文档库 最新最全的文档下载
当前位置:文档库 › 生物工程生物技术专业英语翻译(二)

生物工程生物技术专业英语翻译(二)

生物工程生物技术专业英语翻译(二)
生物工程生物技术专业英语翻译(二)

第二章生长与代谢的生物化学

2.1 前言

一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。

代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。

实际中,我们要有效的区分那些需要空气中的氧进行需

氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而维持一定水平的合成代谢。

在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO2。

2.2 代谢与能量

分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP,其含有生物学家所说的“高能键”。在ATP分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP这类分子,为细胞提供了流通能量,当将ATP用于生物合成反应时,其水解产物为ADP(腺苷二磷酸)或者某些时候为AMP(腺苷一磷酸):(反应式)

仍含有一个高能键的ADP 通过腺苷酸激酶反应也可生成ATP :(反应式)。

磷酸化作用是生物体中普遍的反应,通常由ATP 作用而发生。

经过磷酸化生成的物质通常比最初的化合物更具有反应活性,用无机磷酸进行磷酸化反应是无法进行的,因为,平衡反应式的相反方向生成大量的水(55M )。 细胞的“能量状态”认为是由占有优势的组分:ATP 、ADP 、AMP 作用形成的。为了给出一个量值,Daniel Atksirson 提出了“能荷”这个概念,定义一个细胞的能荷为:

在“满荷”细胞中,仅含有ATP 一种腺嘌呤核苷酸,它的能荷值定义为 1.0。如果三种核苷酸的量相等,即ATP=ADP=AMP ,则细胞的能荷为0.5。

与所有的习惯用法相同,能荷概念的使用是有限制的,没有人能够确定假如一个细胞的能荷是0.7而不是0.8或者0.6到底是什么意思。 这个概念没有考虑细胞中核苷酸的确切数量,也没有表明对于单体酶和ATP 与其镁复合物之间的显著差别。它也无法解释细菌、酵母菌与霉菌中能荷值的差异。尽管如此,这个概念对于给定的细胞类型如生长期细胞中随后的能量与酶活性的改变来讲是有所帮助的。当细胞迅速生长时,能荷ATP+0.5 ADP

ATP+ ADP+AMP

处于最低值;ATP以它重新合成的最快速度被消耗,在生长末期,生长速度开始变慢,相对于ADP和AMP,ATP组分开始增大,因此,能荷值开始增大,当细胞停止生长时,所有的ADP和AMP都已经转化为ATP,此时能荷值达到最大。

2.3 分解代谢途径

尽管微生物可以利用不同的含碳化合物进行生长,但我们主要关心的是葡萄糖的代谢,鉴于乙醇(和其它C2化合物)、烃和脂肪酸、甲烷和甲醇这些物质的不断增长的重要的经济价值。

2.3.1 葡萄糖和其它糖

几乎在所有的生命细胞中,最重要的两种糖代谢途径是二磷酸己糖途径与一磷酸己糖途径,它们常常同时发生,为合成代谢过程提供重要的联系,它们之间的相互作用受关键控制机制的支配。

二磷酸己糖途径(常被称为恩伯纳-迈耶霍夫或者糖酵解途径)如图2.2所示。这个过程将葡萄糖转化为丙酮酸,碳原子数量无变化,还原2分子NAD+辅酶生成2分子ATP。生成的丙酮酸是合成代谢重要的前提物质的来源,在好氧有机体中,它还是氧化还原反应的底物,而在厌氧有机体中,丙酮酸或者它转化的产物是NADH的氧化剂。

一磷酸己糖途径即磷酸戊糖途径如图2.4。作为氧化过程,它将葡萄糖转化为戊糖和CO2,还原2分子NADP+生

成NADPH。[NAD+ NADP+和NADH/NADPH都是通过H转移而作用,但它们是有差别的;NADH主要在于能量相关的氧化还原反应中发挥作用,而NADPH主要作用于合成代谢过程中的还原反应步骤。

经过一系列可逆互变过程,如图2.4所示,磷酸戊糖与其它含有3-7个碳原子的磷酸糖相平衡,并根据环境条件,扮演不同的代谢角色。磷酸丙糖与糖酵解过程中所生成的相同,而且跳过糖酵解途径的cleavage step生成二磷酸己糖;磷酸丁糖是重要的合成代谢生产芳香环氨基酸的前体,而磷酸戊糖也是合成核苷酸所必需的物质。

对大多数有机体而言,66-80%的葡萄糖是经过恩伯纳-迈耶霍夫途径进行代谢的,剩下的则通过磷酸戊糖途径进行代谢。每个代谢途径中碳原子流向的控制点通常是恩伯纳-迈耶霍夫途径中,当6-磷酸果糖被磷酸果糖激酶(PFK)催化发生磷酸化作用生成1,6-二磷酸果糖时候。这种酶分子组成可以根据细胞所进行的主要代谢情况而对酶活性进行调节:当需要更多能量的时候,PFK的活性就增大;而如果细胞中有足够的能量或者足够的C3代谢产物,则PFK的活性就降低。

这种通过调节催化活性从而对酶进行控制的原则是很普遍。代谢途径是一直被控制的,对细胞来说,必须协调并最有效的行使它的整体活动。对于PFK的控制通过两种手段。

第一,酶的激活。在存在有ATP或ADP时,酶催化反应的速度被增大。因此,当细胞能荷低时,PFK将以高速率催化反应地进行。第二,酶被中间产物一般为磷酸烯醇式丙酮酸或者柠檬酸抑制,从而代谢过程被减缓。因此,如果它们其中的一种不能被有效转化为其它物质的话,就无法使细胞继续进行生长。

葡萄糖代谢的其他可控制点根据有机体的不同而不同。但是分解代谢必须尽可能的满足合成代谢的需求。

恩伯纳-迈耶霍夫途径与磷酸戊糖循环途径不是葡萄糖仅有的代谢过程,尽管它们是非常普遍的代谢途径。相对于恩伯纳-迈耶霍夫途径,另一种主要的代谢途径是恩特纳—道德洛夫途径,见于某些假单孢菌与细菌中,如图2.5所示。磷酸戊糖途径中的酶对C5和C4糖的产生来说仍是必需的,但代谢方向与图2.4中所示的相反。

磷酸酮醇酶是另一种较重要的酶,也许比人们一般上了解到的使用范围更加广泛。这类酶(不是一个)作用于磷酸C5和C6糖,产生乙酰磷酸和3-磷酸甘油醛或者4-磷酸赤藓糖(取决于是C5还是C6糖被利用)如图2.6。这些酶最早见于进行异型发酵的乳酸杆菌与醋酸杆菌中,它们取代恩伯纳-迈耶霍夫途径而发挥作用。产生的乙酰磷酸可以被转化为乙酰或者乙醇。最近发现在酵母菌中,当大多数酵母以木糖作为单一碳源进行好氧生长时,磷酸酮醇酶是一种诱导酶。

木糖经过最初代谢由木糖醇转化为木酮糖,然后以5-磷酸木酮糖进行磷酸酮醇酶反应,如图2.6所示(在以利用木糖进行生长的细菌中,有一种异构酶可直接将木糖转化为木酮糖)。在这种情况下,C5-磷酸酮醇酶不取代恩伯纳-迈耶霍夫途径而仅仅是为有机体将戊糖转化为C2或者C3单元进行进一步代谢提供一种有效的途径。这类酶从而存在于很多微生物中而不单单是酵母,当利用木糖或其它戊糖进行生长代谢。

2.3.2 三羧酸循环

目前所讨论的代谢途径其终产物为C3或者C2化合物,称为丙酮酸酯或者乙酰,前者如乙酰CoA是一种硫酯(如图2.7),具有酐的反应性(脱氢反应活性)。丙酮酸酯与乙酰CoA的进一步有氧代谢经过一个循环过程,具有两种作用。它产生的中间产物用来进行生物合成反应,化合物最终被氧化为CO2和水,它将氧化反应与能量转移相联系。乙酰CoA 氧化反应循环过程普遍存在于所有好氧细胞中(被称为三羧酸循环,克雷布斯循环)。

在真核生物细胞中,三羧酸循环与产生能量的反应是在线粒体内完成的,而在细菌体内,产生能量的酶位于细胞质膜上。由于线粒体内的代谢过程首先七十于将丙酮酸转运到线粒体中,从而更容易的使丙酮酸进行三羧酸循环反应。

丙酮酸转化为乙酰CoA的整个过程是由一种多酶复合物

所催化的,丙酮酸脱氢酶。

乙酰CoA接下来通过图2.8所示的三羧酸循环反应而代谢。

这个循环的作用包括:

(i)生产可用于其它生物合成途径的中间产物例如:天冬氨酸与谷氨酸反应是非常重要的代谢途径,细胞通过

该途径同化氨。

(ii)从氧化反应中回收能量。异柠檬酸脱氢酶、α-酮戊二酸脱氢酶、琥珀酸脱氢酶和苹果酸脱氢酶这些酶催化

中间产物的进一步氧化反应,同时辅酶有氧化型转为

还原型。辅酶I(NAD+)和FAD分别转变为NADH

和FADH.,然后又经氧化磷酸化作用重新氧化为最

初形式的辅酶,每摩尔NADH产生3摩尔ATP,而

摩尔FADH2产生2摩尔ATP。琥珀酸激酶反应也可

获得能量。

尽管这种循环自身是永不停止的,一旦从草酰乙酸启动将不断进行下去,但实际上这种情况是不存在的。就像已经说明的那样,这个循环同时为生物合成反应储备中间产物,一旦任何一种中间产物从循环中被除去,草酰乙酸与柠檬酸的合成就无法进行。因此,额外的草酰乙酸就必须独立自主的合成,这主要通过丙酮酸的羧化作用。

这个反应由丙酮酸羧化酶催化,但是由于经过循环反应

过程也合成了草酰乙酸,因此,必须对丙酮酸的羧化反应进行调控,以使得乙酰CoA于草酰乙酸的含量保持均等,主要通过丙酮酸羧化酶实现对它的控制。乙酰CoA是丙酮酸羧化酶的正效应物,也就是说它可以提高酶的活性。乙酰CoA 含量越高,草酰乙酸的合成速度就越快。当草酰乙酸与乙酰CoA合成了柠檬酸,乙酰CoA的浓度就减少;丙酮酸羧化酶的活性随之下降,但由于丙酮酸脱氢酶仍旧存在,将会产生更多的乙酰CoA。这样,柠檬酸合成不仅不会停止,这两个物质也使柠檬酸的前提物质始终保持平衡。

其它辅助控制也能实现对循环过程的调节,其中的有些酶的活性受ATP抑制,而有些则受到AMP浓度的影响。因此,循环反应过程可以通过ATP与AMP相应的比例来进行调控,也就是细胞的能荷。这种控制机制没有广泛采用,但对于单个有机体或一群有机体是被证实的,在这里不详细讨论,但控制机制的普遍原则如对糖酵解过程的控制仍被应用。

2.3.3 乙醛酸途径(以C2化合物为碳源)

如果一个有机体利用C2化合物或者脂肪酸或烃进行生长,那么产物主要为C2单元,三羧酸循环不能完全满足有机体的生长代谢,像前面内容中所讲过的,任何用来进行合成代谢的化合物,一旦在三羧酸循环中缺少,那么草酰乙酸的生成便会停止,由于C2化合物不能转化为丙酮酸(丙酮

酸脱氢酶的反应是不可逆反应),因此,没有一种途径可将草酰乙酸或者更准确地说是任何一种C4化合物通过目前已经所述的反应由C2化合物合成。

如果被作为碳源而利用,乙酰CoA可直接由乙酰生成,或者来源于还原性比乙酰更强的C2化合物,如乙醛或者乙醇。

通过已知的乙醛酸途径如图2.9,乙酰转化为C4化合物,这个过程需要用到在三羧酸循环中作用的酶:异柠檬酸裂解酶与苹果酸合成酶。两种酶都是可被诱导的,当微生物利用C2化合物生长代谢;在这样的生长条件下,酶的活性可提高到20-50倍。乙醛酸途径不会取代三羧酸循环;例如:必须合成α-酮戊二酸用来为蛋白质的合成提供谷氨酸等。琥珀酸、柠檬酸裂解酶的另一个产物,同以前代谢生产的产物一样为苹果酸,然后是草酰乙酸。因此,经过乙醛酸循环,C4化合物就由C2单元进行合成,然后用来合成所有的细胞代谢物。它们转化为糖的过程在2.4部分中详细介绍。

2.3.4 脂肪酸和烃

利用烃进行生长的情况并不多见,但却见于细菌、酵母和霉菌中,这种利用脂肪酸或油和脂肪这种含有脂肪酸的物质进行代谢的现象是比较常见的。

烃类可作为生产单细胞蛋白的唯一碳源,也可用于其它代谢过程,如柠檬酸的生产。常在抗生素生产中加入脂肪酸

和植物油作为辅料。为了利用油和脂肪,有机体必须用脂肪酶水解(细胞内或细胞外)酯键,而生成3摩尔游离脂肪酸和1墨尔甘油;甘油在恩伯纳—迈耶霍夫途径中被利用,很多微生物也可利用游离脂肪酸,但无论这类酸是被摄入到细胞内还是就此形成,它们都是剧毒性的(由于它们具有表面活性剂的性质)从而必须立刻转化为其辅酶A的硫酯形式。

硫酯又经过如图2.10的循环过程活化,用来降解脂肪链。每轮循环,都将产生1摩尔乙酰CoA,与此同时,其链上少了2个碳原子的酯酰基CoA又开始了新一轮的氧化循环。这个过程即为β-氧化循环,它将一直持续到反应终产物为C4化合物,乙酰乙酰CoA,此时产生2摩尔的乙酰CoA。如果脂肪酸含有的碳原子数为奇数,那么该降解过程不断延续直到生成丙酸CoA,它将通过2.7.3部分中所讲反应的可逆反应转化为丙酮酸。

微生物利用烷烃进行生长通常由攻击两个甲基基团中的一个而开始,利用这种攻击机制,烷烃羟化酶包含氧分子和含铁的氧化辅因子,这个辅因子是经氧化的,而它的还原型重新生成过程最终与氢化物载体相关,或者是NADH或者是NADPH。

经过两部脱氢作用,脂肪醇被氧化为相应的脂肪酸:(反应式)

一般来说,所有的参与烷烃降解作用的酶都具有底物专

一性,而且容易与C10-C18的底物起作用。某些微生物可作用于更短或更长的链。少数情况下,对烷烃作用后生成甲基酮,它最终经过进一步氧化被裂解为甲酸和比初始烷烃少2个碳原子的脂肪酸。

尽管在某些有机体中,存在一种产生二羧酸的ω-氧化,但烷烃一般上都是经过β-氧化循环而被降解为脂肪酸,这些脂肪酸又从一个终点开始,经过β-氧化而降解。脂肪酸也被细胞用来直接合成自身脂肪,因此,细胞中脂肪酸链的长度就代表了烷烃链的长度。

烷烃和某些支链烃也可能进行代谢;它们不是从商业角度进行利用而是作为饲料中的微小部分。它们的氧化反应过程同样涉及转化为脂肪酸的过程。

2.3.5 甲烷和甲醇

少数(细菌和酵母)被称为甲基营养菌的微生物能够利用甲醇作为唯一的碳源;到目前为止,只发现一小部分细菌具有利用甲烷的能力,称为甲烷营养菌。极少数微生物能利用甲酸为碳源。这三种化合物的代谢是相关的,被最终氧化为CO2,它们合成细胞物质的机制与自养CO2固定化作用机制是不同的。

[能够利用CO2作为唯一碳源的包括进行光合作用的植物与微生物和很少一部分无机化能营养型细菌,其是利用无机化合物的反应作为能量的来源。这些生物目前在生物工程

中的应用较少。若想进一步了解CO2自养固定化的读者可参阅任何一本生物化学课本,但必须注意到,至少有两种不同的代谢途径:卡尔文循环和还原性羧酸循环。]

甲烷的氧化过程为:(反应式)

第一步是通过一种氧合酶与NADH(或NADPH)辅因子来进行,(与上述高级烷烃的氧化相比较)。

氧合酶(3种蛋白质复合物)也可以氧化其它多种化合物,包括多种烷烃甚至甲醇本身。

接下来的第二步反应由甲醇脱氢酶催化,以一种新发现的物质吡咯并喹啉醌为辅因子。

在某些细菌中,甲醛进一步转化为甲酸的过程被同种酶催化;而在另一些细菌中,有一种独立作用的甲酸脱氢酶,NAD是它的辅因子。

最后一步反应是将甲酸转化为CO2,它是通过甲酸脱氢酶来催化进行的,伴有NAD+的还原过程。

来自甲醇或甲烷中的碳同化为细胞物质甲醛,经过两种独立的代谢途径:一磷酸核酮糖循环和丝氨酸途径,分别如图2.11和2.12所示。

单磷酸核酮糖循环与卡尔文循环相似,都是通过磷酸戊糖途径的反应进行CO2自养固定化而生成以后的C1化合物受体,只多了两种酶:磷酸己糖合成酶和3-磷酸己糖异构酶。

丝氨酸途径中的关键酶是:生成乙酰CoA和甘油的苹果

酰CoA以及丝氨酸转甲基酶,这是一种广泛存在的酶,作用于四氢叶酸(四氢叶酸是一种辅因子,可形成必需的活化C1中间产物,N10-甲酰四氢叶酸,而后乙醛酸途径利用乙酰CoA。所以细胞就可在C2底物上进行生长。异柠檬酸裂解酶去阻遏从而确保C3单元的生成。

酵母中,磷酸戊糖循环又进一步发生了一些变化,甲醛与5-磷酸木酮糖反应生成了3-磷酸甘油醛和2-羟基丙酮。此反应过程由转酮酶催化,完成甲醛循化同化过程唯一需要另外加入的酶是一种新的激酶,它将二羟基丙酮转化为二羟基磷酸丙酮。

2.4 葡糖异生作用

当一个有机体利用C2和C3化合物进行生长,或者利用经过代谢过程能够生成C2或C3这种化合物的物质进行生长的时候,在丙酮酸的代谢水平或者低于该水平(例如脂肪烃、乙酸、乙醇或者乳酸),对有机体来说,就必须合成各种糖类以满足其代谢需求。这被称为葡糖异生作用。

尽管糖酵解途径中的大部分反应都是可逆的,但那些被丙酮酸激酶和磷酸果糖激酶催化地反应则是不可逆的,对细胞来说,就要避开这种阻碍。

一般而言,磷酸烯醇式丙酮酸不能由丙酮酸形成,尽管在少数有机体内存在一种磷酸烯醇式丙酮酸合成酶可以催化这个反应。

通常,草酰乙酸作为磷酸烯醇式丙酮酸的前体物质。

这个反应由磷酸烯醇式丙酮酸羧化酶催化进行,它是葡糖异生作用中的关键酶。已经讲过草酰乙酸的生成,果糖二磷酸化酶的作用可避开磷酸果糖激酶的不可逆作用的性质(其作用产生1,6-二磷酸果糖)。

从这一点来看,通过终止糖酵解途径可积累己糖,通过磷酸戊糖循环又可生成C3和C4糖,葡萄糖不是葡糖异生作用的终产物,然而6-磷酸葡萄糖被用来合成细胞壁组分,和各种细胞外物质及储备多糖。

2.5 好氧生物的能量代谢

在葡萄糖代谢和三羧酸循环中已经讲过,如何把各种代谢中间产物的氧化过程与辅因子(NAD+、NADP+、FAD+)还原为其还原型(NADH、NADPH、FADH)的还原反应过程联系起来的。这些产物的还原性是由一系列复杂的反应过程而是释放。这个反应过程最终与空气中氧气的还原相关。在这个反应过程中,由电子传递上的ATP或者2-3个具体位点上的无机磷而生成ATP,这取决于最初还原剂的性质。如图2.14,总反应式如下:。。。。。。。

每摩尔葡萄糖经过恩伯纳-迈耶霍夫途径所生成的ATP 和丙酮酸经三羧酸循环产生的ATP总结于表2.1。

能够被生物利用的ATP形式的能量是在膜上产生的,可以是真核细胞的线粒体膜或者是细菌细胞的细胞质膜,其产

生过程大致相同。具体差异根据个体差异而不同。电子传递链的主要成分是黄素蛋白,醌和细胞色素。细胞色素具有还原性(接受氢离子或者电子),经过氧化可以有效释放电子到下一个载体上。每个载体都有不同的氧化-还原能,大约可以从NADH/NAD+反应的320摩尔到1/2O2/H2O终反应的800mV。在电子传递链上的特定位点,两个相邻电子载体的氧化-还原能差就已足够进行可逆反应:。。。。向合成ATP的方向进行。这个过程需要一种复杂的多亚基酶ATPase的协助。

有两种原理来说明ATPase是怎样作用的。在化学渗透学说中,过去二十年里米歇尔对其进行了发展,认为电子传递上的各组分是跨膜排列的,由于质子从一边向另一边移动,这样便产生了pH和电子浓度梯度。质子跨膜运动就推动了ATPase反应合成ATP。ATPase是定向作用的,质子只能从一边靠近催化位点,图2.15对这个概念进行了简单说明。

ATP合成的第二种解释为,电子传递链上的载体与假设的将要被活化的中间产物相互作用使ATP磷酸化。这种中间产物称为偶联因子。

两种理论个具有优缺点,都可以解释不成对氧化磷酸化作用产生的影响,如鱼藤酮、安必妥、抗霉素A等。它们可以阻止ATP的合成。

2.6 厌氧生物能量生成过程

在2.5部分中所说的ATP生成过程需要供应氧气。某些有机体则可以用磷酸盐,另一些则用硫酸盐或铁离子来代替氧气分子,而且如果在培养集中,这些物质被大量供应,那么有机体利用电子传递体在没有空气的条件下仍可以生成ATP,从而进行厌氧生长。如果没有合适的电子受体,或者(如大多数细菌)有机体缺少这类物质,那么一旦缺少氧气,有机体将不能以这样的方式合成ATP。所以,进行厌氧生长的有机体就必须将ATP 合成反应与能量生成反应相联系,才能获得ATP,这被称为底物水平磷酸化。这只发生在有限数量的反应中。反应自由能的变化必须能够进行ATP磷酸化反应。其中最为重要的反应归纳于表2.2。

这6种反应,其中后3种只对少数生物体来说是重要的。表2.2中其它的3个反应中,反应1与反应2涉及糖酵解的中间产物,涉及乙酰磷酸的反应3广泛存在于厌氧有机体中。乙酰磷酸由乙酰CoA与无机磷反应而合成,它还是被磷酸酮醇酶作用的。

乙酰CoA可以由乙酰乙酰CoA 降解而生成,或者由丙酮酸经3种反应中的一种而生成:丙酮酸脱氢酶反应,丙酮酸甲酸裂解酶反应,铁氧还蛋白氧化还原酶反应,该反应与丙酮酸脱氢酶反应产生同样的产物,但是用到了一种铁硫蛋白,铁氧还蛋白不是NAD+作为还原剂(还原型铁氧还蛋白

被氢化酶还原为铁氧蛋白,释放出氢气)这三种酶中,后两种对氧敏感,当含有它们的有机体被暴露于空气中的时候,它们便会迅速失活。

越来越多的证据表明,电子传递磷酸化同样可以进行延胡羧酸还原酶的反应。这种酶对于某些产甲烷菌,还原硫酸盐的有机体及进行氢气与二氧化碳发酵的氢化菌来说大概是重要的。反应:。。。。。,氢原子可以由各种辅因子提供,包括NADPH,而某些有机体如大肠杆菌、其氢原子的生成经过了电子传递链,即使与好氧有机体中的电子传递链不同,但也至少是类似的。因此,尽管没有氧气,有机体仍通过偶联不同的反应从而生成ATP。

所有的厌氧有机体都面临两个问题:第一,在氧化磷酸化作用中,缺少将NADH或NADPH的再氧化与ATP的生成相联系。每摩尔底物所生成的ATP量比好氧代谢产生的少。第二,不能将NADH的氧化与氧气的还原相联系,这样如何进行这个重要的反应就成为一个问题,当所有的NAD+不可逆的转化为NADH,代谢过程也就很快被停止。

厌氧生物采用很多方法使还原型辅因子重新被氧化。其中的核心部分为:。。。

这里,由AH2 A这步是厌氧生物利用底物时所采用的途径中的一部分。通常,底物B是补充还原反应所必需的,也直接来源于底物;BH2一旦形成,就不再进一步代谢。AH2

的代谢与BH2的补偿性生成在化学计量上相关。这样以来,厌氧生物必须积累还原型代谢产物从而能够进行任何底物的降解过程。而且,就像已经说明的那样,既然厌氧生物从降解底物后获得极少的ATP,那么还原型代谢产物的积累与合成的细胞物质必将有极大的联系。以这种方式进行的厌氧代谢将在后面内容中讲述。

2.7 厌氧代谢

选择底物来氧化还原剂,例如NADH、NADPH、FADH2是非常普遍的现象,同时产生相应的各种终产物,因此对厌氧代谢途径的描述也就是个体将积累何种终产物的描述。这些终产物例如乙醇有着很高的商业价值。即使是在厌氧条件下,葡萄糖仍是生成丙酮酸,但是只有小部分丙酮酸进入三羧酸循环从而生成用来合成主要的细胞物质的中间体。三羧酸循环反应只提供这些中间体而不生成能量,通常,三羧酸循环不会完全发挥作用,尤其是α-酮戊二酸脱氢酶不作用,因此,这个循环成为一个铁蹄形,其中草酰乙酸转化为琥珀酸,而柠檬酸转化为α-酮戊二酸。

2.7.1发酵产酒精

在酿酒酵母这样的酵母菌中,氧化剂是缩醛;从葡萄糖转化的丙酮酸大部分转化为酒精。(反应式)

1摩尔葡萄糖可生成2摩尔丙酮酸;产生的酒精可以重新氧化在磷酸丙糖脱氢酶反应过程中生成的NADH,总的化

学计量如下式:

ATP为酵母细胞的生长提供能量,但是由表2.1中比较得知,每摩尔葡萄糖在好氧条件下转化的量少于5%。

葡萄糖通过磷酸戊糖途经主要的代谢产物为必需的C5和C4糖,经过这个过程摩尔葡萄糖仅能生成1摩尔的丙酮酸,同时产生2摩尔NADPH和1摩尔NADH。这些附属的还原性物质必须与其它反应相连从而被重新氧化。

这些反应中最重要的反应过程是脂肪酸的形成,它们是化学合成的还原性化合物,其合成过程需要大量的相应的还原性物质。

某些细菌也可进行生产酒精,通常还伴有其他终产物的生成,某些霉菌也能生产酒精,而且厌氧条件一般对生产最大量的酒精来说是必需的。如果产酒精的有机体可以像酿酒酵母那样进行好氧生长,那么一旦通入氧气,积累的酒精就常常被细胞吸收并以醋酸的形式作为生长底物而被利用。

2.7.2 乳酸发酵

发酵产乳酸的过程是仅次于酒精发酵的过程,对于食品工业均具有重要的历史意义。

除乳酸外,杂发酵乳酸菌生产各种还原性化合物,而且没有主要的糖酵酶-醛缩酶;而使用磷酸酮醇酶,它是生成乙酰磷酸的酶。在厌氧条件下,乙酰磷酸经过生成ATP的过程而转化为酒精和乙酸,酒精重新生产NAD+。磷酸酮醇酶的

生物工程生物技术专业英语翻译(二)

第二章生长与代谢的生物化学 2.1 前言 一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。 代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。 实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而

维持一定水平的合成代谢。 在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO 2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO 2。 2.2 代谢与能量 分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP ,其含有生物学家所说的“高能键”。在ATP 分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP 这类分子,为细胞提供了流通能量,当将ATP 用于生物合成反应时,其水解产物为ADP (腺苷二磷酸)或者某些时候为AMP (腺苷一磷酸):(反应式) 仍含有一个高能键的ADP 通过腺苷酸激酶反应也可生成ATP :(反应式)。 磷酸化作用是生物体中普遍的反应,通常由ATP 作用而发生。 经过磷酸化生成的物质通常比最初的化合物更具有反应活性,用无机磷酸进行磷酸化反应是无法进行的,因为,平衡反应式的相反方向生成大量的水(55M )。 细胞的“能量状态”认为是由占有优势的组分:ATP 、ADP 、AMP 作用形成的。为了给出一个量值,Daniel Atksirson 提出了“能荷”这个概念,定义一个细胞的能荷为: 在“满荷”细胞中,仅含有ATP 一种腺嘌呤核苷酸,它的能荷值定义为 1.0。如果三种核苷酸的量相等,即ATP=ADP=AMP ,则细胞的能荷为ATP+0.5 ADP ATP+ ADP+AMP

生物工程生物技术专业英语翻译(七)

第七章仪器化 7.1介绍 本章主要介绍发酵过程中检测和控制的仪表。显然这些仪表并不时专门用于生物发酵领域的,它们在生物工程或相关的领域中也有广泛的应用。在实际中,大多数应用与生物工程的分析仪表并不是由生物工程发展的产物,至今,生物学家常用的仪表是在化学工业中应用的而发掌出来的。但是,这些精确的仪表并不是为更加复杂的生物反应专门设计的,在计算机控制出现以后,这表现的更加明显。 计算机自动化的发展主要基于各种探测器的发展,它们可以将有意义的信号转化成控制动作。现在适合于提供发酵过程详细参数的适当仪器已经有了很大的改进,这可以提高产量和产率。遗憾的是,在商业化中实现这些自动控制还很困难,但是改变这种情况只是时间的问题。本章只讨论现有的仪表和设备,它们目前都有各自的局限性。 计算机控制是目前发酵工程中的惯用语,不久之后,发酵过程也许真的可以和计算机匹配。但是在这一进步过程中,我们开始考虑一句谚语,“工具抑制创造性思维”。计算机控制需要在线仪表,我们在章中会有涉及。 7.2 术语 如果我们所有对生物工程过程的理解需要仪表,我们真正熟悉我们所用的仪表就非常重要,否则我们就会对这些仪

表的适用性和特性产生错误的判断。下面对一些常用的性质加以介绍。 反应时间通常是描述90%输入信号转换成输出信号所需要的时间。作为经验法则,用于生物系统的仪表的反应时间要小于倍增时间的10%。因此,在典型的发酵工程中,如果倍增时间是3h,超过18min反应时间的仪表将无法完成在线控制。很多仪表有更小的反应时间,它们通常被用于一些其它样品的操作,它们的测定和控制动作的之后时间更长。 灵敏度是衡量仪表输出结果变化和输入信号变化之间的关系。通常,考虑到高灵敏度的仪表可以测量微小的输入变化,灵敏度越高的仪表越好。然而,仪表的其它参数,如线性,精确性,和测定范围也是选择仪表的考虑因素。 输入与输出的线性关系是二者最简单的关系,校正过程也最为容易。 分辨率是可以测定的输入信号的最小值,通常以仪表读数最大偏转角的百分数来表示。 残留误差是指输出结果与输入保持恒定时的真实结果的偏离值。 重现性永远不要被忽视,只要有可能,就要对仪表进行校正,尤其是那些测定氧气和二氧化碳测定的仪表。 7.3 过程控制 在过程控制中,有三种可能实现的目标:

生物工程专业英语翻译(第一篇)改

1.1 生物技术的属性 生物技术是一个属于应用生物科学和技术的一个领域,它包含生物或亚细胞组分在制造行业、服务也和环境管理等方面的应用。生物技术利用细菌、酵母菌、真菌、藻类、植物细胞或培养的哺乳动物细胞作为工业过程的组成成分。只有将包括微生物学、生物化学、遗传学、分子生物学、化工原理在内的多种学科和技术综合起来才能获得成功的应用。 生物技术过程通常会涉及到细胞的培养和生物量,并得到所需的产品,后者可进一步分为:生成所需产品(如酶、抗生素、有机酸和类固醇); 原料的分解(如污水处理、工业废料处理和石油泄漏处理)。 生物技术的反应过程是分解过程,即把复杂化合物分解为简单化合物(如葡萄糖分解为乙醇),也是合成或同化过程,即把简单的分子合称为复杂的化合物(如抗生素的合成)。分解过程通常释放热量,而合成过程通常吸收能量。 生物技术包括发酵过程(如啤酒、果酒、面包、奶酪、抗生素和疫苗的生产)、供水与废物处理、食品技术以及越来越多的新应用,包括从生物医学到从地品位矿石中回收金属各个领域。由于生物技术的普遍性,它将在许多工业生产过程中产生重大的影响。理论上,几乎所有的有机物都能用生物技术来生产。到2000年,生物技术在未来全球市场的潜力预计接近650亿美元(表1.1)。然而,我们必须意识到,许多重要的生物产品仍将利用现有的分子模型通过化学方法合成。因此,应该从广义上来理解生物化学和化学以及他们与生物技术的关系。 生物技术所采用的众多技术通常比传统工业更经济、更低能耗、更安全,而且生产过程中的残留物都能够通过生物降解而且无毒。从长远来看,生物技术提供了一种可以解决众多世界性难题的方法,尤其是医药、食品生产、污染控制和新能源发展领域的问题。 表1.1 全球生物技术市场在2000年之前的增长潜力 摘自Sheets公司(1983n年)生物技术通报11月版。

工业工程专业英语1-3单元翻译

Professional English for Industrial Engineering Chapter1 Unit3翻译 姓名: 专业:工业工程 班级: 学号: 完成日期:2015-10-31

Chapter 1 Unit 3 Academic Disciplines of Industrial Engineering 五大主要工程学科和它们的发展 在美国,有五个主要工程学科(土木、化学、电工、工业、机械),它们是早在第一次世界大战时就出现的工程分支学科。这些进步是世界范围内发生的工业革命的一部分,并且在技术革命的开始阶段仍在发生。 随着第二次世界大战的发展导致了其他工程学科的发展,比如核工程,电子工程,航空工程,甚至是电脑工程。太空时代导致了航空工程的发展。最近对环境的关注使得环境工程和生态工程也得到了发展。这些更新的工程学科经常被认为是专长学科包含“五大”学科,即土木,化学,电工,工业,和机械工程里的一种或多种。 和美国的情况不同,工业工程在中国属于第一层级管理科学和工程学科下面的第二级别的学科。 IE学科的开端 学科后来演变成工业工程学科是最初在机械工程系被作为特殊课程教的。首个工业工程的分部在1908年的宾夕法尼亚州大学和雪城大学被建立。(在宾夕法尼亚州的项目是短期存在的,但是它在1925年又重建了)一个在普渡大学的机械工程的IE选科在1911年被建立。一个更完整的工业工程学院项目的历史可能在资料中被找到。 在机械工程部有一个IE选科的实践是主要的模式直到第二次世界大战的结束,并且分离出来的IE部在整个上个世纪里的文理学院和综合大学里被建立。 早在第二次世界大战的时候,在工业工程方面,只有很少的毕业生水平的研究。一旦分开的学部建立之后,学士和博士级别的项目开始出现。 现代IE的教育—分支学科 今天,与过去相比,工业工程对于不同的人来说意味着不同的东西。实际上,一个发展一个突出的现代工业工程的方法是通过获得在它的分支学科和它怎么联系到其他领域的理解。如果在分支学科和工业工程相关联的领域之间有清楚的

生物学专业英语课文译文

生物学的基本概念和方法 生物学是研究生命的科学,研究生物的结构、功能、繁殖、生物之间及其与周围非生命环境之间的相互影响。我们能够确定生物学的几个基本概念。 1.生命是高度有序的。在分子水平上,组成生命有机体的化学物质比构成大多数非生命系统的化学物质要复杂得多,而且更加高度有序。反映在生物体有序的结构和功能的。所有生物含有非常相似的化合物种类,而且构成生物机体的化合物与构成非生命环境的不同。 2.生物的基本单位是细胞。大多数细胞如此的小,我们必须借助于显微镜才能看到。诸如细菌、原生生物等许多小生物是由一个细胞组成的。而禾本科植物和动物等较大的生物有多达数亿个细胞。 每个细胞里都有一些分离的、高度有序的生命物质组成的生化工厂。细胞吸收养分和能量,并利用他们生存、生长、对环境的变化产生反应,最终繁殖,直至形成两个新的细胞。因此,细胞是生物的结构、功能及繁殖单位。 3.生物利用从环境中获取能量来维持和提高有序性。大多生物直接或间接地依赖于太阳的能量。绿色植物利用太阳能制造养分,来满足植物自身的需要;植物随后被食用植物的动物所利用,最终又被吃这些动物的动物所利用。所有的生物从他们的食物中获取能量,构建自身、生长、繁殖。 4.生物对环境作出积极反应。大多动物通过采用某种行为,如探险、逃跑、甚至卷成球,对环境的变化作出迅速地反应。植物的反应慢得多,但仍是主动(积极)的:茎和叶向光弯曲,根向下生长。生物对环境刺激的反应是普遍的。 5.生物的发育。万物都随着时间变化着,而生物的变化尤为复杂,称为发育。非生命的晶体因添加了相同或相近的单位而增大,但植物或动物发育成新的结构,如叶片或牙齿,与长出他们的部位有着化学和结构的差异。 6.生物可自我繁殖。新的生物——细菌、原生生物、动物、植物和真菌只能由其他相近生物繁殖而来的,新的细胞仅来源于其他细胞的分裂。 7.每个生物生存、发育和繁殖所需的信息在生物体内是分离的,并可传递给后代。此信息包含在生物的遗传物质——染色体和基因中,从而限定了生物发育、结构、功能和对环境反应可能的范围。生物体把遗传信息传给了后代,这就是为什么后代象他们的父母。然而,遗传信息多少有些不同,所以父母和后代通常相似而不完全相同。 8.生物进化并适应于他们的环境。今天的生物由远古的生命形式,通过遗传和变异进化而来。进化使得生物及其组分很好地适应了他们地生活方式。鱼类、蚯蚓和青蛙都是如此建造,以至于我们仅靠检查就能大概推测他们是如何生存的。生物对环境的适应性是进化的结果。 科学家如何有效地探索生命实质,并发现大量基本的事实呢?产生如此精确结果的思维方式又是怎样的呢?科学的方法是根据因果关系,形式化地回答自然界的问题。尽管科学家的实际工作方式有很多,但一般地说,科学方法有三个主要步骤。第一步是收集观察结果,观察可依靠感觉器官——视觉、听觉、味觉、嗅觉和触觉;也可借助可扩展感觉的特殊设备如显微镜间接地观察。经过实践,我们能够熟练地进行系统观察。这就意谓着可把一种或几种官能集中到环境中的某个特殊目标或事件,同时从中去除与我们注意的目标或事件无关的“背景燥音”。第二步,科学家构思假说,即对所观察到的现象的解释。第三步是实验,进行设计实验来验证一个或多个假说在不同程度上很可能是错的。 假说是对一个观察的暂时解释。没有一个科学家能够提出一个观点,并要求人们相信它是真理,而没有任何疑问。在科学上,没有绝对的正确,仅是就所观察的现象和现有的实验而言,某观点正确的可能性较大。是悬而未决的判断,而不是最终的判断。这就是说,如果一个假说与手上的观察结果一致,我们就说它暂时是正确的。你不会听到,也不该听到某位科学家说:“没有其他解释”;你更可能听到这样的话“基于现有的知识,此解释在目前是最好的”。 一旦有大量令人信服的证据,假说便成为学说或理论:即构成进一步研究的参照系的一系列相关观点。在科学上,词“理论”是不能被轻易使用的。它只能用于高度可信的假说。 通过实验验证假说是科学研究的核心。必须设计实验以使其结果尽人类智慧所能的明确。出于此原因,实验包括对照组和实验组。两者的差异仅在你所关注的因素。 收集和组织实验结果是生物研究的一必需过程。采用数据图表来组织和显示分析的信息;在说明模型的趋势时,图尤其有效。数据分析不象收集和组织信息那样机械,而更需理性。经常需要统计检验来确定实验组数据和对照组数据间的显著性,或者差异仅出于偶然。如果有异议说差异仅是偶然,那么就会有争议说那个单独的变量是无效的。 对实验结果的概括需要仔细和客观地分析收集的数据。通常,经验证的假说是在所得结论的基础上被接受或反驳。最后的陈述要写出获得了什么新的见解。在一段时间内出现相同的数据的话,便会注意到明显的趋势。往往还会进一步提出问题和假说试图引导对问题的进一步研究。 酶 一杯糖,如果不动它放置二十年都不会有什么变化,但如果把杯中糖的一部分放到你的嘴里,它将迅速地发生化学变化。你的细胞分泌出的酶决定了变化的速率。酶是具有巨大催化能力的蛋白质,这就是说酶大大地提高了特定反应达到平衡的速度。 酶不能使原本自身不能进行的反应发生,它只能使本身能进行的反应加速,通常至少加快一百万倍。并且酶不断重复着加速反应,其分子不会在反应中被消耗。 同样,酶对它将催化哪些反应以及它将与哪些称为底物的反应物起作用都有强的选择性。例如:凝血酶只能催化特定两个氨基酸之间肽键的断裂:精氨酸——甘氨酸。为什么酶对特定底物的偏爱如此重要呢?如果我们把代谢途径想象为通过一个细胞的化学通道,那么酶就象交叉路口的滑道和沿着某一路线的交通灯。酶仅容许特定的底物进入反应特定的序列中,并使底物通过此序列。 对不同途径酶的控制使得细胞指挥营养、结构物质、废物、激素等等按照有序的方式流动。当你吃了太多的糖,你肝脏细胞的酶就把多余的糖先转化成葡萄糖,再转化成糖原或脂肪。当你的肌体用掉葡萄糖需要补充时,酶便把糖原分解成葡萄糖亚单位,这个过程中,称为胰高血糖素的激素控制着酶的活性,它刺激糖原降解途径中的关键酶,同时抑制了催化糖原形成的酶。

生物工程生物技术专业英语翻译一

第一章导论 1.1生物工程的特征 生物工程是属于应用生物科学和技术的一个领域,它包含生物或其亚细胞组分在制造业、服务业和环境管理等方面的应用。生物技术利用病毒、酵母、真菌、藻类、植物细胞或者哺乳动物培养细胞作为工业化处理的组成部分。只有将微生物学、生物化学、遗传学、分子生物学、化学和化学工程等多种学科和技术结合起来,生物工程的应用才能获得成功。 生物工程过程一般包括细胞或菌体的生产和实现所期望的化学改造。后者进一步分为: (a)终产物的构建(例如,酶,抗生素、有机酸、甾类); (b)初始原料的降解(例如,污水处理、工业垃圾的降解或者石油泄漏)。 生物工程过程中的反应可能是分解代谢反应,其中复合物被分解为简单物质(葡萄糖分解代谢为乙醇),又或者可能是合成代谢反应或生物合成过程,经过这样的方式,简单分子被组建为较复杂的物质(抗生素的合成)。分解代谢反应常常是放能反应过程,相反的,合成代谢反应为吸能过程。 生物工程包括发酵工程(范围从啤酒、葡萄酒到面包、

奶酪、抗生素和疫苗的生产),水与废品的处理、某些食品生产以及从生物治疗到从低级矿石种进行金属回收这些新增领域。正是由于生物工程技术的应用多样性,它对工业生产有着重要的影响,而且,从理论上而言,几乎所有的生物材料都可以通过生物技术的方法进行生产。据预测,到2000年,生物技术产品未来市场潜力近650亿美元。但也应理解,还会有很多重要的新的生物产品仍将以化学方法,按现有的生物分子模型进行合成,例如,以干扰为基础的新药。因此,生命科学与化学之间的联系以及其与生物工程之间的关系更应阐释。 生物工程所采用的大部分技术相对于传统工业生产更经济,耗能低且更加安全,而且,对于大部分处理过程,其生产废料是经过生物降解的,无毒害。从长远角度来看,生物工程为解决世界性难题提供了一种方法,尤其是那些有关于医学、食品生产、污染控制和新能源开发方面的问题。 1.2生物工程的发展历史 与一般所理解的生物工程是一门新学科不同的是,而是认为在现实中可以探寻其发展历史。事实上,在现代生物技术体系中,生物工程的发展经历了四个主要的发展阶段。 食品与饮料的生物技术生产众所周知,像烤面包、啤酒与

哈工大工业工程专业英语翻译

《工业工程专业英语》 课文翻译 专业:工业工程 学号:11208401 姓名: 指导教师:赵,, 2014年12月

4.2 ERP系统的发展过程 现在,ERP系统无处不在,不仅应用在大型业务中,目前还由运营商们改良后应用在中小企业中。我们需要通过理解ERP系统及其当前体系结构的历史和发展来说明其发展变迁的成果。ERP的优点和缺点会影响它对市场的渗透,系统供应商已经为ERP的推动做好了市场定位和总体策略方面的准备。ERP系统在新的世纪中的应用和发展将依赖于其对客户关系管理、供应链管理一起其他拓展功能的扩充,还有与网络应用的结合。 简介 由微电子、电脑硬件和软件系统驱动的信息和交流的前所未有的增长影响了各种组织的电脑应用的方方面面。同时,公司环境与职能部门日益结合,需要为决策提供越来越多的内部功能数据流,包括及时有效的产品部件的供给、库存管理、清算账目、人力资源以及产品和服务分配等。在这样的条件下,组织管理者需要一个有效的信息系统来降低成本并优化物流,从而提高竞争力。无论是大企业还是中小企业,大家一致认为在复杂的全球化竞争中,及时获得正确的信息的能力能够给企业带来巨大的回报。 从19世纪80年代末到90年代初开始的新的软件系统作为企业资源规划应用在复杂的大型商业企业中从而在工业界中被人们所周知。这种复杂而昂贵,强力而专有的系统供不应求,而且需要根据企业的需求量身定制。很多情况下,ERP实施人员要企业重新设计他们的商业流程来调节软件模型中的物流,从而得到整个企业的数据流。与旧的、传统的自我内部设计的企业专门系统不同,这种软件解决方案结合了多种模型的商业附加包,在需要的时候可以作为附件添加到系统中或者从中删除。 电脑性能的显著提高以及网络给ERP的供应商和设计者们带来的前所未有的挑战,打破了企业与客户定制的隔阂,还包含超出企业内部网络的合作,外部系统需要通过网络来无缝连接。供应商已经许诺了许多的附加功能包,他们中的一些人已经在市场上表现出对这些挑战的接受态度。将产品不断再设计以及在ERP市场中推出新产品和方案是一个永不终止的过程。ERP运营商和客户以及认识到了将其附件按照开放的原则设计,提供可互换的模型,以及容许更简单的定制和客户交流的必要性。 ERP系统定义 企业资源规划系统或企业系统是业务管理软件系统目前,包括模块配套功能区,如计划,制造,销售,市场营销,分销,会计,金融,人力资源管理,项目管理,库存管理,服务,维修,运输和电子商务,架构软件便于模块的透明集成,提供企业内的所有功能之间信息。在运输和电子商务。该架构软件便于模块的透明集成,提供数据流包括良好的企业内的所有功能之间的信息以及与合作公司与通过更换或重新设计实现一个单一的集成系统,其大多是不兼容的传统信息系统。美国生产与库存管理协会(2001)这样定义了ERP系统:“针对物资资源管理、人力资源管理、财务资源管理、信息资源管理集成一体化的企业管理软件。”我们从出版物中摘录了几种定义来更好的解释这个概念:“ERP包含了一个商业软件包,它可以通过企业的财务、清算、人力资源、供应链和客户信息来使数据流无缝结合”(Davenport,1998)。“ERP是将一个组织中的财务和其他信息以及基于信息的流程整合在一起的信息配置系统。”(K&VH,2000)。“一个数据库、一个应用和一个贯穿整个企业的统一界面”(Tadjer,1998)。“ERP系统是为了运作一个组织的业务方便的集成和实时计划、生产,以及客户反馈而设计的基于电脑的系统(OLeary,2001)”。 ERP系统的发展

生物专业英语翻译+蒋悟生+第3版

Lesson One(4 学时) Inside the Living Cell: Structure and Function of Internal Cell Parts : The Dynamic, Mobile Factory 细胞质:动力工厂Most of the properties we associate with life are properties of the cytoplasm. Much of the mass of a cell consists of this semifluid substance, which is bounded on the outside by the plasma membrane. Organelles are suspended within it, supported by the filamentous network of the cytoskeleton. Dissolved in the cytoplasmic fluid are nutrients, ions, soluble proteins, and other materials needed for cell functioning. 生命的大部分特征表现在细胞质的特征上。细胞质大部分由半流体物质组成,并由细胞膜(原生质膜)包被。细胞器悬浮在其中,并由丝状的细胞骨架支撑。细胞质中溶解了大量的营养物质,离子,可溶蛋白以及维持细胞生理需求的其它物质。 2.The Nucleus: Information Central (细胞核:信息中心) The eukaryotic cell nucleus is the largest organelle and houses the genetic material (DNA) on chromosomes. (In prokaryotes the hereditary material is found in the nucleoid.) The nucleus also contains one or two organelles-the nucleoli- that play a role in cell division. A pore-perforated sac called the nuclear envelope separates the nucleus and its contents from the cytoplasm. Small molecules can pass through the nuclear envelope, but larger molecules such as mRNA and ribosomes must enter and exit via the pores. 真核细胞的细胞核是最大的细胞器,细胞核对染色体组有保护作用(原核细胞的遗传物质存在于拟核中)。细胞核含有一或二个核仁,核仁促进细胞分裂。核膜贯穿许多小孔,小分子可以自由通过核膜,而象mRNA 和核糖体等大分子必须通过核孔运输。 : Specialized Work Units (细胞器:特殊的功能单位) All eukaryotic cells contain most of the various kinds of organelles, and each organelle performs a specialized function in the cell. Organelles described in this section include ribosomes, the endoplasmic reticulum, the Golgi complex, vacuoles, lysosomes, mitochondria, and the plastids of plant cells. 所有的真核细胞都含有多种细胞器,每个细胞器都有其特定功能。本节主要介绍核糖体,内质网,高尔基体系,液泡,溶酶体,线粒体和植物细胞中的质体。 The number of ribosomes within a cell may range from a few hundred to many thousands. This quantity reflects the fact that, ribosomes are the sites at which amino acids are assembled into proteins for export or for use in cell processes. A complete ribosome is composed of one larger and one smaller subunit. During protein synthesis the two subunits move along a strand of mRNA, "reading" the genetic sequence coded in it and translating that sequence into protein. Several ribosomes may become attached to a single mRNA strand; such a combination is called a polysome. Most cellular proteins are manufactured on ribosomes in the cytoplasm. Exportable proteins and membrane proteins are usually made in association with the endoplasmic reticulum. 核糖体的数量变化从几百到几千,核糖体是氨基酸组装成蛋白质的重要场所(其数量表明了核糖体是细胞过程中将氨基酸组装成蛋白质输出或供细胞所用的场所) 。一个完整的核糖体由一个大亚基和一个小亚基组成。核糖体沿着mRNA 移动并阅读遗传密码,翻译成蛋白质。一条mRNA 上可能有多个核糖体,称多聚核糖体。大多数细胞蛋白是由细胞质中核糖体生产。输出蛋白和膜蛋白通常与内质网有关。 The endoplasmic reticulum, a lacy array of membranous sacs, tubules, and vesicles, may be either rough (RER) or smooth (SER). Both types play roles in the synthesis and transport of proteins. The RER, which is studded with polysomes, also seems to be the source of the nuclear envelope after a cell divides. 内质网,带有花边的生物囊,有管状,泡状之分,以及光滑和粗糙面区别。两种都与蛋白质的合成和运输有关。粗糙内质网上分布许多核糖体,也可能提供细胞分裂后所需的核膜。 SER lacks polysomes; it is active in the synthesis of fats and steroids and in the oxidation of toxic substances in the cell. Both types of endoplasmic reticulum serve as compartments within the cell where specific products can be isolated and subsequently shunted to particular areas in or outside the cell. 光滑内质网上无核糖体,主要作用是脂肪和类固醇的合成以及细胞内有毒亚物质的氧化。这两种内质网在细胞中作为分隔,使特定产品分隔开,随后将他们转移到细胞内外特定的部分或细胞外。 Transport vesicles may carry exportable molecules from the endoplasmic reticulum to another membranous organelle, the Golgi complex. Within the Golgi complex molecules are modified and packaged for export out of the cell or for delivery else where in the cytoplasm. 运输小泡能够将可运输分子从内质网运输到高尔基复合体上。在高尔基复合体中修饰,包装后输出细胞或传递到细胞质中的其他场所。 Vacuoles in cells appear to be hollow sacs but are actually filled with fluid and soluble molecules. The most prominent vacuoles appear in plant cells and serve as water reservoirs and storage sites for sugars and other molecules. Vacuoles in animal cells carry out phagocytosis (the intake of particulate matter) and pinocytosis (vacuolar drinking). 细胞中的液泡好象是中空的,但实际上充满了液体和可溶分子。最典型的液泡存在于植物细胞中,储备水,糖以及其它分子。动物中的液泡起吞噬和胞饮作用。 A subset of vacuoles are the organelles known as lysosomes, which contain digestive enzymes (packaged in lysosomes in the Golgi complex) that can break down most biological macromolecules. They act to digest food particles and to degrade damaged cell parts. 溶酶体是液泡亚单位,含有消化酶,降解大部分生物大分子。消化食物微粒和降解损伤的细胞残片。 Mitochondria are the sites of energy-yielding chemical reactions in all cells. In addition, plant cells contain plastids that utilize light energy to manufacture carbohydrates in the process of photosynthesis. It is on the large surface area provided by the inner cristae of mitochondria that ATP-generating enzymes are located. Mitochondria are self-replicating, and probably they are the evolutionary descendants of what were once free-living prokaryotes.

生物工程生物技术专业英语翻译二

生物工程生物技术专业英 语翻译二 The Standardization Office was revised on the afternoon of December 13, 2020

第二章生长与代谢的生物化学 前言 一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。 代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。 实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合

物与O2反应生成水和CO2,这是一个高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而维持一定水平的合成代谢。 在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO2。 代谢与能量 分解代谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP,其含有生物学家所说的“高能键”。在ATP分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP这类分子,为细胞提供了流通能量,当将ATP用于生物合成反应时,其水解产物为ADP(腺苷二磷酸)或者某些时候为AMP(腺苷一磷酸):(反应式)

周跃进工业工程专业英语翻译-全十章---副本

第一章 IE中的角色 工业工程是新兴的经典和新颖的将计算解决复杂和系统性的问题,在今天的高度科技世界职业之一。,特别是在中国快速发展的经济和其作为世界制造业中心的演技,为IE浏览器的需求将增加,并不断扩大和迫切。 生产系统或服务系统,包括输入,转换和输出。通过改造,增加值的增加,系统的效率和效益都有所提高。转化过程中所使用的技术和管理科学以及它们的组合依靠。 管理生产系统的服务体系,是一个具有挑战性和复杂的,行为科学,计算机和信息科学,经济,以及大量的主题有关的基本原则和技术,生产和服务系统的技术。 对于IE毕业生的需求 工业工程课程设计准备的学生,以满足未来中国的经济和和谐社会建设的挑战。许多即毕业生(IES),事实上,设计和运行现代制造系统和设施。其他选择从事服务活动,如健康,?ìcare交付,金融,物流,交通,教育,公共管理,或咨询等。 为IE毕业生的需求比较旺盛,每年增长。事实上,对于非法入境者的需求大大超过供给。这种需求/供给不平衡是为IE大于其他任何工程或科学学科,并预计在未来多年存在。因此,over165大学或学院于2006年在中国开设了IE浏览器程序。 教科书的目标 这本教科书的主要目的是引入系统化的理论和先进的技术和方法,工业工程,以及他们的英语表达有关科目。教科书的另一个目的是加强和改进学生,AOS与工业工程专业英语文献的阅读和理解能力。 工程与科学 怎么这两个词,?úindustrial,?ùand,?úengineering,?ùget相结合,形成长期,?úindustrial工程,非盟是什么?工业工程和其他工程学科之间的关系,企业管理,社会科学?为了了解工业工程的作用,在今天,AOS经济和知识为基础的的时代,它是有利于学习,希望在IE的演变历史的发展,有许多半途而废写历史发展的工程。治疗本单位是短暂的,因为我们的利益,在审查工程发展的意义,尤其是作为一个专业工业工程的,更完整的历史参考。工程与科学发展并行,相辅相成的方式,虽然他们是电机始终以同样的速度,而科学是有关基本知识的追求,工程与科学知识的应用关注问题的解决方案,并,?úbetter生活的追求,?ù.Obviously,知识不能被应用,直到它被发现的,一经发现,将很快投入使用,在努力解决问题,工程在新知识的地方,提供反馈,以科学因此,科学和工程工作在手的手。 工程应用 - 工具 虽然“科学”和“工程”各有特色,为不同学科,在某些情况下,?úscientist,非盟和?úengineer,非盟可能是同一个人。这是在更早的时候,尤其是当有很少沟通的基本知识的手段。发现知识的人也把它用。 当然,我们也想到如此出色的成绩,在埃及的金字塔,中国长城,罗马的建设项目,等等,当我们回顾早期的工程成就。这些都涉及一个令人印象深刻的应用程序的基本知识。 正如根本,但是,不作为众所周知的成就。斜面,弓,螺旋状,水车,帆,简单的杠杆,以及许多其他方面的发展都非常希望在工程师,AO努力提供更好的生活。 工程的基础 几乎所有的工程发展到1800年之前与物理现象:如克服摩擦,起重,储存,搬运,构造,紧固后的发展,关注与化学和分子现象:如电力,材料,热加工工艺性能,燃烧,和其他的化学过程。 几乎所有的工程发展的基本原则是在数学方面取得的进展。,准确地测量距离,角度,重量和时间的程序进行了细化,实现了更大的成就。

生物工程生物技术专业英语翻译(六)

第六章生物工程中的下游加工(技术) 6.1前言 “下游加工(技术)”对于从任何工业化生产中回收有用产品所需要的所有步骤来说是一个有用的词语。对于生物工程特别重要,我们想要的最终形式的产物常常非常远的从最先在生物反应器中获得的状态除去。例如,—个典型的发酵过程是一个分散的固体(细胞、也许有营养培养基的某些组分等)与稀释水溶液的混合物;所想要的产物也许作为一种非常复杂的混合物的组分存在于细胞中,或者存在于稀释的培养基溶液中,或甚至两者中都有。任何情况下,这个产品的回收、浓缩和纯化都需要有用并有效的操作,这也受生— 产经济性的限制。任何特殊的要求,如需要除去污染物或限制生产微生物(process organism )都只会增加困难。 许多实验室中的标准操作在生产中都是不实用或者不经济的。而且,生物产品常常是非常脆弱(labile )敏感的化 合物,其活性结构只能在限定并有限的pH、温度、离子强度 「 等条件下才能保持。想着这些限制( bearing in mind ), 如果 要用到所有可用的科学方法以发挥最佳的效果就需要更多的创造性。也明显的是,没有一种独特的、理想的、普遍适用的操作或 者仅是操作顺序可以推荐;对一个特定的问题应当以最适宜的方

式把单个单元操作结合起来。 6.2粒子的分离 在发酵终点,多数情况下第一步是将固体(通常是细胞,但也可以是在一个特定支持物上的细胞或者酶,不包括反应培养基固体组分)从几乎一直是水溶液的连续均匀的液体系统中分离出来。与这个分离相关的一些细胞特性列于表6.1 ; 注意,细胞的比重不比fermentation broth 大很多。细胞 的大小也给细菌带来了困难,但是比较大的细胞更容易分离,有 时候甚至只需要简单的定位于倾析器。分离的容易性取决于fermentation broth 的性质,它的pH、温度等等, 在许多情况下,通过添加助滤剂、絮凝剂的等等进行改进(见后面)。表6.2给出了分离方法的大体分类。 6.2.1 过滤 这个是分离filamentous fungi 和fermentation broth 中的filamentous bacteria (例如,链霉菌)所使用的最广泛和最典型的 方法。它也可以用于酵母絮凝物的分离。根据机理,过滤可以采 用表面过滤或者深层过滤;或者离心过滤; 所有情况下的驱动力都是压力,由超压产生或者由真空产生。 过滤的速率,如在一定时间内收集的滤液的体积,是过滤面积、液体的黏度和通过过滤基质的压力降以及(deposited filter cake )沉积的滤饼的作用。过滤基质与滤饼filter cake 的抗,性

生物工程专业英语翻译(第二章)

Lesson Two Photosynthesis 内容: Photosynthesis occurs only in the chlorophyllchlorophyll叶绿素-containing cells of green plants, algae藻, and certain protists 原生生物and bacteria. Overall, it is a process that converts light energy into chemical energy that is stored in the molecular bonds. From the point of view of chemistry and energetics, it is the opposite of cellular respiration. Whereas 然而 cellular细胞的 respiration 呼吸is highly exergonic吸收能量的and releases energy, photosynthesis光合作用requires energy and is highly endergonic. 光合作用只发生在含有叶绿素的绿色植物细胞,海藻,某些原生动物和细菌之中。总体来说,这是一个将光能转化成化学能,并将能量贮存在分子键中,从化学和动能学角度来看,它是细胞呼吸作用的对立面。细胞呼吸作用是高度放能的,光合作用是需要能量并高吸能的过程。Photosynthesis starts with CO2 and H2O as raw materials and proceeds through two sets of partial reactions. In the first set, called the light-dependent reactions, water molecules are split裂开 (oxidized), 02 is released, and ATP and NADPH are formed. These reactions must take place in the presence of 在面前 light energy. In the second set, called light-independent reactions, CO2 is reduced (via the addition of H atoms) to carbohydrate. These chemical events rely on the electron carrier NADPH and ATP generated by the first set of reactions. 光合作用以二氧化碳和水为原材料并经历两步化学反应。第一步,称光反应,水分子分解,氧分子释放,ATP和NADPH形成。此反应需要光能的存在。第二步,称暗反应,二氧化碳被还原成碳水化合物,这步反应依赖电子载体NADPH以及第一步反应产生的ATP。 Both sets of reactions take place in chloroplasts. Most of the enzymes and pigments 色素for the lightdependent reactions are embedded 深入的内含的in the thylakoid 类囊体 membrane膜隔膜 of chloroplasts 叶绿体. The dark reactions take place in the stroma.基质 两步反应都发生在叶绿体中。光反应需要的大部分酶和色素包埋在叶绿体的类囊体膜上。暗反应发生在基质中。 How Light Energy Reaches Photosynthetic Cells(光合细胞如何吸收光能的) The energy in light photons in the visible part of the spectrum can be captured by biological molecules to do constructive work. The pigment chlorophyll in plant cells absorbs photons within a particular absorption spectrums statement of the amount of light absorbed by chlorophyll at different wavelengths. When light is absorbed it alters the arrangement of electrons in the absorbing molecule. The added energy of the photon boosts the energy condition of the molecule from a stable state to a less-stable excited state. During the light-dependent reactions of photosynthesis, as the absorbing molecule returns to the ground state, the "excess" excitation energy is transmitted to other molecules and stored as chemical energy. 生物分子能捕获可见光谱中的光能。植物细胞中叶绿素在不同光波下吸收部分吸收光谱。在吸收分子中,光的作用使分子中的电子发生重排。光子的能量激活了分子的能量状态,使其

相关文档
相关文档 最新文档