文档库 最新最全的文档下载
当前位置:文档库 › 不等式三角形

不等式三角形

不等式三角形
不等式三角形

学校 班级 考号 姓名

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 1

3{

x x ≥≤2013—2014(下学期)初二年级第一次月考试题

(新北师版)数学

一.选择题(24分)

1.下列条件中能判定△ABC ≌△DEF 的是 ( )

A .A

B =DE ,B

C =EF ,∠A =∠

D B .∠A =∠D ,∠B =∠

E ,∠C =∠

F C .AC =DF ,∠B =∠F ,AB =DE D .∠B =∠E ,∠C =∠F ,AC =DF 2.下列命题中正确的是 ( )

A .有两条边相等的两个等腰三角形全等

B .两腰对应相等的两个等腰三角形全等

C .两角对应相等的两个等腰三角形全等

D .一边对应相等的两个等边三角形全等 3.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作D

E ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE =5,则线段DE 的长为 ( )

A .5

B .6

C .7

D .8 4.至少有两边相等的三角形是( )

A .等边三角形

B .等腰三角形

C .等腰直角三角形

D .锐角三角形

5.函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( ).

A .x>0

B .x<0

C .x<2

D .x>2 6.已知x y >,则下列不等式不成立的是 ( ).

A .66x y ->-

B .33x y >

C .22x y -<-

D .3636x y -+>-+

7.将不等式组 的解集在数轴上表示出来,应是( ).

A

8.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx+b>ax 的解集是( ) A .x>1 B .x<1 C .x>2 D .x<2

二.填空题(18分)

1.在△ABC 中,AB =AC ,∠A =44°,则∠B = 度. 2.“直角三角形两条直角边的平方和等于斜边的平方”的逆定理是 .

3.不等式930x ->的非负整数解是 .

4.如图,AB =AD ,只需添加一个条件 ,就可以判定△ABC ≌△ADE. 5.如图,在△ABC 中,∠C =90°,D 为BC 上的一点,且DA =DB ,DC =AC .则∠B = 度.

(第4题图) (第5题图) (第6题图)

6.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于点D,∠A =30°,BD =1.5cm ,则 AB= cm . 三.解答题(58分) 1.(8分)解下列不等式(组),并把它们的解集在数轴上表示出来:

A C

B D

(1)

1

12

x x -+≥ (2)

2.(6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x 元(x>300). (1)请用含x 的代数式分别表示顾客在两家超市购物所付的费用; (2)顾客到哪家超市购物更优惠?说明你的理由.

3.(6分)有一个长方形足球场的长为x m ,宽为70m .如果它的周长大于350m ,面积小于7560m 2,求x 的取值范围,并判断这个球场是否可以用作国际足球比赛.

(注:用于国际比赛的足球场的长在100m 到110m 之间,宽在64m 到75m 之间)

4.(6分)已知:如图,点D 是△ABC 内一点,AB =AC ,∠1=∠2. 求证:AD 平分∠BAC .

3(2)41213

{

x x x

x --≤+>-

5.(6分)求证:等腰三角形两腰上的中线的交点到底边两个端点的距离相等.

6.(6分)已知:如图,等腰三角形ABC中,AC=BC,∠ACB=90°,直线l经过点C(点A、B都在直线l的同侧),AD⊥l,BE⊥l,垂足分别为D、E.求证:△ADC≌△CEB.

7.(6分)如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.

(1)求AB的长;

(2)求△ABC的面积;(3)求CD的长.

8.(6分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个

学校 班级 考号 姓名

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

三角形,使C 点与AB 边上的一点D 重合.

(1)当∠A 满足什么条件时,点D 恰为AB 的中点?写出一个你认为适当的条件,并利用此条件证明D 为AB 的中点;

(2)在(1)的条件下,若DE =1,求△ABC 的面积.

9.(8分)已知A 、B 两个海港相距180海里.如图表示一艘轮船和一艘快艇沿相同路线从A 港出发到B 港航行过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)。根据图象解答下列问题:

(1)请分别求出表示轮船和快艇行驶过程的函数表达式(不要求写出自变量的取值范围); (2)快艇出发多长时间后能超过轮船? (3)快艇和轮船哪一艘先到达 B 港?

基本不等式与余弦定理综合求解三角形面积的最值探究

基本不等式与余弦定理综合求解三角形面积的最值探究 建水县第二中学: 贾雪光 从最近几年高考试题的考查情况看,解三角形部分的考查中主要是对用正、余弦定理来求解三角形、实际应用问题, 这两种常见考法中,灵活应用正余弦定理并结合三角形中的内角和定理,大边对大角,等在三角形中进行边角之间的相互转化,以及与诱导公式特别是C B A sin )sin(=+、 C B A sin 2 cos =+的联系是关键。 于是多数教师在复习备考过程中,往往都会将大量的时间和精力花在对正余弦定理的变形,转化,变式应用上,当然这也无可厚非,但是我在高考备考复习教学中发现了这样一类题目,如: 1、在锐角△ABC 中,a, b, c 分别为内角A, B, C 的对边,且A A 2 2sin 21cos =+ ,7 = a 求△ABC 的面 积的最大值;2、已知向量)2 1,(sin A M =与)cos 3sin ,3(A A N +=共线,其中A 是△ABC 的内角,(1)求角A 的大小;(2)若BC=2,求△ABC 的面积S 的最大值。3、△ABC 中,a, b, c 分别为内角A, B, C 的对边,向量)2cos ,2 (cos ),1,4(2 A A N M =-=,2 7= ?N M ,(1)求角A 的大小;(2)若3=a 是判 断当c b ?取得最大值时△ABC 的形状。面对这样的问题,我们如何来引导学生很自然的过度,用一种近乎水到渠成的方法来求解呢? 实际上我们在教学和学习的过程中往往会忽略一个很明显的问题,那就是余弦定理与基本不等式的综合,如果我们在讲授正余弦定理的时候能在引入正课时多下一点功夫,我们就会有意外的收获哦。 我在教学中是这样处理的:实际上在余弦定理中我们总有这样一组公式: A bc c b a cos 222 2 ?-+=, B ac c a b cos 2222?-+=, C ab b a c cos 2222?-+= 同时在基本不等式中我们总有这样一组公式:bc c b 222≥+,ac c a 222≥+ ,ab a b 222≥+在三角形中各边都是正数,所以上面三个式子在a 、 b 是三角形的三边时总是成立的,如果我们将两组公式综合后会发现这样的一组公式即:)cos 1(22A bc a -?≥,)cos 1(22C ac b -?≥ )c o s 1(22c ab c -?≥于是我们就有方程等式,得到了一组不等式,而在涉及到最值得求解时,我们常用的处理方法是,一求函数值域;二、导函数;三、基本不等式即均值定理;但是前两种方法显然都不可能用于求解上面两个题目类型的求解,于是在涉及到与解三角形有关的三角形的面积的最大值时我们就只能考虑用均值定理了,自然也就要用到上面我们推导得出的这一组公式罗。 于是我没有: 例1:在锐角△ABC 中,a, b, c 分别为内角A, B, C 的对边,且A A 2 2sin 21cos =+ ,7 = a 求

向量解三角形数列不等式测试卷

向量、解三角形、数列、不等式测试卷 一、选择题(本大题共12小题,每小题5分,共60分) 1.由11a =,3d =确定的等差数列{}n a , 当298n a =时,n 等于 ( ) A.99 B.100 C.96 D.101 2.ABC ?中,若?===60,2,1B c a ,则ABC ?的面积为 ( ) A . 2 1 B .23 C.1 D.3 3.如图,在△ABC 中,1 ,3,,,2 BD DC AE ED AB a AC b BE = ===若则= ( ) A .1133a b + B .11 24a b -+ C .1124a b + D .11 33 a b -+ 4.已知3≥x ,函数1 1 -+=x x y 的最小值是 ( ) A .2 7 B .4 C .8 D .6 5.设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -?-的最小值为 ( ) A 、2- ( B )22- ( C )1- (D)12- 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=,则 3132log log b b ++……314log b +等于 ( ) (A) 5 (B) 6 (C)7 (D)8 7.设,x y 满足约束条件1 2x y y x y +≤?? ≤??≥-? ,则3z x y =+的最大值为 ( ) A . 5 B. 3 C. 7 D. -8 8.在ABC ?中,80,100,45a b A ?===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解 9.已知b a ,满足:a =3,b =2,b a +=4,则b a -=( ) A .3 B .5 C .3 D 10 10.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )

(完整版)绝对值三角不等式

1.4 绝对值三角不等式 教案1 (新人教选修4-5) 教学目标: 1:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简 单的应用。 2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数 学 思想,并能运用绝对值三角不等式公式进行推理和证明。 教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。 教学难点:绝对值三角不等式的发现和推导、取等条件。 教学过程: 一、复习引入: 关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。本节课探讨不等式证明这类问题。 1.请同学们回忆一下绝对值的意义。 ?? ? ??<-=>=0000x x x x x x ,如果,如果,如果。 几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。 2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质: (1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。 (2)2 a a =, (3) b a b a ?=?, (4) )0(≠= b b a b a 那么? b a b a +=+?b a b a +=- 二、讲解新课: 结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 方法一:证明:10 .当ab ≥0时, 20. 当ab <0时, 探究: ,,a b a b +, 之间的什么关系? b a -

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

高中数学复习指导:三角形不等式的应用

三角形不等式的应用 根据两点之间线段最短导出了三角形任意两边之和大于第三边,我们把这个关系叫做三角形不等式.这一定理在证明一些结构特别的不等式中有广泛应用.下面我们举几个例子来说明这个定理的应用,并探究命题者是如何编拟这些题目的. 类型一类型一::证明形如a b c +>型的不等式 例1、已知x y z 、、 +> 证明:作角∠120AOB = ,∠120BOC = ,则∠120AOC = , 设x y z OA OB OC ===、、,由余弦定理: == 又OA OB OC,+>所以原不等式成立. 例2、已知x y z 、、 > 证明:在空间直角坐标系中,取A(,0,0)B 0,0)C 00)x y z 、(,、(,,, 则C A == 又AB BC C,A +>所以原不等式成立. 类型二类型二::证明形如a b c d ++>型的不等式 例3、已知x y z 、、为正数,求证: y z).+>++ 证明:如右图,以x y z ++为边作正方形, 则 ).BC CD AB x y z =++≥++ D x y z x y z

类型三类型三::证明形如a b c d e +++>型的不等式 例4、设01,01x y <<<<求证: ++≥ 证明:左边即表示动点(,)P x y 到四个定点(0,0),(1,0),(1,1),(0,1)O A B C 的距离之和. 另由题设知,P 在边长为1的正方形OABC 的内部. 由()()OP BP CP AP OB AC +++≥+=知原不等式成立. 应当注意,有些不等式从表面上看很难用三角形不等式来证明,似乎只能用代数方法证明,但是如果仔细分析,也可能用上三角形不等式,一般说来,用三角形不等式证明要比代数方法简单的多,但是其构造的难度也很大,需要一些很技巧的变形,例如配方变形法,凑两点间距离公式等. 例5、已知正数x y 、满足1x y += , 2.+≥ 分析分析::用代数法可以使用分析法,并随时利用1x y += 这个条件进行化简. 证明证明::2,+≥ 只要证22224,x y y ++++≥x 即证22224,x y y ++++≥x 即证22224,x y y ++++≥x 即证22[()2]x y xy x y +?+++ 注意到1x y +=,即证2[12]14,xy ?++≥ 即证14,xy ≥+ 即证224(4()52)1816(),xy xy xy xy ?+≥++ 即证287,xy ?≥?1,4xy ≤ 而21(,24x y xy +≤=故14 xy ≤成立.所以原不等式成立.

(完整版)三角不等式

第23讲 三角不等式 竞赛热点 含有未知数的三角函数的不等式叫做三角不等式。 在高中数学竞赛内容中,涉及三角不等式的问题有三类:一是三角不等式的证明,二是解三角不等式,三是应用三角不等式求最值。 处理三角不等式的问题一方面要有扎实的三角变形能力,另一方面还需要有三角函数的图象和性质的认识。同时,对不等式的有关性质和证明方法要能灵活运用。 解题示范 例1:已知N n ∈,2≥n ,求证: .3 21cos 31cos 21cos >n Λ 思路分析:本题从三角变形入手不易,不可考虑利用x x -= 所以 ) 11()3432)(2321()1cos 31cos 21(cos 2n n n n n +?-??>ΛΛ .)3 2(2121)1453423)(1433221(2>>+=+??-??=n n n n n n ΛΛ 即 . 3 21cos 31cos 21cos >n Λ 点评:此题应用三角函数中重要的不等式:若 ) 2 ,0(π ∈x ,则 .tan sin x x x <<此结论的应用,将三角不等式转化为代数不等式,叠乘即证得。 例2:当],0[,,321 n ∈ααα 时,求证:.3 sin 3sin sin sin 3213 21αααααα++≤++ 思路分析;利用和差化积公式和变为乘积的形式,再放缩证明。 证明:因为 3 sin sin sin sin 3 21321αααααα+++++ 6 2cos 6 4sin 22 cos 2 sin 23 213 212 12 1αααααααααα-++++-+= 3 sin 46 2cos 3 sin 46 4sin 22sin 23 213 213213212 1αααααααααααααα++≤-+++=++++≤ 所以 . 3 sin 3sin sin sin 3 21321αααααα++≤++ 引申:此证明中利用1cos ≤α进行放缩,从证明过程中可以看出,等号当且仅当321ααα==时成立。

高中数学必修5解三角形、数列、不等式测试题

高中数学必修5解三角形、数列、不等式测试题 (考试时间120分钟,总分150分) 一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上) 1.已知a ,b 为非零实数,且a 1 b 2.sin15°cos45°+cos15°sin45°等于( ) A .0 B . 2 1 C . 2 3 D .1 3.ABC ?中,若?===60,2,1B c a ,则ABC ?的面积为 ( ) A .21 B .2 3 C.1 D.3 4.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 101 5.已知0x >,函数4 y x x = +的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132 n a =,则项数n 为 ( ) A. 3 B. 4 C. 5 D. 6 7.不等式20(0)ax bx c a ++<≠的解集为R ,那么( ) A. 0,0a ?≥ D. 0,0a >?> 8.设,x y 满足约束条件12x y y x y +≤?? ≤??≥-? ,则3z x y =+的最大值为 ( ) A . 5 B. 3 C. 7 D. -8 9.若)4 π tan( α-=3,则tan α 等于( ) A .-2 B .2 1- C . 2 1 D .2 10.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( ) A .1 B .-1 C .2 D .-2 11.下列各式中,值为 2 3 的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1 D .sin 215°+cos 215° 12.关于x 的方程2 210ax x +-=至少有一个正的实根,则a 的取值范围是( ) A .a ≥0 B .-1≤a <0 C .a >0或-1<a <0 D .a ≥-1 二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC = 14. 不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 15.不等式 21 131 x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤, 并把正确解答过程写在答题卡上) 17. (10分)(1) 解不等式0542<++-x x ,(2) 求函数的定义域:5y =

三角形与不等式

1、如图(1),在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,则D E D F += . 2、阅读下列内容后,解答下列各题: 几个不等于0的数相乘,积的符号由负因数的个数决定. 例如:考查代数式(1)(2)x x --的值与0的大小 当1x <时,10x -<,20x -<,(1)(2)0x x ∴--> 当12x <<时,10x ->,20x -<,(1)(2)0x x ∴--< 当2x >时,10x ->,20x ->,(1)(2)0x x ∴--> 综上:当12x <<时,(1)(2)0x x --< 当1x <或2x >时,(1)(2)0x x --> 满足 时,(3)运用你发现的规律,直接写出当x 满足 时,(7)(8)(9)0x x x -+-<. 3、.已知Rt ABC △的周长是4+2,则ABC S =△ . 4、如图,在ABC △中,AB AC =,点E F 、分别在AB 和AC 上,CE 与BF 相交于点D ,若AE CF D =,为BF 的中点,AE AF :的值为___________. 5、 有两个分数A=4444333,B=555554444 ,问:A 与B 哪个大? 6、|2a -24|+(3a -b -k )2 =0,那么k 取什么值时,b 为负数. 7、一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各有多少个? 8、是否存在整数m ,使关于x 的不等式 m x 31+ >m m x 9+ 与1+x >32m x +-是同解不等 式?若存在,求出整数m 9、如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交 于A(3,2),则不等式(k 2-k 1)x +b 2-b 1>0的解集为 10、如果x ,y 满足不等式组3050 x x y x y ≤?? +≥??-+≥?,那么你能画出 点(x ,y)所在的平面区域吗? 11、如图,已知函数y =3x +b 和y =ax -3的图象交于点 P(-2,-5),则根据图象可得不等式3x +b >ax -3的解 集是_______________. 图(1) ax -3 11题

不等式与解三角形大题

2013-2014学年度第二学期解三角形和不等式的大题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 一、选择题(题型注释)

第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) (1,求)(x f 的取值范围; (2)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知A 为锐角,2=b ,3=c ,求)cos(B A -的值. 【答案】21m n =?-. (1(2,求b 的大小. 【答案】(1)()f x 递减区间是2 3.已知函数f(x)x ∈[1,+∞). (1)当a =4时,求函数f(x)的最小值; (2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围. 【答案】(1)6(2)()3,-+∞ 4.(1)已知y =4x -2 (2)已知x>0,y>01,求x +y 的最小值. 【答案】(1)y max =1.(2)最小值为16 5.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.

如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐? 【答案】4个单位的午餐和3个单位的晚餐, 6.设z =2x +y ,式中变量满足下列条件:4335251x y x y x ≤?? ≤??≥? --,+,,求z 的最大值和最小值. 【答案】12 3 7.在△ABC 中,a =3,b = B =2∠A. (1)求cosA 的值; (2)求c 的值. 【答案】(1 2)5. 8.在△ABC 中,内角C B A 、、的对边分别为c b a 、、,已知cos sin a b C c B =+.(Ⅰ) 求B ; (Ⅱ)若2= b ,求△ABC 面积的最大值. 【答案】 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且 (1 的值; ( 2)若 求bc 的最大值. 【答案】(1(2 10.△ABC 中,BC =7,AB =3 (1)求AC ; (2)求∠A . 【答案】(1)5 (2) 120-=∠A 三个内角,他们的对边分别为a 、b 、c ,且 (1)求 A; (2 的值,并求ABC ?的面积。 【答案】(1212.在ABC ?中,(1)求sin A 的值;

必修5 解三角形、数列、不等式

第一章 解三角形 例1 某地出土一块类似三角形刀状的古代玉佩,其一角已破损,现测得如下数据: BC=2.57cm,CE=3.57cm,BD=4.38cm,B=450,C=1200.为了复原,请计算原玉佩两边的长(结果精确到0.01cm ) 例2台风中心位于某市正东方向300km 处,正以40km/h 的 速度向西北方向移动,距离台风中心250km 范围内将会受到其影响。如果台风速度不变,那么该市从何时起要遭受台风影响?这种影响持续多长时间(结果精确到0.1h )? 例3如图 在△ABC 中,=(x,y ),AC =(u,v),求证:△ABC 的面积S= 2 1︱xv-yu ︱. 例4 如图所示,有两条直线AB 和CD 相交成800角,交点是O,甲、乙两人同时从点O 分别沿OA,OC 方向出发,速度分别是4km/h,4.5km/h,3时后两人相距多远(结 例5 如图 是公元前约400年古希腊数学家泰特托斯用来构造无理数2,3,5,、、、的图形,试计算图中线段BD 的长度及∠DA B 的大小(长度精确到0.1,角度精确到10)。 例6如图,在梯形ABCD 中,A D ∥BC,AB=5,AC=9, ∠BCA=300,∠ADB=450 ,求BD 的长。 例7 一次机器人足球比赛中,甲队1号机器人由点A 开始作匀速直线运动,到达点B 时,发现足球在点D 处正以2倍于自己的速度向点A 作匀速直线滚动。如图,已知AB=42dm,AD=17dm, ∠BAC=450 .若忽略机器人原地旋转所需的时间,则该机器人最快可在何处截住足球? 例8 如图所示,已知⊙O 的半径是1,点C 在直径AB

解三角形和不等式

解三角形与不等式 一、选择题 1.锐角三角形ABC 中,sin A 和cos B 的大小关系是( ) A . sin A =cos B B . sin A <cos B C . sin A >cos B D . 不能确定 2.在△ABC 中,已知a =2b cos C ,那么△ABC 的内角B 、C 之间的关系是( ) A .B >C B .B =C C .B b B .a 1,y >1且lg x +lg y =4,则lg x lg y 的最大值是( ) A . 4 B . 2 C . 1 D . 8.已知,则的最小值是( ) A . B . 4 C . D . 5 9.若函数 在x =a 处取最小值,则a =( ) A . B . C . 3 D . 4

专题2.3+解三角形与不等式最值和范围问题的结合-高考数学备考之百强校大题狂练

高考数学大题狂练 第二篇 三角函数与三角形 专题03 解三角形与不等式,最值和范围问题的结合 1.在ABC ?中,角,,A B C 的对边分别为,,a b c ,且 cos cos 23sin A B C a b +=. (1)求角B 的大小; (2)若ABC ?的面积为3, B 是钝角,求b 的最小值. 【答案】(1)3B π =或23 π. (2)6. 由正弦定理得23sin cos cos sin sin B A B A B C +=, ∴()23sin sin A B B C +=, 又在ABC ?中, ()sin sin 0A B C +=≠,∴3sin B = 3B π=或23π. (2)由13sin 2ac B =, 3sin B =2ac =, 又23 B π=, 2222cos b a c ac B =+- 222226a c ac =++≥+=, 当且仅当a c =时取等号,∴b 6. 2.已知ABC ?三个内角 ,,A B C 的对边分别为,,a b c , ABC ?的面积S 满足2223S a b c =+-. (1)求角C 的值; (2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(3

)222 33cos 1sin 42 a b c ab C S ab C +-=-== tan 3C =0C π<<, 23 C π∴=. (2)()33cos2cos =cos2cos 2cos2sin2322 A A B A A A A π? ?+-+-=+ ??? =3sin 23A π??+ ?? ? 0,2333A A π π π π<<∴<+

三角形不等式的应用举例(含练习题)

三角形不等式的应用举例 根据两点之间线段最短导出了三角形任意两边之和大于第三边,我们把这个关系叫做三角形不等式.这一定理在证明一些结构特别的不等式中有广泛应用.下面我们举几个例子来说明这个定理的应用. 类型一:证明形如a b c +>型的不等式 例1、已知x y z 、、 > 证明:作角∠120AOB = ,∠120BOC = ,则∠120AOC = , 设x y z OA OB OC ===、、,由余弦定理: == 又OA OB OC,+>所以原不等式成立. 例2、已知x y z 、、 > 证明:在空间直角坐标系中,取A(,0,0)B 0,0)C 00)x y z 、(,、(,,, 则BC C A == 又AB BC C,A +>所以原不等式成立. 类型二:证明形如a b c d ++>型的不等式 例3、已知x y z 、、 y z).>++ 证明:以x y z ++为边作正方形, ).BC CD AB x y z =++≥++ D A x y z x y z

类型三:证明形如a b c d e +++>型的不等式 例4、设01,01x y <<<<求证: ≥ 证明:左边即表示动点(,)P x y 到四个定点(0,0),(1,0),(1,1),(0,1)O A B C 的距离之和. 另由题设知,P 在边长为1的正方形OABC 的内部. 由()()OP BP CP AP OB AC +++≥+=知原不等式成立. 应当注意,有些不等式从表面上看很难用三角形不等式来证明,似乎只能用代数方法证明,但是如果仔细分析,也可能用上三角形不等式,一般说来,用三角形不等式证明要比代数方法简单的多,但是其构造的难度也很大,需要一些很技巧的变形,例如配方变形法,凑两点间距离公式等. 例5、已知正数x y 、满足1x y +=, 2.≥ 分析:用代数法可以使用分析法,并随时利用1x y += 这个条件进行化简. 证明:2, 只要证22224,x y y ++++≥x 即证22224,x y y ++++≥x 即证22224,x y y ++++x 即证22[()2]x y xy x y +-+++ 注意到1x y +=,即证2[12]14,xy -++ 即证14,xy ≥+ 即证224(4()52)1816(),xy xy xy xy -+≥++ 即证287,xy -≥-1,4 xy ≤ 而21(),24x y xy +≤=故14 xy ≤成立. 所以原不等式成立. 如果用几何法,开始要用消元法,中间利用两点间距离公式配凑,最后也用到了三角形不等式: 证明:左边==

三角形的三边不等式关系练习题

三角形的三边不等式关系练习题 1.【2019?扬州】已知n 是正整数,若一个三角形的三边长分别是n +2,n +8,3n ,则满足条件的n 的值有( D ) A .4个 B .5个 C .6个 D .7个 【点拨】①若n +2<n +8≤3n ,则 ?????n +2+n +8>3n ,n +8≤3n ,解得? ????n <10,n ≥4,即4≤n <10, ∴正整数n 有6个,即4,5,6,7,8,9; ②若n +2<3n <n +8,则 ?????n +2<3n ,3n <n +8, n +2+3n >n +8, 解得?????n >1,n <4,n >2, 即2

高中奥林匹克数学竞赛讲座三角恒等式和三角不等式

高中奥林匹克数学竞赛讲座 三角恒等式和三角不等式 知识、方法、技能 三角恒等变形,既要遵循代数式恒等变形的一般法则,又有三角所特有的规律. 三角恒等式包括绝对恒等式和条件恒等式两类。证明三角恒等式时,首先要观察已知与求证或所证恒等式等号两边三角式的繁简程度,以决定恒等变形的方向;其次要观察已知与求证或所证恒等式等号两边三角式的角、函数名称、次数以及结构的差别与联系,抓住其主要差异,选择恰当的公式对其进行恒等变形,从而逐步消除差异,统一形式,完成证明.“和差化积”、“积化和差”、“切割化弦”、“降次”等是我们常用的变形技巧。当然有时也可以利用万能公式“弦化切割”,将题目转化为一个关于2 tan x t =的代数恒等式的证明问题. 要快捷地完成三角恒等式的证明,必须选择恰当的三角公式. 为此,同学们要熟练掌握 上图为三角公式脉络图,由图可见两角和差的三角函数的公式是所有三角公式的核心和基础. 此外,三角是代数与几何联系的“桥梁”,与复数也有紧密的联系,因而许多三角问题往往可以从几何或复数角度获得巧妙的解法. 三角不等式首先是不等式,因此,要掌握证明不等式的常用方法:配方法、比较法、放缩法、基本不等式法、数学归纳法等. 其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图象特征等都是处理三角不等式的锐利武器. 三角形中有关问题也是数学竞赛和高考的常见题型. 解决这类问题,要充分利用好三角

形内角和等于180°这一结论及其变形形式. 如果问题中同时涉及边和角,则应尽量利用正弦定理、余弦定理、面积公式等进行转化,实现边角统一. 求三角形面积的海伦公式 )](2 1 [))()((c b a p c p b p a p p S ++= ---=其中,大家往往不甚熟悉,但十分有用. 赛题精讲 例1:已知.cos sin )tan(:,1||),sin(sin A A A -= +>+=ββ βαβαα求证 【思路分析】条件涉及到角α、βα+,而结论涉及到角βα+,β.故可利用 αβαβββαα-+=-+=)()(或消除条件与结论间角的差异,当然亦可从式中的“A ” 入手. 【证法1】 ),sin(sin βαα+=A ),sin()sin(βαββα+=-+∴A ), cos(sin ))(cos sin(), sin(sin )cos(cos )sin(βαβββαβαββαββα+=-++=+-+A A . cos sin )tan(, 0)cos(, 0cos ,1||A A A -= +≠+≠-∴>ββ βαβαβ从而 【证法2】 αβαβββαβααββββ sin )sin(cos sin )sin() sin(sin cos sin sin sin -++= +- = -A ). tan(sin )cos(sin )sin(])sin[()sin(cos sin )sin(βαββαβ βαββαβαββ βα+=++=-+-++= 例2:证明:.cos 64cos 353215cos 77cos 7x x x ocs x x =+++ 【思路分析】等号左边涉及角7x 、5x 、3x 、x 右边仅涉及角x ,可将左边各项逐步转化为x sin 、 x cos 的表达式,但相对较繁. 观察到右边的次数较高,可尝试降次. 【证明】因为,cos 33cos cos 4,cos 3cos 43cos 3 3 x x x x x x +=-=所以 从而有x x x x x 226cos 9cos 3cos 63cos cos 16++= = )2cos 1(2 9 )2cos 4(cos 326cos 1x x x x +++++

解三角形数列不等式

必修5解三角形数列不等式 【选择题】 1.设,,a b c R ∈,且a b >,则 ( ) A .ac bc > B . 11a b < C .33 a b > D .22 a b > ⒉ 设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则5a =( ) A .6- B .4- C .2- D .2 3.在△ABC 中,若222 sin sin sin A B C +<,则△ABC 的形状为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不能确定 ⒋ 若点(,)x y 位于曲线y x = 与2y =所围成的封闭区域, 则2x y -的最小值为( ) A .-2 B .-6 C .0 D .2 5.在等比数列{}n a 中,若2n n a =,则7a 与9a 的等比中项为( ) A .8a B .8a - C .8a ± D .前3个选项都不对 6.关于x 的不等式2260x ax a --<(0a >)的解集为12(,)x x ,且2110x x -=,则a =( ) A .2 B .5 C .52 D . 32 ⒎ 已知正项等比数列{}n a 满足2014 201320122a a a =+14a =,则11 6()m n +的最小值为( ) A . 2 3 B .2 C .4 D .6 8.△ABC 的内角,,A B C 的所对的边,,a b c 成等比数列,且公比为q ,则sinC sin q A +的取值范围为( ) A .()0,+∞ B .(1,2 C .()1,+∞ D .)1 A .2015- B .2014- C .2014 D .2015 【填空题】 11.若数列}{n a 中,762 ++-=n n a n ,则其前n 项和n S 取最大值时,=n __________. 12.在ABC ?中,060,B AC ∠== ,则3AB BC +的最大值为 . 13.已知关于x 的不等式()()2440ax a x --->的解集为A ,且A 中共含有n 个整数, 则当n 最小时实数a 的值为 . 14.在ABC ?中,内角,,A B C 的对边分别是,,a b c ,若1sin cos ,24sin C B A = =,且ABC S ?=, 则______.b =

平面几何中的三角形不等式

平面几何中的三角形不等式 222221 江苏省灌云县杨集中学 尹广金 1.三角形不等式简介: 我们已经知道:三角形的任意两边之差小于第三边,三角形的任意两边之和大于第三边(换言之:三角形的任意一边在其它两边的差与和之间). 让我们的思维向前走两步,可以得到一个十分重要的不等式. 在同一平面内画线段A B 与点C ,只有4种情形:①点C 在线段A B 所在直线外(如图1所示);②点C 在线段A B 上(如图2所示);③点C 在线段A B 的延长线上(如图3所示);④点C 在线段A B 的反向延长线(即线段B A 的延长线)上(如图4所示). 图2、图3、图4中的ABC 称为退化的三角形(退化A B C ?). 由图1可知,AC BC AB AC BC -<<+;由图2可知,AC BC AB -<= A C B C +;由图3可知,AC BC AB AC BC -=<+;由图4可知,AC BC AB -= AC BC <+. 综合上述4种情况,可立即得到三角形不等式: AC BC AB AC BC -≤≤+, 其中,A B 左边的等号当且仅当点C 在线段A B 的延长线上或点C 在线段B A 的延长线上时取得;A B 右边的等号当且仅当点C 在线段A B 上时取得. 评注:三角形不等式可以解决平面几面中的某些最大值或最小值问题: (1)考虑AB AC BC ≥-,若AC BC -是定值,当且仅当点C 在线段A B 的延长线上或点C 在线段B A 的延长线上时,A B 可取得最小值,且 AB AC BC =-最小值; 图1 图2 C 图3 图4 C

(2)考虑A B A C B C ≤+,若A C B C +是定值,当且仅当点C 在线段A B 上时, A B 可取得最大值,且 AB AC BC =+最大值. 2.三角形不等式应用: 例 已知:如图5,90MON ∠= ,四边 形 A B C D 是矩形,且2A B =,1C D =,当 顶点A 在射线O M 上运动时,顶点B 在射线 O N 上运动. 那么顶点D 到点O 的距离的最 大值为 . (新海实验中学9年级期中数学试题) 解 取A B 中点P ,连结P O 、P D ,则 112 P O A B = = ,PD = = = D O P O P D ≤+ ,即1DO ≤+(其中等号,当且仅当点P 在D O 上时取得), 于是顶点D 到点O 的距离的最大值为1+ 参见图6,此时67.5ABC ∠= . 图5 M O A 图6 M O A

专题2.3 解三角形与不等式最值和范围问题的结合-2018年高考数学解答题专题训练

1.在ABC ?中,角,,A B C 的对边分别为,,a b c ,且cos cos 3A B C a b a += . (1)求角B 的大小; (2)若ABC ? B 是钝角,求b 的最小值. 【答案】(1)3 B π = 或 23 π . (2 由正弦定理得sin cos cos sin sin B A B A B C += , ∴()sin sin 3 A B B C += , 又在ABC ?中, ()sin sin 0A B C +=≠,∴sin B = 3B π=或23π. (2)由 1sin 2ac B = , sin B =2ac =, 又23 B π= , 2222cos b a c ac B =+- 22 2226a c ac =++≥+=, 当且仅当a c =时取等号,∴b 2.已知ABC ?三个内角 ,,A B C 的对边分别为,,a b c , ABC ?的面积S 满足222 S a b c =+-. (1)求角C 的值; (2)求()cos2cos A A B +-的取值范围. 【答案】(1) 23 π;(2)(

) 222 1 sin 4 2 a b c S ab C +-=- == tan C =0C π<<, 2 3 C π∴=. (2)()3cos2cos =cos2cos 2cos2322 A A B A A A A π?? +-+- =+ ?? ? 23A π? ?+ ?? ? 0,23 3 3 A A π π π π<< ∴ <+ < ( 203A π? ?+∈ ?? ? 3.已知ABC 的内角A B C 、、的对边长分别为a b c 、、tan tan A B =+. (1)求角A 的大小; (2)设AD 为BC 边上的高, a =AD 的范围. 【答案】(1) 3 A π = (2) 302 AD <≤ 【解析】试题分析:(1)先根据正弦定理化边角关系为角的关系,再根据三角形内角关系以及诱导公式化 简得tan A =A 的大小,(2)根据三角形面积关系得1 2 AD bc =,再根据余弦定理得bc 范围,即得AD 的范围. 试题解析:(1)在ABC 中, tan tan A B =+sin sin cos cos A B A B =+ 即:sin cos sin cos cos cos A B B A A B +=