文档库 最新最全的文档下载
当前位置:文档库 › 激光与原理习题解答第四章

激光与原理习题解答第四章

激光与原理习题解答第四章
激光与原理习题解答第四章

第四章 电磁场和物质的共振相互作用

习题

2.设有一台迈克尔逊干涉仪,其光源波长为λ。试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。

证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:

因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为

这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。在屏P 上面,I 光和II 光的广场可以分别表示为:

因而光屏P 上的总光场为

光强正比于电场振幅的平方,所以P 上面的光强为

S

2

M (1)

v c νν'=+

2

(1)(1)(12

)

v v v c

c

c

νννν'''=+

=+

≈+00cos(2)

cos 2(12)I II E E t v E E t c πνπν=?

?=+??

?

?02cos(22)cos(

2)

I II v v E E E E t t t c

c πνπνπν=+=+

021cos 22v I I t c πν??

????=+??

????????

?

它是t 的周期函数,单位时间内的变化次数为

由上式可得在d t 时间内屏上光强亮暗变化的次数为

(2/)mdt c dL ν= 因为d t 是镜2M 移动d L 长度所花费的时间,所以m dt 也就是镜2M 移动d L 过程中屏上光强的明暗变化的次数。对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S

式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的

2M 镜的空间坐标,并且有21L L L -=。

得证。

3.在激光出现以前,86Kr 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性8/10λλ-?=的氦氖激光器比较。

解:这里讨论的是气体光源,对于气体光源,其多普勒加宽为

1

1

227

002

22ln 27.1610D

K T T m c M ννν-?????==? ? ?????

式中,M 为原子(分子)量,27

1.6610

(kg )m M -=?。对86

Kr

来说,M =86,相干长度为

1

2

7

1

1027

7.1610

60571086 89.4cm 7.1610

77c D

c M L T λν---??=

=

?????

???=

?= ????

对于单色性8

/10λλ-?=的氦氖激光器,其相干长度为

2

63.28m //c c c L c λ

ν

λλ

λλ

=

=

=

=???

可见,氦氖激光器的相干长度要比86Kr 低气压放电灯的相干长度要大得多。

22v dL m c c dt

νν=

=

2

2

1

1

212222()t L t L L

S m dt dL L L L c

c

c

νννλ

=

=

=

-=

=

??

4.估算2C O 气体在室温(300K)下的多普勒线宽D ν?和碰撞线宽系数α。并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。

解:2C O 气体在室温(300K)下的多普勒线宽D ν?为

1

1

8

2

27

7

06

8

3103007.16107.161010.61044 0.05310H z

D

T M νν---??????=?=??? ? ??????

=? 2C O 气体的碰撞线宽系数α为实验测得,其值为

49K H z/Pa α≈

2C O 气体的碰撞线宽与气压p 的关系近似为

L p να?=

当L D νν?=?时,其气压为

8

30.05310108.16Pa 4910

D

p να

??=

==?

所以,当气压小于108.16P a 的时候以多普勒加宽为主,当气压高于108.16P a 的时候,变

为以均匀加宽为主。

5.氦氖激光器有下列三种跃迁,即243S -2P 的632.8nm ,242S -2P 的1.1523μm 和243S -3P 的

3.39μm 的跃迁。求400K 时它们的多普勒线宽,分别用G H z 、μm 、-1

cm 为单位表示。由所得

结果你能得到什么启示?

解:多普勒线宽的表达式为

1

2

7

07.1610

D c T M νλ-???=? ???

(单位为GHz) 1

227

07.1610

D D T c

M λ

λνλ-???=

?=?? ???

(单位为μm ) 1

270117.1610D D T c M νλλ-??????==?? ? ?

????

所以,400K 时,这三种跃迁的多普勒线宽分别为:

243S -2P 的632.8nm 跃迁:

1.52G H z D ν?= 6

2.0310

μm D λ-?=?

211 5.0710cm D λ--???=? ???

242S -2P 的1.1523μm 跃迁:

0.83GHz D ν?= 6

3.6910

μm D λ-?=?

211 2.7710cm D λ--???=? ???

243S -3P 的3.39μm 跃迁:

0.28GHz D ν?= 5

1.0910μm D λ-?=?

3119.3310cm D λ--???=? ???

由此可以看出,当提及多种跃迁谱线的多普勒线宽时,应该指出是以什么作为单位的。 6.考虑某二能级工作物质,2E 能级自发辐射寿命为s τ,无辐射跃迁寿命为n r τ。假定在t=0时刻能级2E 上的原子数密度为2(0)n ,工作物质的体积为V ,自发辐射光的频率为ν,求:

(1)自发辐射光功率随时间t 的变化规律;

(2)能级2E 上的原子在其衰减过程中发出的自发辐射光子数;

(3)自发辐射光子数与初始时刻能级2E 上的粒子数之比2η,2η称为量子产额。 解:(1) 在现在的情况下有

可以解得:

1

1

(

)22()(0)s

nr

t

n t n e

ττ-+

=

可以看出,t 时刻单位时间内由于自发辐射而减小的能级之上的粒子数密度为2/s n τ,这就是t 时刻自发辐射的光子数密度,所以t 时刻自发辐射的光功率为:

(2) 在t dt →时间内自发辐射的光子数为:

22

2

()(

)

s

nr

dn t n n dt

ττ=-+

1

1

(

)2

2()(0)

s

nr

t

s s

n h V

P t h V n e

ττννττ-+

=

=

所以

(3) 量子产额为:

无辐射跃迁导致能级2的寿命偏短,可以由

定义一个新的寿命τ,这样

7.根据4.4节所列红宝石的跃迁几率数据,估算13W 等于多少时红宝石对694.3nm λ=的光是透明的。(红宝石,激光上、下能级的统计权重124f f ==,计算中可不计光的各种损耗。)

解:该系统是一个三能级系统,速率方程组为

其中(II )式可以改写为

因为32S 与21A 相比很大,这表示粒子在3E 能级上停留的时间很短,因此可以认为3E 能级上的粒子数30n ≈,因此有3/0dn dt ≈。这样做实际上是将三能级问题简化为二能级问题来求解。

3

113332312221210221213321123() (I)()(,)() (II)

l dn n W n S A dt dn f n n vN n A S n S dt f n n n n σνν=-+=---++++=2212101 (III)

()(,) (IV )l

l l Rl dN N f n n vN dt f σνντ???

???

??

?=--??

2332121222121()() (V )

dn n S B n n n A S dt

ρ=+--+2

s

n dn Vdt

τ=

1

1

(

)22200

()

(0)(0)

|111

1

(

)

s

nr

t

s

s s s nr

s

nr

n t n Vn V n Vdt e

τττττττττ-+

+∞+∞

-=

=

=

++

?

221

11(0)()s s nr

n n V ητττ==

+1

1

1

s

nr

τ

ττ=

+

2s

τητ=

由(I)式可得:

代入式(V)得:

由于 所以

红宝石对波长为694.3nm 的光透明,意思是在能量密度为ρ的入射光的作用下,红宝石介质内虽然有受激吸收和受激辐射,但是出射光的能量密度仍然是ρ。而要使入射光的能量密度等于出射光的能量密度,必须有12()n n -为常数,即21//0dn dt dn dt -=,这样式(VI)变为:

该式应该对于任意大小的ρ均成立,所以只有1212()0B n n ρ-=,即12n n =时才可以。这样由上式可得:

1321213132()(1/)W A S A S =++

由于210S ≈,所以

这个时候红宝石对694.3nm λ=的光是透明的。

11.短波长(真空紫外、软X 射线)谱线的主要加宽机构是自然加宽。试证明峰值吸收截面2

0/2σλπ=。

证明:峰值吸收截面为

2

122

2

04H

v σπννA =

?

11333231

n W n S A =

+1132321212221213231

()()

n W dn S B n n n A S dt

S A ρ=

+--++21dn dn dt

dt

=-

11321

3212122212132312()() (VI)n W dn dn S B n n n A S dt

dt S A ρ??

-=+--+??+??

113321212221213231

()()0

n W S B n n n A S S A ρ+--+=+53

31

132131327

310

(1/)0.310(1)0.31810s

0.510

W A A S -?≈+=??+

=??

12122H νπτ

π

A ?=

=

00v λν=

所以代入可以得到:

2

0/2σλπ=

得证。

12.已知红宝石的密度为33.98g/cm ,其中23C r O 所占比例为0.05%(重量比),在波长为694.3nm 附近的峰值吸收系数为0.4cm -1

,试求其峰值吸收截面(T=300K)。

解:设23C r O 的分子量为M ,阿伏加德罗常数用N A 来表示,设单位体积内的3r C +数为0n ,考虑到300K 的时候,2100,n n n ≈≈,则有

A

123

3

19

3

2 3.980.05%N M

2 3.980.05% 6.02210

cm

522163

1.5810cm

n ---???=????=

?+?=?

所以峰值吸收截面为(峰值吸收系数以m α来表示)

2

1219

12

1

20

2

0.4cm

1.5810

2.5310cm

m

m

n n n αασ--=

=

-?=?

13.有光源一个,单色仪一个,光电倍增管及电源一套,微安表一块,圆柱形端面抛光红宝

石样品一块,红宝石中铬粒子数密度193

1.910/cm n =?,694.3nm 荧光线宽113.310H z F ν?=?。

可用实验测出红宝石的吸收截面、发射截面及荧光寿命,试画出实验方块图,写出实验程序及计算公式。

解:实验方框图如下:

实验程序以及计算公式如下:

(1) 测量小信号中心频率吸收系数m α:移开红宝石棒,微安表读数为1A ,放入红宝石棒,微安表的读数为2A ,由此得到吸收系数为

12

1ln

m A l

A α=

减小入射光光强,使吸收系数最大。然后维持在此光强,微调单色仪鼓轮以改变入射波长,使吸收系数最大,此最大吸收系数即为小信号中心频率吸收系数m α。

(2) 计算:由于21120,,n n n f f ≈≈=,所以 发射截面和吸收截面为:

121122

1ln A nl A σσ==

荧光寿命为:

2

20

2

22

2

21

210

12144ln(/)

F

F nl v

A A A λτπσννπνη=

=

=

??

17.激光上、下能级的粒子数密度速率方程如式(4.4.28)所示。 (1)试证明在稳态情况下,在均匀加宽介质中 式中

n ?为小信号情况下的反转集居数密度。

(2)写出饱和光强s I 的表达式。

(3)证明12/1ττ<<时n ?和s I 可由式(4.5.7)及式(4.5.8)表示。

18.已知某均匀加宽二能级(21f f =)饱和吸收染料在其吸收谱线中心频率0ν=694.3nm 处的

吸收截面-162

8.110cm σ=?,其上能级寿命1222210s τ-=?,试求此染料的饱和光强s I 。

解:若入射光频率为0ν,光强为I ,则

22

21

2

0dn n I n dt

h σντ=-?-= (1)

12n n n +=,21n n n -=?

可以得到

2121101(,)l

n

n N φτσννυ??=

+2112

[1(1)]

f f τφδδτ=+

-221

τδτ=

21()2

n n n =

+?

代入(1)式可得

1s

n n I I ??=

+

式中0n n ?=-,所以有:

34

8

-2

016

11

9

2

6

-2

1 6.62610

310

W /cm

228.110

2.210694.310

810W /cm

s h I νστ----???=

=

??????=?

19.若红宝石被光泵激励,求激光能级跃迁的饱和光强。 解:首先列出稳态时的三能级速率方程如下:

311333132()0dn n W n A S dt

=-+= (1)

221022121332(,)()0dn n N n A S n S dt

σννν=-?-++= (2)

123n n n n ++= (3) 21n n n ?=- (4)

由于31A 远小于32S ,由(1)式可得:

113332n W n S =

所以,由(1)~(4)式可以得到: 2102121131321212(,)

()

()0

I d n n n A S W dt

h n W A S νσννν

?=-?-?++=--=

式中,I ν为波长为694.3nm 的光强。由上式可得:

21002121132

2

00

2

2

0(,)12

()[()(

)]2

()(

)(1)

2

H H S

n

n I h A S W n

I I ν

νσννννννννν??≈

+++?-+=??-++

其中

132121212113()n W A S n A S W --?=

++

13212

1()2S h I W νστ=

+

22121

1

A S τ=

+

20.推导图4.2所示能级系统2—0跃迁的中心频率大信号吸收系数及饱和光强s I 。假设该工作物质具有均匀加宽线型,吸收截面02σ已知,10KT h ν<<,1021ττ<<。

图4.2

解:设入射光频率为20→跃迁的中心频率02ν,光强为I ,可列出速率方程如下:

22

020

2

12

1

2110

1231 (1)

(2) (3)

dn n n dt h dn n n dt

n n n n σντττ=?-=-

++=

式中

0022 (4)f n n n f ?=-

2

20

21

1

1

1

τττ=

+

在稳态的情况下,应该有

210dn dn dt

dt

=

=,由(2)式可以得到:

1012

21

n n ττ=

2n f 0n f

因为10τ远小于21τ,KT 远小于10h ν,所以10n ≈,这样根据式(3)、(4)可得:

2202

()g n n n g g =

-?+ (5)

将式(5)代入式(1)可得:

1S

n n I I ?=

+

其中

02

2

02022

S h g I g g νστ=

+

中心频率大信号吸收系数为

1m S

I I αα=

+

其中02m n ασ=。

21.用波长在589nm 附近的可调染料激光照射一含有13.3Pa 钠及52.6610Pa ?氦气的混合室,气室温度为o 23C ,气室长度=10cm l ,氦气与钠蒸气原子间的碰撞截面-142=10cm Q ,钠蒸气的两个能级间的有关参量如下:

1能级(2

1/23S ):110,2E f ==

2能级(23/23P ):1

2216973cm ,4E f -== 71

21 6.310s A -=?

(1)求1—2跃迁的有关线宽(碰撞加宽、自然加宽、多普勒加宽)。 (2)如果激光波长调到钠原子1—2跃迁中心波长,求小信号吸收系数。

(3)在上述情况下,改变激光功率,试问激光光强I 多大时气室的透过率t = 0.5? 解:

(1) 一个Na 原子与氦原子间的平均碰撞时间L τ由下式决定:

1

He L

N τ= ( I )

式中H e N 表示单位体积内的氦原子数,N a m 和H e m 分别为氦原子和钠原子的质量。若H e P 和

N a P 分别为氦气和钠蒸气的分压强,H e

M

和N a

M

分别为氦原子和钠原子的原子量,则有

24

24

3

27

3

20009.6510

9.6510m

0.06510

m

296

H e H e P N T

--=?=??

=?

272726

27

27

27

1.6610 1.661023 3.81810Kg

1.6610

1.6610

4 6.6410

Kg

Na Na He He m M m M ------=?=??=?=?=??=?

将上面的数值代入到( I )式,可得

11

1

1

0.8810s

L

τ-=?

则碰撞线宽为

10

1 1.410H z 2L L

νπτ?=

=?

自然线宽为

7

21110H z 2N A νπ

?=

=?

多普勒线宽为

1

2

707

10

9

7.1610 7.161016973310

1.30810H z

D

N a T M νν--???=? ?

??

=??

??=?

(2) 由以上的计算结果可以知道碰撞线宽远大于多普勒线宽,也远大于自然线宽,所以钠蒸气谱线以均匀加宽为主。均匀加宽H L νν?≈?。这样,可以得到在中心频率出的小信号吸收系数为:

2

2

002212212

1

1

2

2

1

1

()

44m H

H

f A f A n n n

f f λ

λ

απνπν=--

?? ( II )

其中

24

153

19.6510

3.2610cm

N a P n T

-≈?=?

将有关的参量代入( II )式,可以得到

7

15

21023

1

4 6.310

3.26102

4 1.41016973 2.5810cm

m απ-?=

???

???=?

(3) 当t =0.5的时候,气室吸收系数为

2

1

0ln ln 0.5() 6.9310

cm

10

H t l αν--=-

=-

=?

0()1m H S

I I ααν=

+

可得

01()m S H I I ααν??=- ???

根据习题4.19可知

02

22

12122

122

34

10

15

7

2

3

2

4 6.6210

16973310

3.2610

6.310

W /cm 24

2.5810

17.7W /cm

S m h h n f f I f f f f ννστατ-==

++????????=

?

+?=

所以

3252

2

2.581017.71W /cm 6.5910W /cm 6.9310I -???=?-=? ????

即当激光光强为526.5910W/cm ?的时候,气室的透过率t =0.5。

22.设有两束频率分别为0νδν+和0νδν-,光强为1I 及2I 的强光沿相同方向[图4.3()a ]或沿相反方向[图4.3()b ]通过中心频率为0ν的非均匀加宽增益介质,12I I >。试分别画出两种情况下反转粒子数按速度分布曲线,并标出烧孔位置。

图4.3

解:若有一频率为ν的光沿z 向传播,粒子的中心频率表现为00(1/)z v c νν'=+。当0νν'=时粒子产生受激辐射,所以产生受激辐射的粒子具有速度00()/z v c ννν=-,同样的可以得到,如果该光沿-z 方向传播,这个速度应该为00()/z v c ννν=-。根据这个分析就可以得到本题目中所述的两种情况下反转集居数密度按速度z v 的分布曲线,分别见下图的(a)和(b)。

2

0)

(a )

(b

图中(1)孔的深度为0022(/)/()s n c I I I δνν?+,(2)孔的深度为0011(/)/()s n c I I I δνν?+,(3)孔德深度为001212(/)()/()s n c I I I I I δνν?+++。

(a)

(b)

激光原理第一章习题课

第一章: 1.为使氦氖激光器的相干长度达到1km ,它的单色性 λλ ?应是多少? 解:相干长度 υ υυ -=?=12c c L c 将 λυ1 1c =, λυ22c =代入上式,得: λ λλλλλ?≈-=0 2 2 121L c ,因此 L c λλλ 00=?,将 nm 8.6320=λ,km L c 1=代入得: 10*328.618.632100-==?km nm λλ 2.如果激光器和微波激射器分别在 m μλ10=, nm 500=λ和 MHz 3000=υ输出1W 连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是 多少? 解:ch p h p n λ υ== (1) 个10*03.510*3*10*626.610*1191 8 34 ≈= --ms Js m W n μ (2)个10*52.210*3*10*626.6500*1181834≈=--ms Js nm W n (3)个10*03.53000*10*626.612334 ≈=-MHz Js W n 3.设一对激光能级为E 2和E 1(f f =12) ,相应频率为υ(波长为 λ ),能级上的粒 子数密度分别为 n 2和n 1,求:

(a )当 MHz 3000=υ,T=300K 时,=n n 12? (b )当 m μλ1=,T=300K 时,=n n 1 2? (c )当 m μλ1=,1.01 2=n n 时,温度T=? 解: e e f f n n kT h kT E E ==---υ121 212 (a )110 *8.4300 *10*38.110*300010*626.64 23 6 *341 2≈≈= -----e e n n (b )10 *4.121 8 34 1 210*8.410*1*300*10*38.110*3*10*626.6≈≈==-----e e e n n hc λ (c )1.010*1*10*38.110*3*10*626.68 341 2===---e e n n T hc λ 得: K T 10*3.63 ≈ 5.试证明,由于自发辐射,原子在 E 2 能级的平均寿命 A s 21 1=τ 证明:自发辐射,一个原子由高能级 E 2自发跃迁到E 1,单位时间内能级E 2减少的粒子 数为: )(212dt dn dt dn sp -= , 自发跃迁几率n dt dn A sp 2 21 1)(21= n A dt dn 2212-=, e n e n n s t t A t τ --≡=20 20221 )( 因此 21 s A 1 = τ 6.某一分子的能级 E 4到三个较低能级E 1E 2和E 3的自发跃迁几率分别是

激光原理第一章答案

第一章 激光的基本原理 1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλΔ应是多少? 提示: He-Ne 激光 器输出中心波长632.8o nm λ= 解: 根据c λν=得 2 c d d d d ν νλνλλ =? ?=? λ 则 o o ν λ νλΔΔ= 再有 c c c L c τν == Δ得106.32810o o o c o c c L L λλνλνν?ΔΔ====× 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: c P nh nh νλ==由此可得: P P n h hc λ ν= = 其中为普朗克常数,为真空中光速。 34 6.62610 J s h ?=×?8310m/s c =×所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ×=500nm λ时: 18-1=2.510s n ×=3000MHz ν时: 23-1=510s n ×3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为),能级上的粒子数密度分别为n 和,求 λ21n (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当,T=300K 时,λ=1μm 21/?n n = (c) 当,n n 时,温度T=? λ=1μm 21/0.1=解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则 2 211()exp exp exp b b n E E h h n k T k T k νb c T λ??????=?=?=?????? ???????? (a) 当ν=3000MHz ,T=300K 时: 3492 231 6.62610310exp 11.3810300n n ????×××=?≈??××? ? (b) 当,T=300K 时: λ=1μm 3482 2361 6.62610310exp 01.381010300n n ?????×××=?≈??×××??

激光原理与应用课试卷试题答案

激光原理及应用[陈家璧主编] 一、填空题(20分,每空1分) 1、爱因斯坦提出的辐射场与物质原子相互作用主要有三个过程,分别是(自发辐射)、(受激吸收)、(受激辐射)。 2、光腔的损耗主要有(几何偏折损耗)、(衍射损耗)、(腔镜反射不完全引起的损耗)和材料中的非激活吸收、散射、插入物损耗。 3、激光中谐振腔的作用是(模式选择)和(提供轴向光波模的反馈)。 4、激光腔的衍射作用是形成自再现模的重要原因,衍射损耗与菲涅耳数有关,菲涅耳数的近似表达式为(错误!未找到引用源。),其值越大,则衍射损耗(愈小)。 5、光束衍射倍率因子文字表达式为(错误!未找到引用源。)。 6、谱线加宽中的非均匀加宽包括(多普勒加宽),(晶格缺陷加宽)两种加宽。 7、CO2激光器中,含有氮气和氦气,氮气的作用是(提高激光上能级的激励效率),氦气的作用是(有助于激光下能级的抽空)。 8、有源腔中,由于增益介质的色散,使纵横频率比无源腔频率纵模频率更靠近中心频率,这种现象叫做(频率牵引)。 9、激光的线宽极限是由于(自发辐射)的存在而产生的,因而无法消除。 10、锁模技术是为了得到更窄的脉冲,脉冲宽度可达(错误!未找到引用源。)S,通常有(主动锁模)、(被动锁模)两种锁模方式。 二、简答题(四题共20分,每题5分) 1、什么是自再现?什么是自再现模? 开腔镜面上的经一次往返能再现的稳态场分布称为开腔的自在现摸 2、高斯光束的聚焦和准直,是实际应用中经常使用的技术手段,在聚焦透镜焦距F一定的条件下,画出像方束腰半径随物距变化图,并根据图示简单说明。 3、烧孔是激光原理中的一个重要概念,请说明什么是空间烧孔?什么是反转粒子束烧孔? 4、固体激光器种类繁多,请简单介绍2种常见的激光器(激励方式、工作物质、能级特点、可输出光波波长、实际输出光波长)。 三、推导、证明题(四题共40分,每题10分)

激光原理习题

1、光与物质相互作用的三个基本过程:自发辐射、受激辐射、受激吸收。 2、激光器的损耗指的是在激光谐振腔内的光损耗,这种损耗可以分为两类:内部损耗、镜面损耗。 3、形成激光的条件:实现粒子数反转、满足阈值条件和谐振条件。 4、激光的四个基本特性:高亮度、方向性、单色性和相干性。 5、激光调制方法:内调制是指在激光生成的振荡过程中加载调制信号,通过改变激光的输 出特性而实现的调制。 外调制则是在激光形成以后,再用调制信号对激光进行调制,它并不改 变激光器的参数,而是改变已经输出的激光束的参数。 就调制方法来讲,也有振幅调制、强度调制、频率调制、相位调制以及脉冲调制等形式。 6、三种谱线增宽形式:自然增宽、碰撞增宽、多普勒增宽。 7、单纵模激光器的选频方法:短腔法、法布里—珀罗标准具法、三反射镜法。 8、激光器的基本结构:激光工作物质:能够实现粒子数反转,产生受激光放大。激励能源:能将低能级的粒子不断抽运到高能级,补充受激辐射减少高能级上的粒子数。光学谐振腔:提高光能密度,保证受激辐射大于受激吸收。 9、高斯光束的基膜腰斑半径(腰粗)公式:W 0= 2 1 W s = 2 1 π λL 简答题: 1、用速率方程组证明二能级系统不可能实现粒子数反转分布。

2、简述光频电磁场与物质的三种相互作用过程,并指出其影响因素。(画图说明) 答:光与物质相互作用的本质是光与物质中的电子发生相互作用,使得电子在不同的能级之间跃迁。包括三种基本过程:自发发射、受激辐射以及受激吸收。 .自发发射——在无外电磁场作用时,粒子自发地从E2跃迁到E1,发射光子hv。(a)特点:各粒子自发、独立地发射的光子。各光子的方向、偏振、初相等状态是无规的, 独立的,粒子体系为非相干光源。受激辐射:——原处于高能级E2的粒子, 受到能量恰为hv=E2-E1的光子的激励, 发射出与入射光子相同的一个光子而跃迁到低能级E1 。特点:①受激发射只能在频率满足hv=E2-E1的光子的激励下发生;②不同粒子发射的光子与入射光子的频率、位相、偏振等状态相同; 这样,光场中相同光子数目增加,光强增大,即入射光被放大——光放大过程。受激吸收:——原处于低能级E1的粒子,受到能量恰为hv=E2-E1的光子照射而吸收该光子的能量,跃迁到高能级E2。 3、 3、简述激光器的基本结构以及产生激光的基本条件:①有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构。②有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转③有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提

08激光原理与技术试卷B

华南农业大学期末考试试卷(B 卷) 2008~2009学年第一学期 考试科目:激光原理与技术 考试类型:(闭卷) 考试时间:120分钟 姓名 年级专业 学号 一.填空题(每空2分,共30分) 1. 设小信号增益系数为0g ,平均损耗系数为α,则激光器的振荡条件为 g o > α 。 2. 相格 是相空间中用任何实验所能分辨的最小尺度。 3. 四能级系统中,设3E 能级向2E 能级无辐射跃迁的量子效率为1η,2E 能级向1E 能 级跃迁的荧光效率为2η,则总量子效率为 。。 4. 当统计权重21f f =时,两个爱因斯坦系数12B 和21B 的关系为 B 12=B 21 。 5. 从光与物质的相互作用的经典模型,可解释 色散 现象和 物质对光的 吸收 现象。 6. 线型函数的归一化条件数学上可写成 。 7. 临界腔满足的条件是 g1g2=1 或 g1g2=0 。 8. 把开腔镜面上的经过一次往返能再现的稳态场分布称为开腔的 自再现模 。 9. 对平面波阵面而言,从一个镜面中心看到另一个镜面上可以划分的菲涅耳半周期 带的数目称为 菲涅耳数 。

10. 均匀加宽指的是引起加宽的物理因素对各个原子是 等同的, 。 11. 入射光强和饱和光强相比拟时,增益随入射光强的增加而减少,称 增益饱和 现 象。 12.方形镜的mnq TEM 模式沿x 方向有 m 条节线,没y 方向有 n 条节线. 二.单项选择题(每题2分,共10分) 1. 关于高斯光束的说法,不正确的是( ) (A)束腰处的等相位面是平面; (B)无穷处的等相位面是平面; (C)相移只含几何相移部分; (D)横向光强分布是不均匀的。 2. 下列各模式中,和圆型共焦腔的模q n m TEM ,,有相同频率的是(A ) (A)1,,2-+q n m TEM ; (B) q n m TEM ,,2+; (C) 1,,1-+q n m TEM ; (D) 1,1,2-++q n m TEM 。 3. 下列各种特性中哪个特性可以概括激光的本质特性(C ) (A)单色性; (B)相干性; (C)高光子简并度; (D)方向性。 4. 下列加宽机制中,不属于均匀加宽的是(B ) (A)自然加宽; (B)晶格缺陷加宽; (C)碰撞加宽; (D)晶格振动加宽。 5. 下列方法中,不属于横模选择的是(D ) (A)小孔光阑选模; (B) 非稳腔选模; (C) 谐振腔参数N g ,选择法; (D)行波腔法。 三、简答题(每题4分,共20分)

激光原理与激光技术课后习题答案完整版及勘误表

激光原理与激光技术习题答案 《激光原理与激光技术》堪误表见下方 习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性 /应为多大 解: 1010 1032861000 106328--?=?=λ=λλ?=.L R c (2) =5000?的光子单色性 /=10-7 ,求此光子的位置不确定量x 解: λ =h p λ?λ =?2h p h p x =?? m R p h x 510 1050007 10 2=?=λ=λ ?λ=?=?-- (3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=,r 2=。求由衍射损耗及输出损耗分别引起的、c 、Q 、c (设n=1) 解: 衍射损耗: 1880107501106102 262.) .(.a L =???=λ=δ-- s ..c L c 881075110318801-?=??=δ=τ 6 86810 113107511061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 19101910 75114321 2168 =?=???=πτ= ν?- 输出损耗: 119080985050212 1.)..ln(.r r ln =??-=-=δ s ..c L c 8 81078210 311901-?=??=δ=τ 6 86810 964107821061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 75107510 78214321 2168 =?=???=πτ= ν?- (4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗) 解: MHz Hz .L c q 15010511 2103288=?=??==ν? 11]11501500 []1[=+=+ν?ν?=?q q 005.02 01 .02===T δ s c L c 7 8 1067.6103005.01-?=??== δτ MHz c c 24.010 67.614.321 217 =???= = -πτν? (5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=,设此腔总的单程损耗率,求此激光器的无

周炳琨激光原理第一章习题解答(完整版)

周炳琨<激光原理>第一章习题解答(完整版) 1.为使氦氖激光器的相干长度达到1km ,它的单色性 λλ ?应是多少? 解:相干长度 υ υυ -=?=12c c L c 将 λυ1 1c =, λυ22c =代入上式,得: λ λλλλλ?≈-=0 2 2 121L c ,因此 c λλλ 00=?,将 nm 8.6320=λ,km L c 1=代入得: 10*328.68.632100-==?nm λλ 2.如果激光器和微波激射器分别在 m μλ10=, nm 500=λ和 MHz 3000=υ输出1W 连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是 多少? 解:ch p h p n λ υ== (1) 个10*03.510*3*10*626.610*1191 8 34 ≈= --ms Js m W n μ (2)个10*52.210*3*10*626.6500*1181834≈=--ms Js nm W n (3)个10*03.53000*10*626.612334 ≈=-MHz Js W n 3.设一对激光能级为 E 2和E 1(f f =12) ,相应频率为υ(波长为 λ ),能级上的粒

子数密度分别为 n 2和n 1,求: (a )当 MHz 3000=υ,T=300K 时,=n n 12? (b )当 m μλ1=,T=300K 时,=n n 1 2? (c )当 m μλ1=,1.01 2=n n 时,温度T=? 解: e e f n h E E ==---υ121 212 (a )110 *8.4300 *10*38.110*300010*626.64 23 6 *341 2≈≈= -----e e n n (b )10 *4.121 6238 34 1 2 10*8.410*1*300*10*38.110*3*10*626.6≈≈==--- ----e e e n n kT hc λ (c )1.010*1*10*38.110*3*10*626.68 341 2===---e e n n T hc λ 得: K T 10*3.63 ≈ 4.在红宝石Q 调制激光器中,有可能将几乎全部Cr + 3离子激发到激光上能级并产生激光 巨脉冲。设红宝石棒直径1cm,长度7.5cm , Cr + 3浓度为 cm 3 1910*2-,巨脉冲宽度为 10ns ,求输出激光的最大能量和脉冲功率。 解:由于红宝石为三能级激光系统,最多有一般的粒子能产生激光: J nhc nh E 1710*3.69410 *3*10*626.6*10*2*5.7*)5.0(2 19 8 34 19 2 max 2 121====--πλυW E P R 10*7.19 max ==τ 5.试证明,由于自发辐射,原子在 E 2 能级的平均寿命 A s 21 1=τ 证明:自发辐射,一个原子由高能级 E 2自发跃迁到E 1,单位时间内能级E 2减少的粒子

激光原理第一章答案.

第一章激光的基本原理 1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλ?应是多少? 提示: He-Ne 激光 器输出中心波长632.8o nm λ= 解: 根据c λν=得 2 c d d d d ννλνλλ λ =- ?=- 则 o o ν λ νλ??= 再有 c c c L c τν == ?得 10

6.32810 o o o c o c c L L λλ ν λνν-??= = = =? 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000M H z ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中34 6.62610 J s h -=??为普朗克常数,8

310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1 =510s n ?=500nm λ时: 18-1 =2.510s n ?=3000M H z ν时: 23-1=510s n ? 3.设一对激光能级为2E 和1E (21f f =,相应的频率为ν(波长为λ,能级上的粒子数密度分别为2n 和1n ,求 (a 当ν=3000M H z ,T=300K 时,21/?n n = (b 当λ=1μm ,T=300K 时,21/?n n = (c 当λ=1μm ,21/0.1n n =时,温度T=? 解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则 (a 当ν=3000M H z ,T=300K 时: (b 当λ=1μm ,T=300K 时: c P nh nh νλ ==P P n h hc λν =

激光原理与技术试题

2006-2007学年第1学期《激光原理与技术》B卷试题答案 1 .填空题(每题4分)[20] 1.1激光的相干时间T和表征单色性的频谱宽度△V之间的关系 为 1/ c 1.2 一台激光器的单色性为5X10-10,其无源谐振腔的Q值是_2x109 1.3如果某工作物质的某一跃迁波长为100nm的远紫外光,自发跃迁几率A10等于105S1,该跃迁的受激 辐射爱因斯坦系数B10等于6x1010 m3^2^ 1.4设圆形镜共焦腔腔长L=1m,若振荡阈值以上的增益线宽为80 MHz判断可能存在两个振荡频率。 1.5对称共焦腔的1(A D)_1_,就稳定性而言,对称共焦腔是稳定______________ 空。 2.问答题(选做4小题,每小题5分)[20] 2.1何谓有源腔和无源腔?如何理解激光线宽极限和频率牵引效应? 有源腔:腔内有激活工作物质的谐振腔。无源腔:腔内没有激活工作物质的谐振腔。 激光线宽极限:无源腔的线宽极限与腔内光子寿命和损耗有关: 九';有源腔由于受到自发辐射影响,净损耗不等于零,自发辐射的随机相位造成输出激光的线宽极限 n2t 2 ( C)h 0 ------------------- 。 n t Rut 频率牵引效应:激光器工作物质的折射率随频率变化造成色散效应,使得振荡模的谐振频率总是偏离无源腔 相应的模的频率,并且较后者更靠近激活介质原子跃迁的中心频率。这种现象称为频率牵引效应。 2.2写出三能级和四能级系统的激光上能级阈值粒子数密度,假设总粒子数密度为n阈值反转粒子数密 度为n t. 三能级系统的上能级阈值粒子数密度n 2t n n ——-;四能级系统的上能级阈值粒子数密度2 n2t n t 。 2.3产生多普勒加宽的物理机制是什么? 多普勒加宽的物理机制是热运动的原子(分子)对所发出(或吸收)的辐射的多普勒频移。 2.4均匀加宽介质和非均匀加宽介质中的增益饱和有什么不同?分别对形成的激光振荡模式有何影响? 均匀加宽介质:随光强的增加增益曲线会展宽。每个粒子对不同频率处的增益都有贡献,入射的强光不仅使自身的增益系数下降,也使其他频率的弱光增益系数下降。满足阀值条件的纵模在振荡过程中互相竞争,结果总是靠近中心频率的一个纵模得胜,形成稳定振荡,其他纵模都

激光原理及应用思考练习题答案

思考练习题1 1. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒 从上能级跃迁到下能级的粒子数各为多少? 答:粒子数分别为:18 8 34634110 5138.21031063.6105.01063.61?=????=? ?= =---λ ν c h q n 23 9 342100277.510 31063.61?=???==-νh q n 2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高? 答:(1)(//m n E E m m kT n n n g e n g --=)则有:1]300 1038.110 31063.6exp[2393412≈?????-==---kT h e n n ν (2)K T T e n n kT h 36238 34121026.61.0]1011038.11031063.6exp[?=?=???????-==----ν 3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0- 18J ,设火焰(T =2700K)中含有1020个氢原子。设原子按玻尔兹曼分布,且4g 1=g 2。求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦? 答:(1)1923 181221121011.3]2700 1038.11064.1exp[4----?=???-?=?=??n n e g n g n kT h ν 且20 2110=+n n 可求出312≈n (2)功率=W 918 8 10084.51064.13110--?=??? 4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比 q q 激自 1 = 2000 ,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ??=-νρ,λ为0.6328μm ,设μ=1,求 q q 激自 为若干? 答:(1)

激光原理与技术习题

1.3 如果微波激射器和激光器分别在λ=10μm ,=5×10- 1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数, 8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 1.4设一光子的波长=5×10- 1μm ,单色性λ λ ?=10- 7,试求光子位置的不确定量x ?。若光子的波长变为5×10- 4μm (x 射线)和5 ×10 -18 μm (γ射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S - 1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? c P nh nh νλ==P P n h hc λ ν= =

1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。又如果光强I=10W/mm2,试求受激跃迁几率W10。 2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。 习题

激光原理及应用习题

《激光原理及应用》习题 1. 激光的产生分为理论预言和激光器的诞生两个阶段?简述激光理论的创始人,理论要点和提出理论的时间。简 述第一台激光诞生的时间,发明人和第一台激光器种类? 答:激光理论预言是在1905年爱因斯坦提出的受激辐射理论。世界上第一台激光器是于1960年美国的梅曼研制成功的。第一台激光器是红宝石激光器。 2. 激光谱线加宽分为均匀加宽和非均匀加宽,简述这两种加宽的产生机理、谱线的基本线型。 答:如果引起加宽的物理因数对每一个原子都是等同的,则这种加宽称为均匀加宽,线型为洛仑兹线型。自然加宽、碰撞加宽及晶格振动加宽均属均匀加宽类型。 非均匀加宽是原子体系中每一个原子只对谱线内与它的表观中心频率相应的部分有贡献,线型为高斯线型。多普勒加宽和固体晶格缺陷属于非均匀加宽。 3. 军事上的激光器主要应用那种激光器?为什么应用该种激光器? 答:军事上主要用的是CO 2激光器,这是因为CO 2激光波长处于大气窗口,吸收少,功率大,效率高等特点。 4. 全息照相是利用激光的什么特性的照相方法?全息照相与普通照相相比有什么特点? 答:全息照相是利用激光的相干特性的。全息照片是三维成像,记录的是物体的相位。 1. 激光器的基本结构包括三个部分,简述这三个部分 答:激光工作物质、激励能源(泵浦)和光学谐振腔; 2. 物质的粒子跃迁分辐射跃迁和非辐射跃迁,简述这两种跃迁的区别。 答:粒子能级之间的跃迁为辐射跃迁,辐射跃迁必须满足跃迁定则;非辐射跃迁表示在不同的能级之间跃迁时并不伴随光子的发射或吸收,而是把多余的能量传给了别的原子或吸收别的原子传给他的能量。 3. 工业上的激光器主要有哪些应用?为什么要用激光器? 答:焊接、切割、打孔、表面处理等等。工业上应用激光器主要将激光做热源,利用激光的方向性好,能量集中的特点。 4. 说出三种气体激光器的名称,并指出每一种激光器发出典型光的波长和颜色。 答:He-Ne 激光器,632.8nm (红光),Ar+激光器,514.5nm (绿光),CO 2激光器,10.6μm (红外) 计算题 1.激光器为四能级系统,已知3能级是亚稳态能级,基态泵浦上来的粒 子通过无辐射跃迁到2能级,激光在2能级和1能级之间跃迁的粒子产 生。1能级与基态(0能级)之间主要是无辐射跃迁。 (1)在能级图上划出主要跃迁线。 (2)若2能级能量为4eV ,1能级能量为2eV ,求激光频率; 解:(1)在图中画出 (2)根据爱因斯坦方程 21h E E ν=- 得 ()1914213442 1.610 4.829106.62610E E Hz h ---??-===??ν 2.由凸面镜和凹面镜组成的球面腔,如图。凸面镜的曲率半径为2m ,凹面镜的曲率半径为3m ,腔长为1.5m 。发光波长600nm 。判断此腔的稳定性; 解: 激光腔稳定条件 R3 32ω 21ω

EE125_HW1激光原理第一章作业答案

EE125Principles of Lasers Prof.Cheng Wang ShanghaiTech University Homework1 Note: ?Please try to?nish the homework on your own.Discussion is permissible,but identical submissions are unacceptable! ?Please prepare your submission in English only.No Chinese submission will be accepted. ?Please submit your homework in PDF?le to yanht@https://www.wendangku.net/doc/1b3976635.html, with subject EE125HW1ID NAME. ?Please submit on time.NO late submission will be accepted. 1.1If the laser have a continuous output power of1W when(a)λ=10μm,(b)λ=500nm and(c)ν=3000MHz,what is the population each second N that are transition from E2to E1? 1.2If levels1and2of Fig.1.2are separated by an energy E2?E1such that the corresponding frequency isν(the wavelength isλ),the carrier density of each level is N2and N1.Assume that the two level have the same degeneracy. (a)Whenν=3000MHz,T=300K,calculate the ratio N2/N1. (b)Whenλ=1μm,T=300K,calculate the ratio N2/N1. (c)Whenλ=1μm,N2/N1=0.1,calculate T. Figure1.2 1/2

激光原理与技术习题一样本

《激光原理与技术》习题一 班级序号姓名等级 一、选择题 1、波数也常见作能量的单位, 波数与能量之间的换算关系为1cm-1 = eV。 ( A) 1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er光纤激光器的中心波长为波长为1.530μm, 则产生该波长的两能级之间的能量 间隔约为 cm-1。 ( A) 6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm的He-Ne激光器, 谱线线宽为Δν=1.7×109Hz。谐振腔长度为50cm。 假设该腔被半径为2a=3mm的圆柱面所封闭。则激光线宽内的模式数为个。 ( A) 6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于、、光子的科学。 2、光子具有自旋, 而且其自旋量子数为整数, 大量光子的集合, 服从统计分布。 3、设掺Er磷酸盐玻璃中, Er离子在激光上能级上的寿命为10ms, 则其谱线宽度 为。 三、计算与证明题 1.中心频率为5×108MHz的某光源, 相干长度为1m, 求此光源的单色性参数及线宽。

2.某光源面积为10cm 2, 波长为500nm, 求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1-kT hv 。 《激光原理与技术》习题二 班级 姓名 等级 一、 选择题 1、 在某个实验中, 光功率计测得光信号的功率为-30dBm, 等于 W 。 ( A) 1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、 激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、 填空题 1、 如果激光器在=10μm λ输出1W 连续功率, 则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、 一束光经过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍, 则该物 质的增益系数为 。 三、 问答题 1、 以激光笔为例, 说明激光器的基本组成。 2、 简要说明激光的产生过程。 3、 简述谐振腔的物理思想。 4、 什么是”增益饱和现象”? 其产生机理是什么? 四、 计算与证明题 1、 设一对激光能级为2E 和1E (设g 1=g 2), 相应的频率为ν(波长为λ), 能级上的粒子数密度 分别为2n 和1n , 求 (a) 当ν=3000MHz , T=300K 时, 21/?n n =

2010激光原理技术与应用 习题解答

习题I 1、He-Ne 激光器m μλ63.0≈,其谱线半宽度m μλ12 10-≈?,问λλ/?为多少?要使其相干长度达到1000m ,它的单色性λλ/?应是多少? 解:63.01012 -=?λλ λλδτ?= ==2 1v c c L c 相干 = = ?相干 L λ λ λ 2、He-Ne 激光器腔长L=250mm ,两个反射镜的反射率约为98%,其折射率η=1,已知Ne 原子m μλ6328.0=处谱线的MHz F 1500=?ν,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽ν?约为多少? 解:MHz Hz L c v q 60010625 210328 10=?=??==?η

5 .2=??q F v v s c R L c 8 10 1017.410 3)98.01(25)1(-?=??-=-=τ MHz Hz L c R v c c 24104.2)1(21 7=?=-≈=πτδ 3、设平行平面腔的长度L=1m ,一端为全反镜,另一端反射镜的反射率90.0=γ,求在1500MHz 频率范围内所包含的纵模数目和每个纵模的频带宽度? 解:MHz Hz nL c v q 150105.1100 210328 10=?=??==? 10 150 1500==??q v v L c R v c c )1(21 -≈ =πτδ 4、已知CO 2激光器的波长m μλ60.10=处 光谱线宽度MHz F 150=?ν,问腔长L 为多少时,腔内为单纵模振荡(其中折射率η=1)。

解:L c v v F q η2=?=?, F v c L ?=2 5、Nd 3 —YAG 激光器的m μ06.1波长处光 谱线宽度MHz F 5 1095.1?=?ν,当腔长为10cm 时,腔中有多少个纵模?每个纵模的频带宽度为多少? 解:MHz L c v q 3 10105.110 21032?=??==?η 130 =??q F v v L c R v c c )1(21 -≈ =πτδ 6、某激光器波长m μλ7.0=,其高斯光束束腰光斑半径mm 5.00=ω。 ①求距束腰10cm 、20cm 、100cm 时, 光斑半径)(z ω和波阵面曲率半径)(z R 各为多少? ②根据题意,画出高斯光束参数分布图。

《激光原理及技术》1-4习题答案(学习内容)

激光原理及技术部分习题解答(陈鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 8 53*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n -- = 其中1 2**E E c h E c h -=?=λ ν λ h c h == ?*E (1)

(2 )010*425.12148300 *10*38.11010*3* 10 *63.61 2 236 8 34 ≈====--- ----e e e n n T k c h b λ (3) K n n k c h b 3 6 238341 210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2) 010010100003660I .e I e I e I I .z ====-?-α 即经过厚度为0.1m 时光能通过36.6% 10. 解:

激光原理与激光技术习题

激光原理与激光技术习题答案 习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性?λ/λ应为多大? 解: 1010 1032861000 106328--?=?=λ=λ λ?=.L R c (2) λ=5000?的光子单色性?λ/λ=10-7,求此光子的位置不确定量?x 解: λ=h p λ?λ=?2h p h p x =?? m R p h x 510 1050007 10 2=?=λ=λ?λ=?=?-- (3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、?νc (设n=1) 解: 衍射损耗: 1880107501 106102 262.) .(.a L =???=λ=δ-- s ..c L c 881075110318801-?=??=δ=τ 6 86 8 10113107511061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 19101910 75114321216 8 =?=???=πτ= ν?- 输出损耗: 119080985050212 1.)..ln(.r r ln =??-=-=δ s ..c L c 8 81078210 311901-?=??=δ=τ 6 86810 964107821061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 7510751078214321216 8 =?=???=πτ= ν?- (4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗) 解: MHz Hz .L c q 15010511 2103288=?=??==ν? 11]11501500 []1[=+=+ν?ν?=?q q 005.02 01 .02=== T δ s c L c 781067.610 3005.01 -?=??== δτ MHz c c 24.010 67.614.321 217 =???= = -πτν? (5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01π,求此激光器的无源腔本征纵模的模式线宽。

《激光原理及应用》习题参考答案仅供大家学习参考用

《激光原理及应用》习题参考答案 思考练习题1 1.解答:设每秒从上能级跃迁到下能级的粒子数为n 。 单个光子的能量:λνε/hc h == 连续功率:εn p = 则,ε/p n = a. 对发射m μλ5000 .0=的光: ) (10514.2100.31063.6105000.01188346 个?=?????= =--hc p n λ b. 对发射MHz 3000=ν的光 )(10028.51030001063.6123634个?=???= = -νh p n 2.解答:νh E E =-12……………………………………………………………………..(a) T E E e n n κ121 2--=……………………………………………………………………….(b) λν/c =…………………………………………………………………………….(c) (1)由(a ),(b )式可得: 11 2==-T h e n n κν (2)由(a ),(b ),(c)式可得: )(1026.6ln 31 2 K n n hc T ?=- =κλ 3.解答: (1) 由玻耳兹曼定律可得 T E E e g n g n κ121 12 2//--=, 且214g g =,20 2110=+n n 代入上式可得: ≈2n 30(个)

(2))(10028.5)(1091228W E E n p -?=-= 4.解答: (1) 由教材(1-43)式可得 31733 634 3/10860.3/) 106000.0(1063.68200018q m s J m s J h q ??=??????=?=---πλπρν自激 (2)9 34 4363107.59210 63.68100.5)106328.0(8q ?=?????==---ππρλνh q 自激 5.解答:(1)红宝石半径cm r 4.0=,长cm L 8=,铬离子浓度318102-?=cm ρ,发射波 长m 6 106943.0-?=λ,巨脉冲宽度ns T 10=?则输出最大能量 )(304.2)(106943.0100.31063.684.0102)(6 8 342 182 J J hc L r E =?????????==--πλπρ 脉冲的平均功率: )(10304.2)(10 10304 .2/89 W W T E p ?=?=?=- (2)自发辐射功率 )(10304.2)(10106943.0)84.0102(100.31063.6) (22 621883422 W W L r hc hcN Q ?=??????????== ---πλτ πρλτ = 自 6.解答:由λν/c =,λλνd c d 2 =及λρνρλd d v =可得 1 1 85 -== kT hc e hc d d λνλλ πλνρρ 7.解答: 由 0) (=ννρd d 可得: 31 =-kT h kT h m m m e e kT h υυυ; 令 x kT h m =υ,则)1(3-=x x e xe ;解得:82.2=x 因此:11 82.2--=kh T m ν 同样可求得: 96.4=kT hc m λ 故c m m 568.0=λν

相关文档