文档库 最新最全的文档下载
当前位置:文档库 › 陶瓷贴片电容在电路中不上锡的主要原因

陶瓷贴片电容在电路中不上锡的主要原因

陶瓷贴片电容在电路中不上锡的主要原因
陶瓷贴片电容在电路中不上锡的主要原因

关于电子原器件不上锡,应先用的锡膏型号与成份

1.无铅锡膏,A2-766无铅锡膏,

2.锡含量是96.5%

3.银:3.0%

4.铜:0.5%

一、综述

贴片元件在经过回流焊接时由于元件两端电极受到焊锡融化后的表面张力不平衡而产生转动力矩,将元件一端拉偏形成虚焊,在转动力矩较大时甚至将元件一端拉起,形成墓碑效应。

产生立碑原理图解:

r :锡液的表面张力

θ:焊锡与端电极表面夹角

rx,y :锡液的表面张力r在x,y方向的分力

h:元件端电极的上锡高度

f:元件本身质量生产的压力

f1,2:力矩分解的分力

G:元件中心点重力

lGA:G点与A点之间的距离

m:元件质量

g:重力加速度

当在A点附近的焊锡表面产生的力矩超过元件本身质量产生的静态力矩时元件出现立碑。在A点由焊锡表面产生的力矩M = h*r* sinθ,在A点由元件本身质量产生的力矩Mc = 1/2mgl,产生立碑的条件为:M﹥Mc 。

二、元件润湿平衡检测(Wetting balance)

由于导致元件焊接中出现的焊接不良因素较多,像元件本体、PCB基板、焊锡膏、模板、印刷、贴装、焊接升温速度都可能造成焊接异常。对于元件本体不良造成焊接异常可以通过润湿平衡试验( Wetting balance )来进行检测验证。

润湿平衡(Wetting balance)

通过测试元件两端电极分别浸入锡液过程表面受到锡液的张力差,即测试元件端电极从浸入锡液到离开锡液的平衡力以及所需要的时间,来判断元件的焊接性能。

润湿平衡检测(Wetting balance)介绍

Tb:到达润湿力和浮力平衡时所耗费时间

要求:Tb ≤0.8sec. T1:达到润湿力最大值的2/3所耗费时间 要求:T1≤1.0sec. F1:2sec.时的润湿力

要求:根据产品尺寸确定 F2:3sec.时的润湿力 要求:根据产品尺寸确定

润湿平衡检测图形剖析

润湿平衡检测图解

元件两端电极浸入锡液受到的张力差小,产品回流焊接过程中产生立碑的可能性很小。

元件两端电极浸入锡液受到的张力差大,产品回流焊接过程中产生立碑的可能性较大。

元件焊接时墓碑效应的产生,与元件、基板、锡膏、模板、印刷、贴装、焊接升温速度都有直接关系。 3.1 MLCC 本身可能造成立碑的因素: ◆两端电极存在较大尺寸差异 ◆端电极有氧化、擦伤或污物现象 ◆元件两端电极锡镀层不均匀

◆端电极镍镀层内应力

3.1.1 产品两端电极存在较大尺寸差异,焊接时元件两端电极受到焊锡表面张力不等,造成元件翘立 A. 现象

3.1.2 端电极有氧化、擦伤或污物现象,焊接时端电极的浸润性能不良,影响到端电极与融锡的表面张力,较大的张力力矩拉动元件翘立。 A. 现象

3.1.3 元件两端电极锡镀层不均匀,焊接时锡镀层与融锡的润湿性能存在差异,造成两端电极与融锡表面张力差异,引起元件翘立 A.现象

3.1.4 元件端电极镍镀层在焊接时产生的内应力,会造成产品焊接时导致产品焊锡表面张力不等,造成元件翘立。

产生原因:元件两端电极镍镀层不均匀。 ◆浸硅油前后产品浸润性对比 未浸硅油产品浸润性图示:

从润湿平衡检测结果可以确定产品未浸硅油产品的浸润性能略差,可能会导致回流焊接出现立碑现象

浸硅油产品浸润性图示

产品浸硅油处理后端电极的浸润性能改善明显,目前已经在产品电镀前增加浸硅油处理措施,从批量使用跟踪结果可以确定,产品回流焊接立碑问题基本得到控制。

3.2 从PCB板分析可能造成立碑因素

焊盘大小不等、有污物或水份、氧化以及焊盘有埋孔,小元件设计过分靠近大颗黑色元件等,都会造成焊接时两端拉力不等,从而使元件翘立。

3.3 从锡膏分析可能造成立碑因素

粘度过高,锡粉氧化、过期锡膏都会导致元件翘立;

例如锡膏粘度过高过低与使用前搅拌锡膏的程度有关:

3.4 从网板分析可能造成立碑因素:

开口太大、不等或有毛刺,开口方式不科学、厚度太厚,清洁不够等都会引起元件翘立

3.5 从印刷分析可能造成立碑因素:

印刷偏移、印刷压力偏小、刮刀有磨损(缺口)、印刷

台面不水平等,都有可能造成一对焊盘的两个焊盘锡量不等,从而造成元件翘立。

3.6 从贴装分析可能造成立碑因素:

贴件偏位,导致焊接时两端拉力不等,造成墓碑。

3.7 从焊接工艺分析可能造成立碑因素

焊接区升温剧烈、回流炉内温度不均、回流炉履带运行时震动等都会影响到元件的墓碑。

陶瓷贴片电容各类电介质不同的区别

陶瓷电容器分类 分类原因: 依据材料之介电特性及产品之温度系数 (Temperature coefficient of capacitance,TCC)特性所定分为三大类。 介质材料分类: 1类 (Class Ⅰ)或稱溫度補償型(temperature compensation) 2类(Class Ⅱ) 3类(Class Ⅲ)或稱半導體陶瓷電容器 产品使用分类: 温度补偿型高Q值C0G 高频C0G 中高压型 低感抗型片式排容 1类(Class Ⅰ): C0G 或称温度补偿型(temperature compensation),产品低介 电系数,无论时间和温度如何改变,其电容量是极稳定的;正常电容量下有低介电损失及较小公差。 1类产品应用于精密计时电路、高频杂讯虑波、阻抗匹 配、ESD/EMI(回声探测仪或电磁干扰)的限制。 2类( Class Ⅱ): X7R/X5R 具有较高的介电常数,容量比1类电容器高,具有较稳 定的温度特性, 应用于容量范围广,稳定性要求不高的电路中,如隔 直流、耦合、旁路、鉴频等电路中。 2类(Class Ⅱ):Z5U 其温度特性介于X7R和Y5V之间,容量稳定性差,对温度、电压等条件较敏感; 应用于要求大容量,使用温度范围接近于室温的旁路、耦合、低直流偏压等电路中。 2类(Class Ⅱ):Y5V 是所有电容器中介电常数最大的电容器,但其容量稳定性 较差,对温度、电压等条件较敏感; 应用于要求大容量、温度变化不大的电路中。

3类(ClassⅢ):或稱半導體陶瓷電容器 其电容量变化相似于2类,然而此型别在客户应用上是属于 非常等级。 高频类: 此类介质材料的电容器为1类电容器,包括通 用型高频C0G电容器和温度补偿型高频电容器,其中C0G电容器电性能最稳定, 几乎不随温度、电压、时间和变化而变化。 应用于低损耗、稳定性要求高的高频电路,如 虑波器,振动器和计时电路中。 温度补偿型: 温度系数系列,此为1 类电容器,电容量的变化与温度呈线性变化; 应用于工作温度变化较大,要求高的谐振电路 中,起到温度补偿之用,例电视机中的谐振器。 高Q值C0G: 此类电容器为1类电容器,使用频率在1MHz ~ 3GHz之间; 应用于射频RF电路及要求Hi-Q、低ESR、高频 率响应的微波电路中。

贴片电容封装详细

贴片电容封装详细资料 单片陶瓷电容器(通称贴片电容)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司产品手册。? NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。? * NPO电容器? NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±ΔC。NPO电容的漂移或滞后小于±%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±%。 NPO电容器随封装形式不同其电容量和介质损

耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。? 封装 DC=50V DC=100V? 0805 ? 1206 ? 1210 560---5600pF 560---2700pF? 2225 μF μF? NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。? * X7R电容器? X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。?

贴片电容系列材质及规格

贴片电容材质及规格 贴片电容目前使用NPO、X7R、Z5U、Y5V等不同的材质规格,不同的规格有不同的用途。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是敝司三巨电子公司的命名方法,其他公司的产品请参照该公司的产品手册。 一NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。 NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 二X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。 三Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。尤其是在退耦电路的应用中。 Z5U电容器的其他技术指标如下: 工作温度范围+10℃--- +85℃ 温度特性+22% ---- -56% 介质损耗最大4%

上锡不良原因分析报告

6A7A45001A上锡不良原因分析报告 背景: 2014年5月31日,型号6A7A45001A上锡不良,针对此问题协同徐春梅小姐,前往SMT加工厂分析不良原因。 目的: 为解决问题板的处理方式以及问题板的产生原因,防止再发。 目录: A、试验条件/流程: B、检验分析; C、现场排查; D、总结与建议。 A、试验条件: a.现场温湿度:NA; b.锡膏类别:同方A-P6337-D-900(Alloy:Sn63/Pb37)有铅; c.FUX PCB:E400163A2(无铅喷锡板); d.回流焊峰值:260℃/实际板面温度251℃; e.钢网厚度:0.12mm; f.丝印锡膏厚度:NA; g.丝印方式:手印/机印; B、检验分析: 依试验流程共试验4set E400163A2空板PCB结果如下: b-a、目检1set明显不上锡,相对不良比例25%; b-b、放大镜检验4set 焊盘周边严重锡珠,相对不良比例100%(图组1-1)。 图组1-1 试验方案2共试验5set已贴S/S面PCBA,试验结果如下: b-c目检5set未发现明显不良,相对不良比例0%。 分析:b-b图示锡珠形成机理: 回流焊中出现的锡珠(或称焊料球),常常藏与矩形片式元件两端之间的侧面或细间距引脚之间。在元件贴状过程中,焊膏被置于片式元件的引脚与焊盘之间,随着印制板穿过回流焊炉,焊膏熔化变成液体,如果与焊盘和器件引脚等润湿不良,液态焊料颗粒不能聚合成一个焊点。部分液态焊料会从焊缝流出,形成锡珠。因此,焊料与焊盘和器件引脚的润湿性差是导致锡珠形成的根本原因。 造成焊料润湿性差的原因: 1、回流温度曲线设置不当; 求证:加工厂回流焊温度曲线图(1)NG 标准回流焊温度曲线图(2)OK

贴片电容极性判别

贴片电容极性判别 贴片式电容有贴片式陶瓷电容、贴片式钽电容、贴片式铝电解电容。 贴片式陶瓷电容无极性(如图3),容量也很小(PF级),一般可以耐很高的温度和电压,常用于高频滤波。陶瓷电容看起来有点像贴片电阻(因此有时候我们也称之为“贴片电容”),但贴片电容上没有代表容量大小的数字。 贴片式钽电容的特点是寿命长(如图4)、耐高温、准确度高、滤高频改波性能极好,不过容量较小、价格也比铝电容贵,而且耐电压及电流能力相对较弱。它被应用于小容量的低频滤波电路中。 贴片钽电容与陶瓷电容相比,其表面均有电容容量和耐压标识,其表面颜色通常有黄色和黑色两种。譬如100-16即表示容量100μF,耐压16V。 贴片式铝电解电容拥有比贴片式钽电容更大的容量,其多见于显卡上,容量在300μF~1500μF之间,其主要是满足电流低频的滤波和稳压作用。 一般我们平时用的最多的为铝电解电容,由于其电解质为铝,所以其温度稳定性以及精度都不是很高,而贴片元件由于其紧贴电路版,所以要求温度稳定性要高,所以贴片电容以钽电容为多,根据其耐压不同,贴片电容又可分为A、B、C、D 四 个系列,具体分类如下: 类型封装形式耐压 A 3216 10V B 3528 16V C 6032 25V D 7343 35V

贴片的钽电解电容(A/B/C/D壳)横杠是正极.或底盘(金属)上有缺口的那边是正极 贴片的圆型铝电解电容,横杠是负极. 瓷片电容对高频滤除效果最好; 电解电容对低频的抑制效果就比其他的好; 独石、钽电容等,在温度系数方面比瓷片的好,而在滤除高频方面远没有瓷片的好。 去耦电容和旁路电容没有本质的区别,电源系统的电容本来就有多种用途,从为去除电源的耦合噪声干扰的角度看,我们可以把电容称为去耦电容(Decoupling),如果从为高频信号提供交流回路的角度考虑,我们可以称为旁路电容(By-pass).而滤波电容则更多的出现在滤波器的电路设计里.电源管脚附近的电容主要是为了提供瞬间电流,保证电源/地的稳定,当然,对于高速信号来说,也有可能把它作为低阻抗回路,比如对于CMOS电路结构,在0->1的跳变信号传播时,回流主要从电源管脚流回,如果信号是以地平面作为参考层的话,在电源管脚的附近需要经过这个电容流入电源管脚.所以对于PDS(电源分布系统)的电容来说,称为去耦和旁路都没有关系,只要我们心中了解它们的真正作用就行了 铝电容容量较大、价格较低,但易受温度影响、准确度不高;而且随着使用时间会逐渐失效。钽电容寿命长、耐高温、准确度高,不过容量较小、价格高。除非是需要大容量滤波的地方(如CPU插槽附近),原则上最好都使用钽电容,因为它不易引起波形失真。 下图为SMD钽电容电容 下图为SMD铝电容

(完整版)贴片电容的介绍

X7R 性质: 1. 介电常数可达到3000,容温变化率小于15%,介电损耗小于3.5%; 2. 粉体粒径250-300nm,烧成陶瓷晶粒尺寸300-400nm。 电镜照片: 用途: 1. 此介质材料为环保型粉料,无任何有毒镉(Cd)和铅(Pd)的化合物; 2. 适合于制备超薄层大容量贱金属内电极多层陶瓷电容器的生产:单层陶瓷膜片厚度5~10mm;层数从几十到几百层;电容量从 0.1 nF 到100 nF; 3. 由于瓷粉粒度小,分散性好,因此不需要再进行剧烈的球磨,以免改变瓷料的晶粒性质,使性能劣化。 Y5V贴片电容,MLCC Y5V多层陶瓷片式电容 贴片电容简述 COG(NPO)贴片电容选型表 X7R贴片电容选型表 创建时间:2006-1-13 最后修改时间:2006-1-13 简述 Y5V贴片电容属于EIA规定的Class 2类材料的电容。它的电容量受温度、电压、时间变化影响大。

Y5V贴片电容特性 ?具有较差的电容量稳定性,在-25℃~85℃工作温度范围内,温度特性为+30%,-80%。 ?层叠独石结构,具有高可靠性。 ?优良的焊接性和和耐焊性,适用于回流炉和波峰焊。 ?应用于温度变化小的退耦、隔直等电路中。 Y5V贴片电容各个生产厂家规格书 生产厂家规格书 AVX Datasheet 风华Datasheet 国巨Datasheet 太阳诱电Datasheet 村田Datasheet Y5V贴片电容容量范围 厚度与符号对应表 符 号 A C E G J K M N P Q X Y Z 最 大 厚 度毫米(英寸) 0.33 (0.013 ) 0.56 (0.022 ) 0.71 (0.028 ) 0.86 (0.034 ) 0.94 (0.037 ) 1.02 (0.040 ) 1.27 (0.050 ) 1.40 (0.055 ) 1.52 (0.060 ) 1.78 (0.070 ) 2.29 (0.090 ) 2.54 (0.100 ) 2.79 (0.110 ) 0201~1210 Y5V贴片电容选型表 封装尺寸0201 0402 0603 0805 1206 1210 工作电压6. 3 1 6. 3 1 1 6 2 5 5 6. 3 1 1 6 2 5 5 6. 3 1 1 6 2 5 5 6. 3 1 1 6 2 5 5 6. 3 1 1 6 2 5 5 电容量(pF ) 820 1000 2200 4700 A A A C 电容量(uF 0.01 0.02 2 A A A A C C C C C G G G G

贴片陶瓷电容知识(介质,DF,漏电,应用等)

AVX/松下/华亚/国巨/TDK ,TAIYO,村田(不是春田啊),AVX 单片陶瓷电容器(通称贴片电容)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。 NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF以下,100PF-1000PF也能生产但价格较高 介质损耗最大0。15% 封装DC=50V DC=100V 0805 0.5---1000pF 0.5---820pF 1206 0.5---1200pF 0.5---1800pF 1210 560---5600pF 560---2700pF 2225 1000pF---0.033μF 1000pF---0.018μF NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。适用于低损耗,稳定性要求要的高频电路 二X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 X7R此种材质比NPO稳定性差,但容量做的比NPO的材料要高,容量精度在10%左右。常规10000PF以下,10000PF-1UF也能生产但价格较高 介质损耗最大2。5%(25V与50V)3。5%(16V) 封装DC=50V DC=100V 0805 330pF---0.056μF 330pF---0.012μF 1206 1000pF---0.15μF 1000pF---0.047μF 1210 1000pF---0.22μF 1000pF---0.1μF 2225 0.01μF---1μF 0.01μF---0.56μF 三Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。尤其是在退耦电路的应用中。下表给出了Z5U电容器的取值范围。

上锡不良原因

深圳市联益电子有限公司 上锡不良类型及原因分析 一、焊后PCB板面残留多板子脏: 1.FLUX固含量高,不挥发物太多。 2.焊接前未预热或预热温度过低(浸焊时,时间太短)。 3.走板速度太快(FLUX未能充分挥发)。 4.锡炉温度不够。 5.锡炉中杂质太多或锡的度数低。 6.加了防氧化剂或防氧化油造成的。 7.助焊剂涂布太多。 8.PCB上扦座或开放性元件太多,没有上预热。 9.元件脚和板孔不成比例(孔太大)使助焊剂上升。 10.PCB本身有预涂松香。 11.在搪锡工艺中,FLUX润湿性过强。 12.PCB工艺问题,过孔太少,造成FLUX挥发不畅。 13.手浸时PCB入锡液角度不对。 14.FLUX使用过程中,较长时间未添加稀释剂。 二、着火: 1.助焊剂闪点太低未加阻燃剂。 2.没有风刀,造成助焊剂涂布量过多,预热时滴到加热管上。 3.风刀的角度不对(使助焊剂在PCB上涂布不均匀)。 4.PCB上胶条太多,把胶条引燃了。 5.PCB上助焊剂太多,往下滴到加热管上。 6.走板速度太快(FLUX未完全挥发,FLUX滴下)或太慢(造成板面热温度 太高)。 7.预热温度太高。 8.工艺问题(PCB板材不好,发热管与PCB距离太近)。 三、腐蚀(元器件发绿,焊点发黑) 1. 铜与FLUX起化学反应,形成绿色的铜的化合物。 2. 铅锡与FLUX起化学反应,形成黑色的铅锡的化合物。 3. 预热不充分(预热温度低,走板速度快)造成FLUX残留多,有害物残留太多)。 4.残留物发生吸水现象,(水溶物电导率未达标) 5.用了需要清洗的FLUX,焊完后未清洗或未及时清洗。 6.FLUX活性太强。 7.电子元器件与FLUX中活性物质反应。 四、连电,漏电(绝缘性不好) 1. FLUX在板上成离子残留;或FLUX残留吸水,吸水导电。 2. PCB设计不合理,布线太近等。 3. PCB阻焊膜质量不好,容易导电。 五、漏焊,虚焊,连焊 1. FLUX活性不够。

贴片陶瓷电容分类及温度特性

EIA Code Operation Temperature Range (?C) Temperature Coffcient CLASS I C0G/NP0-55~+1250±30PPM/?C X5R-55~+850±15% X7R-55~+1250±15% X6S-55~+1050±22% Y5V-30~+85-82%~+22% X7S-55~+1250±22% X7T-55~+125-33%~+22% U2J-55~+125-750±120PPM/?C X7U-55~+125-56%~+22% X6T-55~+105-33%~+22% Z5U10~+85-56%~+22% MURATA X8G-55~+1500±30PPM/?C Ⅰ类陶瓷电容器(ClassⅠceramic capacitor) 过去称高频陶瓷电容器(High-frequency ceramic capacitor),介质采用非铁电(顺电)配方,以TiO2为主要成分(介电常 数小于150),因此具有最稳定的性能;或者通过添加少量其他(铁电体)氧化物,如CaTiO3 或SrTiO3,构成“扩展型”温度 补偿陶瓷,则可表现出近似线性的温度系数,介电常数增加至500。这两种介质损耗小、绝缘电阻高、温度特性好。特别适 用于振荡器、谐振回路、高频电路中的耦合电容,以及其他要求损耗小和电容量稳定的电路,或用于温度补 Ⅱ类陶瓷电容器(Class Ⅱ ceramic capacitor) 过去称为为低频陶瓷电容器(Low frequency ceramic capacitor),指用铁电陶瓷作介质的电容器,因此也称铁电陶瓷电容 器 。这类电容器的比电容大,电容量随温度呈非线性变化,损耗较大,常在电子设备中用于旁路、耦合或用于其它对损耗 和电容量稳定性要求不高的电路中。其中Ⅱ类陶瓷电容器又分为稳定级和可用级。X5R、X7R属于Ⅱ类陶瓷的稳定级,而 Y5V和Z5U属于可用级。 CLASS II

常见贴片陶瓷电容规格

【MC Series 】 Multilayer Ceramic Chip Capacitor ■Features -Wide capacitance range, extremely compost size -Low inductance of capacitor for high frequency application -Excellent solderability and resistance to soldering heat, suitable for flow and reflow soldering -Adaptable to high-speed surface mount assembly -Conform to EIAJ-RC3402, and also compatible with EIA-RS198 and IEC PUB. 384-10 .. ■Construction ■Dimensions MC / MCHL / MCRF Type Unit: mm Packaging (7” Reel) Type Size (Inch) L W T / Symbol M B Paper tape Plastic tape 01 0201 0.6±0.03 0.3±0.03 0.3±0.03 L 0.15±0.05 15K - 02 0402 1.00±0.05 0.50±0.05 0.50±0.05 N 0.25 +0.05 / -0.10 10K - 1.60±0.10 0.80±0.10 0.80±010 S 4K 03 0603 1.60 +0.15 / -0.10 0.80 +0.15 / -0.10 0.80 +0.15 / -0.10 X 0.40±0.15 4K - 0.60±0.15 A 4K - 0.80±0.10 B 4K - 2.00±0.15 1.25±0.10 D - 3K 0.85±0.10 T 4K - 05 0805 2.00±0.20 1.25±0.20 1.25±0.20 I 0.50±0.20 - 3K 0.80±0.10 B 4K - 0.95±0.10 C - 3K 3.20±0.15 1.25±0.10 D - 3K 1.60±0.15 1.15±0.15 J - 3K 3.20±0.20 1.60±0.20 1.60±0.20 G - 2K 06 1206 3.20+0.3 / -0.1 1.60+0.3 / -0.1 1.60+0.3 / -0.1 P 0.60±0.20 (0.50±0.20)*** - 2K 0.95±0.10 C - 3K 3.20±0.30 2.50±0.20 1.25±0.10 D - 3K 1.60±0.20 G - 2K 2.00±0.20 K - 1K 10 1210 3.20±0.40 2.50±0.30 2.50±0.30 M 0.75±0.25 - 1K 1.25±0.10 D - 2K 08 1808 4.50±0.40 (4.5+0.5/-0.3)** 2.03±0.25 2.00±0.20 K 0.75±0.25 (0.50±0.20)*** - 1K 1.25±0.10 D - 1K 3.20±0.30 2.00±0.20 K - 1K 12 1812 4.50±0.40 (4.5+0.5/-0.3)** 3.20±0.40 2.50±0.30 M 0.75±0.25 (0.50±0.20)*** - 0.5K ** For 1808/1812: 200~3KV , ***For 1206:1KV~3KV ; 1808/1812: 200~3KV Low Inductance Capacitors for MCLI Type Unit: mm Packaging (7” Reel) Type Size (Inch) L W T / Symbol Ta min. Tb min. Paper tape Plastic tape MCLI43 0612 3.20±0.15 1.60±0.15 0.80±0.10 B 0.5 0.13 4K - 1Ceramic Material 3 Termination: 2 Inner Electrodes NPO: Ag/Ni/Sn dielectric X7R, Y5V, X5R: Cu/Ni/Sn dielectric 1 2 3

上锡不良类型及原因分析

上锡不良类型及原因分析 一、焊后PCB板面残留多板子脏: 1.FLUX固含量高,不挥发物太多。 2.焊接前未预热或预热温度过低(浸焊时,时间太短)。 3.走板速度太快(FLUX 未能充分挥发)。 4.锡炉温度不够。 5.锡炉中杂质太多或锡的度数低。 6.加了防氧化剂或防氧化油造成的。 7.助焊剂涂布太多。 8.PCB上扦座或开放性元件太多,没有上预热。 9.元件脚和板孔不成比例(孔太大)使助焊剂上升。 10.PCB本身有预涂松香。 11.在搪锡工艺中,FLUX润湿性过强。 12.PCB工艺问题,过孔太少,造成FLUX挥发不畅。 13.手浸时PCB入锡液角度不对。 14.FLUX使用过程中,较长时间未添加稀释剂。二、着火: 1.助焊剂闪点太低未加阻燃剂。 2.没有风刀,造成助焊剂涂布量过多,预热时滴到加热管上。 3.风刀的角度不对(使助焊剂在PCB上涂布不均匀)。 4.PCB上胶条太多,把胶条引燃了。 5.PCB 上助焊剂太多,往下滴到加热管上。 6.走板速度太快(FLUX未完全挥发,FLUX滴下)或太慢(造成板面热温度太高)。 7.预热温度太高。 8.工艺问题(PCB板材不好,发热管与PCB距离太近)。三、腐蚀(元器件发绿,焊点发黑) 1. 铜与FLUX起化学反应,形成绿色的铜的化合物。 2. 铅锡与FLUX起化学反应,形成黑色的铅锡的化合物。 3. 预热不充分(预热温度低,走板速度快)造成FLUX残留多,有害物残留太多)。 4.残留物发生吸水现象,(水溶物电导率未达标) 5.用了需要清洗的FLUX,焊完后未清洗或未及时清洗。 6.FLUX活性太强。 7.电子元器件与FLUX中活性物质反应。四、连电,漏电(绝缘性不好) 1. FLUX在板上成离子残留;或FLUX残留吸水,吸水导电。 2. PCB设计不合理,布线太近等。 3. PCB阻焊膜质量不好,容易导电。五、漏焊,虚焊,连焊 1. FLUX活性不够。 2. FLUX的润湿性不够。 wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();},

沉锡焊盘上锡不良是什么因素导致沉锡焊盘上锡失效分析详解

沉锡焊盘上锡不良是什么因素导致?沉锡焊盘上锡失效分 析 1. 案例背景 送检样品为某PCBA板,该PCB板经过SMT后,发现少量焊盘出现上锡不良现象,样品的失效率大概在千分之三左右。该PCB板焊盘表面处理工艺为化学沉锡,该PCB板为双面贴片,出现上锡不良的焊盘均位于第二贴片面,失效分析。 2. 分析方法简述 2.1 样品外观观察 如图1所示,通过对失效焊盘进行显微放大观察,焊盘存在不上锡现象,焊盘表面未发现明显变色等异常情况。 图1、失效焊盘图片

2.2 焊盘表面SEM+EDS分析 如图2~4所示,对NG焊盘、过炉一次焊盘、未过炉焊盘分别进行表面SEM观察和EDS 成分分析,未过炉焊盘表面沉锡层成型良好,过炉一次焊盘和失效焊盘表面沉锡层出现重结晶,表面均未发现异常元素; 图2. NG焊盘的SEM照片及EDS能谱

图3.过炉一次焊盘的SEM照片+EDS能谱图

图4.未过炉焊盘的SEM照片+EDS能谱图 2.3 焊盘FIB制样剖面分析 如图5~7所示,利用FIB技术对失效焊盘、过炉一次焊盘及未过炉焊盘制作剖面,对剖面表层进行成分线扫描,发现NG焊盘表层已经出现Cu元素,说明Cu已经扩散至锡层表面;过炉一次焊盘表层在0.3μm左右深度出现Cu元素,说明过炉一次焊盘后,纯锡层厚度约为0.3μm;未过炉焊盘的表层在0.8μm左右深度出现Cu元素,说明未过炉焊盘的纯锡层厚度约为0.8μm。鉴于EDS测试精度较低,误差相对较大,接下来采用AES对焊盘表面成分进行进一步分析。

图5. NG焊盘剖面的SEM照片及EDS能谱

图6.过炉一次焊盘剖面的SEM照片+EDS能谱图

贴片电容介电材料

多层陶瓷电容(MLCC)根据材料分为Class 1和Class 2两类。Class 1是温度补偿型,Class 2是温度稳定型和普通应用的。 ?Class 1 - Class 1或者温度补偿型电容通常是由钛酸钡不占主要部分的钛酸盐混合物构成。它们有可预见的温度系数,通常没有老化特性。因此它们是可用的最稳定的电容。最常用的Class 1多层陶瓷电容是COG(NPO)温度补偿型电容(±0 ppm/°C). ?Class 2 - EIA Class 2 电容通常也是由钛酸钡化合物组成。Class 2电容有很大的电容容量和温度稳定性。最普通最常用的Class 2电容电解质是X7R和Y5V。在温度范围 -55°C到125°C之间,X7R能提供仅有±15%变化的的中等容量的电容容量。它最适合应用在温度范围宽,电容量要求稳定的场合。 Y5V能提供最大的电容容量,常用在环境温度变化不大的地方。在温度范围-30°C to 85°C之间,Y5V电容值的变化是 22% to -82%。所有的Class 2电容的电容容量受以下几个条件影响:温度变化、操作电压(直流和交流)、频率。 ? 对Class 2材料电容的容量随温度变化,EIA可以通过3个符号代码来表述。第一个符号表示工作温度范围的下限,第二个符号表示工作温度的上限,第三个符号表示在这个温度内允许容量变化的百分比。以下表提供了EIA系统详细的描述。

法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 1F=1000mf=1000,000uf=1000,000,000nf=1000,000,000,000pf

多层贴片陶瓷电容烧结原理及工艺

多层贴片陶瓷电容烧结原理及工艺 多层陶瓷电容器(MLCC)的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。器件端头镀层一般为烧结Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn发生反应),再在Ni层上制备Sn或SnPb层用以焊接。近年来,也出现了端头使用Cu的MLCC产品。 根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、X7R、Z5U等。根据MLCC 的尺寸大小,可以分为1206,0805,0603,0402,0201等。 MLCC 的常见失效模式 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 陶瓷多层电容器失效的原因分为外部因素和内在因素 内在因素主要有以下几种: 1.陶瓷介质内空洞(Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹(firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。 3.分层(delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

SMT上锡不良的解决办法

SMT上锡不良的解决办法 波峰面:波的表面均被一层氧化皮覆盖﹐它在沿焊料波的整个长度方向上几乎都保持静态﹐在波峰焊接过程中﹐PCB接触到锡波的前沿表面﹐氧化皮破裂﹐PCB前面的锡波无皲褶地被推向前进﹐这说明整个氧化皮与PCB以同样的速度移动波峰焊机。 焊点成型:当PCB进入波峰面前端(A)时﹐基板与引脚被加热﹐并在未离开波峰面(B)之前﹐整个PCB浸在焊料中﹐即被焊料所桥联﹐但在离开波峰尾端的瞬间﹐少量的焊料由于润湿力的作用﹐粘附在焊盘上﹐并由于表面张力的原因﹐会出现以引线为中心收缩至最小状态﹐此时焊料与焊盘之间的润湿力大于两焊盘之间的焊料的内聚力。因此会形成饱满﹐圆整的焊点﹐离开波峰尾部的多余焊料﹐由于重力的原因﹐回落到锡锅中。 防止桥联的发生 1、使用可焊性好的元器件/PCB 2、提高助焊剞的活性 3、提高PCB的预热温度﹐增加焊盘的湿润性能 4、提高焊料的温度 5、去除有害杂质﹐减低焊料的内聚力﹐以利于两焊点之间的焊料分开。 波峰焊机中常见的预热方法 1、空气对流加热 2、红外加热器加热 3、热空气和辐射相结合的方法加热 波峰焊工艺曲线解析 1、润湿时间:指焊点与焊料相接触后润湿开始的时间 2、停留时间:PCB上某一个焊点从接触波峰面到离开波峰面的时间,停留/焊接时间的计算方式是﹕停留/焊接时间=波峰宽/速度 3、预热温度:预热温度是指PCB与波峰面接触前达到的温度(见右表) 4、焊接温度 焊接温度是非常重要的焊接参数﹐通常高于焊料熔点(183°C )50°C ~60°C大多数情况是指焊锡炉的温度实际运行时﹐所焊接的PCB 焊点温度要低于炉温﹐这是因为PCB吸热的结果 SMA类型元器件预热温度 单面板组件通孔器件与溷装90~100 双面板组件通孔器件100~110 双面板组件溷装100~110 多层板通孔器件15~125 多层板溷装115~125 波峰焊工艺参数调节 1、波峰高度:波峰高度是指波峰焊接中的PCB吃锡高度。其数值通常控制在PCB板厚度的1/2~2/3,过大会导致熔融的焊料流到PCB 的表面﹐形成“桥连” 2、传送倾角:波峰焊机在安装时除了使机器水平外﹐还应调节传送装置的倾角﹐通过倾角的调节﹐可以调控PCB与波峰面的焊接时间﹐适当的倾角﹐会有助于焊料液与PCB更快的剥离﹐使之返回锡锅内 3、热风刀:所谓热风刀﹐是SMA刚离开焊接波峰后﹐在SMA的下方放置一个窄长的带开口的“腔体”﹐窄长的腔体能吹出热气流﹐

陶瓷贴片电容失效原因分析

陶瓷电容失效原因分析 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 内在因素主要有以下几种: 1.陶瓷介质内空洞(Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹(firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。

3.分层(delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

2.机械应力裂纹(flex crack) 多层陶瓷电容器的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂。常见应力源有:贴片对中,工艺过程中电路板操作;流转过程中的人、设备、重力等因素;通孔元器件插入;电路测试、单板分割;电路板安装;电路板定位铆接;螺丝安装等。该类裂纹一般起源于器件上下金属化端,沿45℃角向器件内部扩展。该类缺陷也是实际发生最多的一种类型缺陷。

电容规格

贴片电容的精度表示方法.. 电容的型号命名: 1、各国电容器的型号命名很不统一,国产电容器的命名由四部分组成: 第一部分:用字母表示名称,电容器为C。 第二部分:用字母表示材料。 第三部分:用数字表示分类。 第四部分:用数字表示序号。 2、电容的标志方法: (1)直标法:用字母和数字把型号、规格直接标在外壳上。 (2)文字符号法:用数字、文字符号有规律的组合来表示容量。文字符号表示其电容量的单位:P、N、u、m、F等。和电阻的表示方法相同。标称允许偏差也和电阻的表示方法相同。小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF。 (3)色标法:和电阻的表示方法相同,单位一般为pF。小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰 耐压4V 6.3V 10V 16V 25V 32V 40V 50V 63V (4)进口电容器的标志方法:进口电容器一般有6项组成。 第一项:用字母表示类别: 第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系。 第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示: 序号字母颜色温度系数允许偏差字母颜色温度系数允许偏差 1 A 金+100 R 黄-220 2 B 灰+30 S 绿-330 3 C 黑0 T 蓝-470 4 G ±30 U 紫-750 5 H 棕-30 ±60 V -1000 6 J ±120 W -1500 7 K ±250 X -2200 8 L 红-80 ±500 Y -3300 9 M ±1000 Z -4700

如何对付SMT的上锡不良

如何对付SMT的上锡不良 波峰面:波的表面均被一层氧化皮覆盖﹐它在沿焊料波的整个长度方向上几乎都保持静态﹐在波峰焊接过程中﹐PCB接触到锡波的前沿表面﹐氧化皮破裂﹐PCB前面的锡波无皲褶地被推向前进﹐这说明整个氧化皮与PCB以同样的速度移动波峰焊机。 焊点成型:当PCB进入波峰面前端(A)时﹐基板与引脚被加热﹐并在未离开波峰面(B)之前﹐整个PCB浸在焊料中﹐即被焊料所桥联﹐但在离开波峰尾端的瞬间﹐少量的焊料由于润湿力的作用﹐粘附在焊盘上﹐并由于表面张力的原因﹐会出现以引线为中心收缩至最小状态﹐此时焊料与焊盘之间的润湿力大于两焊盘之间的焊料的内聚力。因此会形成饱满﹐圆整的焊点﹐离开波峰尾部的多余焊料﹐由于重力的原因﹐回落到锡锅中。 防止桥联的发生 1、使用可焊性好的元器件/PCB 2、提高助焊剞的活性 3、提高PCB的预热温度﹐增加焊盘的湿润性能 4、提高焊料的温度 5、去除有害杂质﹐减低焊料的内聚力﹐以利于两焊点之间的焊料分开。 波峰焊机中常见的预热方法 1、空气对流加热 2、红外加热器加热 3、热空气和辐射相结合的方法加热 波峰焊工艺曲线解析 1、润湿时间:指焊点与焊料相接触后润湿开始的时间 2、停留时间:PCB上某一个焊点从接触波峰面到离开波峰面的时间,停留/焊接时间的计算方式是﹕停留/焊接时间=波峰宽/速度 3、预热温度:预热温度是指PCB与波峰面接触前达到的温度(見右表) 4、焊接温度 焊接温度是非常重要的焊接参数﹐通常高于焊料熔点(183°C )50°C ~60°C大多数情况是指焊锡炉的温度实际运行时﹐所焊接的PCB 焊点温度要低于炉温﹐这是因为PCB 吸热的结果 SMA類型元器件預熱溫度 單面板組件通孔器件與混裝90~100 雙面板組件通孔器件100~110 雙面板組件混裝100~110 多層板通孔器件15~125 多層板混裝115~125 波峰焊工艺参数调节 1、波峰高度:波峰高度是指波峰焊接中的PCB吃錫高度。其數值通常控制在PCB板厚度的1/2~2/3,過大會導致熔融的焊料流到PCB的表面﹐形成“橋連”

SMT锡膏常见不良问题及原因分析—双智利

SMT锡膏常见不良问题及原因分析——双智利 一.锡球: 1.印刷前,锡膏未充分回温解冻并搅拌均匀。 2.印刷后太久未回流,溶剂挥发,膏体变成干粉后掉到油墨上。 3.印刷太厚,元件下压后多余锡膏溢流。 4.REFLOW时升温过快(SLOPE>3),引起爆沸。 5.贴片压力太大,下压使锡膏塌陷到油墨上。 6.环境影响:湿度过大,正常温度25+/-5,湿度40-60%,下雨时可达95%,需要抽湿。 7.焊盘开口外形不好,未做防锡珠处理。 8.锡膏活性不好,干的太快,或有太多颗粒小的锡粉。 9.锡膏在氧化环境中暴露过久,吸收空气中的水分。 10.预热不充分,加热太慢不均匀。 11.印刷偏移,使部分锡膏沾到PCB上。 12.刮刀速度过快,引起塌边不良,回流后导致产生锡球。 P.S:锡球直径要求小于0.13MM,或600平方毫米小于5个. 二、立碑: 1.印刷不均匀或偏移太多,一侧锡厚,拉力大,另一侧锡薄拉力小,致使元件一端被拉向一侧形成空焊,一端被拉起就形成立碑。 2.贴片偏移,引起两侧受力不均。 3.一端电极氧化,或电极尺寸差异太大,上锡性差,引起两端受力不均。 4.两端焊盘宽窄不同,导致亲和力不同。

5.锡膏印刷后放置过久,FLUX挥发过多而活性下降。 6.REFLOW预热不足或不均,元件少的地方温度高,元件多的地方温度低,温度高的地方先熔融,焊锡形成的拉力大于锡膏对元件的粘接力,受力不均匀引起立碑。 三、短路 1.STENCIL太厚、变形严重,或STENCIL开孔有偏差,与PCB焊盘位置不符。 2.钢板未及时清洗。 3.刮刀压力设置不当或刮刀变形。 4.印刷压力过大,使印刷图形模糊。 5.回流183度时间过长,(标准为40-90S),或峰值温度过高。 6.来料不良,如IC引脚共面性不佳。 7.锡膏太稀,包括锡膏内金属或固体含量低,摇溶性低,锡膏容易榨开。 8.锡膏颗粒太大,助焊剂表面张力太小。 四、偏移: 一).在REFLOW之前已经偏移: 1.贴片精度不精确。 2.锡膏粘接性不够。 3.PCB在进炉口有震动。 二).REFLOW过程中偏移: 1.PROFILE升温曲线和预热时间是否适当。 2.PCB在炉内有无震动。

相关文档
相关文档 最新文档