离散型随机变量, 若 1 ()k k k g x p ∞ =∑绝对收敛,则 [][()]E Y E g x ==1 ()k k k g x p ∞ =∑. 3. 随机变量X ,若2{[()]}E X E X -存在,则称2{[()]}E X E X -为X 的方差,记 为()D x 或()Var x ,即 ()D x =()Var x =2{[()]}E X E X -.

第二章 参数估计

第二章 参数估计 一、填空题 1、总体X 的分布函数为);(θx F ,其中θ为未知参数,则对θ常用的点估计方法有 , 。 2、设总体X 的概率密度为 (),(;)0,x e x f x x θθ θθ--?≥=?

该总体的一个样本,设用矩法求得μ的估计量为1?μ、用极大似然法求得μ的估计量为2?μ ,则1?μ=2?μ。 _________________ 8、?n θ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:??lim (), lim Var()0n n n n E θθθ→∞ →∞ ==. 9、已知1021,,x x x 是来自总体X 的简单随机样本,μ=EX 。令 ∑∑==+=10 7 6 181?i i i i x A x μ ,则当=A 时,μ?为总体均值μ的无偏估计。 10、 设总体()θ,0~U X ,现从该总体中抽取容量为10的样本,样本值为 0.51.30.61.7 2.21.20.81.5 2.01.6, , , , , , , , , 则参数θ的矩估计为 。 11、 设1?θ与2?θ都是总体未知参数θ的估计,且1?θ比2?θ有效,则1?θ与2?θ的期望与方差满足_______ . 解:1212 ????()(), ()()E E D D θθθθ=<. 12、设1?θ和2?θ均是未知参数θ的无偏估计量,且)?()?(2221θθE E >,则其中的统计量 更有效。 13、在参数的区间估计),(21θθ中,当样本容量n 固定时,精度12θθ-提高时,置信度α-1 。 14、设n X X X ,,,21 是来自总体)1,(~μN X 的样本,则μ的置信度为0.95的置信区间为 。 15、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则μ的置

参数估计方法

参数估计的方法 矩法 一、矩的概念 矩(moment )分为原点矩和中心矩两种。对于样本n y y y ,,, 21,各观测值的k 次方的平均值,称为样本的k 阶原点矩,记为k y ,有∑==n i k i k y n y 1 1,例如,算术 平均数就是一阶原点矩;用观测值减去平均数得到的离均差的k 次方的平均数称为样本的k 阶中心矩,记为k y y ) (-或k μ ?,有∑-= -=n i k i k y y n y y 1 ) (1)(,例如,样本 方差 ∑-=n i i y y n 1 2 ) (1就是二阶中心矩。 对于总体N y y y ,,, 21,各观测值的k 次方的平均值,称为总体的k 阶原点矩,记为)(k y E ,有∑= =N i k i k y N y E 1 1)(;用观测值减去平均数得到的离均差的k 次方 的平均数称为总体的k 阶中心矩,记为 ] )[(k y E μ-或 k μ,有 ∑-= -=N i k i k y N y E 1 ) (1])[(μμ。 二、矩法及矩估计量 所谓矩法就是利用样本各阶原点矩来估计总体相应各阶原点矩的方法,即 ∑= =n i k i k y n y 1 1→)(k y E (8·6) 并且也可以用样本各阶原点矩的函数来估计总体各阶原点矩同一函数,即若 ))(,),(),((k y E y E y E f Q 2= 则 ),,,(k y y y f Q 2?= 由此得到的估计量称为矩估计量。 [例8.1] 现获得正态分布),(2σμN 的随机样本n y y y ,,, 21,要求正态分布),(2σμN 参数μ和2σ的矩估计量。 首先,求正态分布总体的1阶原点矩和2阶中心矩: ?=?? ? ???--? =?=∞ +∞-∞ +∞-μσμσπdy y y dy y yf y E 2 2 exp 2)(21)()( (此处?? ? ???--2 2exp σμ2)(y 表示自然对数底数e 的?? ? ???--2 2σμ2)(y 的指数式,即] [2)(22 σμ--y e )

经典参数估计方法(3种方法)

经典参数估计方法:普通最小二乘(OLS)、最大似然(ML)和矩估计(MM) 普通最小二乘估计(Ordinary least squares,OLS) 1801年,意大利天文学家朱赛普.皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希.奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而默默无闻。勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。 最大似然估计(Maximum likelihood,ML) 最大似然法,也称最大或然法、极大似然法,最早由高斯提出,后由英国遗传及统计学家费歇于1912年重新提出,并证明了该方法的一些性质,名称“最大似然估计”也是费歇给出的。该方法是不同于最小二乘法的另一种参数估计方法,是从最大似然原理出发发展起来的其他估计方法的基础。虽然其应用没有最小二乘法普遍,但在计量经济学理论上占据很重要的地位,因为最大似然原

理比最小二乘原理更本质地揭示了通过样本估计总体的内在机理。计量经济学的发展,更多地是以最大似然原理为基础的,对于一些特殊的计量经济学模型,最大似然法才是成功的估计方法。 对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据;而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该是使得从模型中抽取该n组样本观测值的概率最大。 从总体中经过n次随机抽取得到的样本容量为n的样本观测值,在任一次随机抽取中,样本观测值都以一定的概率出现。如果已经知道总体的参数,当然由变量的频率函数可以计算其概率。如果只知道总体服从某种分布,但不知道其分布参数,通过随机样本可以求出总体的参数估计。 以正态分布的总体为例,每个总体都有自己的分布参数期望和方差,如果已经得到n组样本观测值,在可供选择的总体中,哪个总体最可能产生已经得到的n组样本观测值呢?显然,要对每个可能的正态总体估计取n组样本观测值的联合概率,然后选择其参数能使观测值的联合概率最大的那个总体。将样本观测值联合概率函数称为变量的似然函数。在已经取得样本观测值的情况下,使似然函数取极大值的总体分布参数所代表的总体具有最大的概率取得这些样本观测值,该总体参数即是所要求的参数。通过似然函数极大化以求得总体参数估计量的方法被称为极大似然法。

第三章 参数估计

第三章参数估计 重点: 1.总体参数与统计量 2.样本均值与样本比例及其标准误差 难点: 1.区间估计 2.样本量的确定 知识点一:总体分布与总体参数 统计分析数据的方法包括:描述统计和推断统计(第一章) 推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。 总体分布是总体中所有观测值所形成的分布。 总体参数是对总体特征的某个概括性的度量。通常有 总体平均数(μ) 总体方差(σ2) 总体比例(π) 知识点二:统计量和抽样分布 总体参数是未知的,但可以利用样本信息来推断。 统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。 统计量是样本的函数,如样本均值()、样本方差( s2)、样本比例(p)等。 构成统计量的函数中不能包括未知因素。 由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。统计量的取值是依据样本而变化的,不同的样本可以计算出不同的统计量值。 [例题·单选题]以下为总体参数的是( ) a.样本均值b.样本方差 c.样本比例d.总体均值 答案:d 解析:总体参数是对总体特征的某个概括性的度量。通常有总体平均数、总体方差、总体比 例题·判断题:统计量是样本的函数。 答案:正确

解析:统计量是样本的函数,如样本均值()、样本方差()、样本比例(p)等。构成统计量的函数中不能包括未知因素。 [例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。 答案:错误 解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。。 (一)样本均值的抽样分布 设总体共有n个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有n n种抽法,即 可以组成n n不同的样本,在不重复抽样时,共有个可能的样本。每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。 但现实中不可能将所有的样本都抽取出来,因此,样本均值的概率分布实际上是一种理论分布。数理统计学的相关定理已经证明: 即样本均值的均值就是总体均值。 在重置抽样时,样本均值的方差为总体方的1/n,即 在不重置抽样时,样本均值的方差为 其中,为修正系数,对于无限总体进行不重置抽样时,可以按照重置抽样计算,当总体为有限总体,n比较大而n/n≥5% 时,修正系数可以简化为1-n/n,当n比较大,而n/n<5%时,修正系数可以近似为1,即可以按重置抽样计算。 当总体服从正态分布时,样本均值一定服从正态分布,即有x~n(,)时,~n(,) 若总体为未知的非正态分布时,只要样本容量 n足够大(通常要求n ≥30),样本均值仍会接近

参数估计基础汇总

参数估计基础 抽样研究的目的是用样本信息推断总体特征,即用样本资料计算的统计指标推断总体参数 常用的统计推断方法有参数估计(总体均数和总体概率的估计)和假设检验 内容复习 第6章总体均数估计 抽样分布与抽样误差t分布总体均数及总体概率的估计案例讨论 掌握:均数和率抽样误差的概念;均数和率标准误的意义和计算;总体均数和总体率区间估计的意义、计算及其适用条件。 熟悉:总体均数的点估计;t 0.05,(ν)的概念,标准误和标准差的区别;置信区间与医学参考值范围的区别。复习一些概念 参数(parameter)与统计量(statistics) 参数获取的途径对总体进行研究抽样研究 抽样误差(sampling error) 1.抽样误差的概念:由个体变异产生的,随机抽样引起的样本统计量与总体参数间的差异。(抽样误差=总 体参数-样本统计量) 2.抽样误差产生的原因: 3.抽样误差的特点:随机,不可避免,有规律可循。 4.在大量重复抽样的情况下,可以展示其规律性 第一节抽样分布与抽样误差 一、均数的抽样分布与抽样误差 二、频率的抽样分布与抽样误差 (一)样本均数的抽样分布 1.抽样模拟实验 假定总体:某年某地13岁女学生身高值 X~N(155.4,5.3) 随机抽样:n=30,K=100

将此100个样本均数看成新变量值,则这100个样本均数构成一新分布,绘制直方图。 2.样本均数的抽样分布特点 ●各样本均数未必等于总体均数; ●样本均数之间存在差异; ●样本均数的分布规律:围绕着总体均数155.4cm,中间多,两边少,左右基本对称,服从正态分 布; ●样本均数的变异较原变量的变异减小。 3.抽样误差

相关文档