文档库 最新最全的文档下载
当前位置:文档库 › 基于存活概率的动态车龄分布模型

基于存活概率的动态车龄分布模型

基于存活概率的动态车龄分布模型
基于存活概率的动态车龄分布模型

标准正态分布的密度函数样本

幻灯片1 正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这能够由 以下情形加以说明: ⑴ 正态分布是自然界及工程技术中最常见的分布之一, 大量的随机现象都是服从或近似服从正态分布的.能够证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标一定服从或近似服从正态分布. 这些性质是其它 ⑵ 正态分布有许多良好的性质, 许多分布所不具备的. ⑶ 正态分布能够作为许多分布的近似分布.幻灯片3 -标准正态分布下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数若连续型随机变量X 的密度函数为定义 则称X 服从标准正态分布,

记为标准正态分布是一种特别重要的它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 ( 2) 根据反常积分的运算有能够推出 幻灯片5 标准正态分布的密度函数的性质若随机变量 , X 的密度函数为 则密度函数的性质为: 的图像称为标准正态( 高斯) 曲线幻灯片6 随机变量 由于 由图像可知, 阴影面积为概率值。对同一长度的区间 , 若这区间越靠近 其对应的曲边梯形面积越大。标准正态分布的分布规律时”中间多, 两头少” . 幻灯片7 二、标准正态分布的概率计算 1、分布函数分布函数为幻灯片8 2、标准正态分布表书末附有标准正态分布函数数值表, 有了它, 能够解决标准正态分布的概率计算.表中给的是x > 0时,①(x)的值. 幻灯片9 如果由公式得令则幻灯片10

几何概型案例

《几何概型》教学案例 教学目标 一、知识与技能目标 (1)通过学生对几个几何概型的实验和观察,了解几何概型的两个特点。 (2)能识别实际问题中概率模型是否为几何概型。 (3)会利用几何概型公式对简单的几何概型问题进行计算。 二、过程与方法 让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。 教学重点 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点 建立合理的几何模型求解概率。 教学过程 一、创设情境引入新课 师:上节课我们共同学习了概率当中的古典概型,请同学们回想一下其中所包含的主要内容,并依据此举一个生活当中的古典概型的例子。 生甲:掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。 师:请同学们判断这个例子是古典概型吗?你判断的依据是什么? 生乙:是古典概型,因为此试验包含的基本事件的个数是有限个,并且每个基本事件发生的 可能性相等。 师:非常好,下面允许老师也举一个例子,请同学们作以判断。 如图:把一块木板平均分成四部分,小球随机的掉到木板上,求小球掉在阴影区 域内的概率。 生丙:此试验不是古典概型,因为此试验包含的基本事件的个数有无数多个。 师:非常好,此试验不是古典概型,由此我们可以看到,在我们的生活中确实 存在着诸如这样的不是古典概型的实际问题,因此我们有必要对这样的问题作进一步更加深入的学习和研究。今天这节课我们在学习了古典概型的基础上再来学习几何概型。那到底什

么是几何概型,它和古典概型有联系吗?在数学里又是怎样定义的呢?为此,我们接着来看刚才这个试验。 试验一 师:请同学们根据我们的生活经验回答此试验发生的概率是多少? 生丁:四分之一 师:很好,那你是怎样得到这个答案的呢? 生丁:就是用阴影的面积比上总面积。 师:非常好,下面我们再来看图中的右边这种情形,现在阴影的面积仍是总面积的四分之一,只不过阴影的形状及其位置发生了变化,那么此时小球落在阴影区域内的概率又是多少? 生丁:仍是四分之一,还是用阴影的面积比上总面积。 师:非常好,请坐。我们梳理一下我们刚才的发现。首先此试验所包含的基本事件的个数为无数多个,并且每个基本事件发生的可能性相等,而所求的概率就是用阴影的面积比上总面积,所以此概率仅与阴影的面及有关系,而与阴影的形状和位置并无关系。 试验二 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率. 师:首先请同学们观察这个试验跟刚才那个试验有没有共同本质的东西。 生戊:此试验所包含基本事件的个数仍是无限多个,每个基本事件发生的可能行都相等。师:所求的概率是多少?

二项分布

二项分布 科技名词定义 中文名称:二项分布 英文名称:binomial distribution 定义:描述随机现象的一种常用概率分布形式,因与二项式展开式相同而得名。 所属学科:大气科学(一级学科);气候学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 二项分布 二项分布即重复n次的伯努里试验。在每次试验中只有两种可能的结果,而且是互相对立的,是独立的,与其它各次试验结果无关,结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努力试验。 目录 概念 医学定义 二项分布的应用条件 二项分布的性质 与两点分布区别 编辑本段概念 二项分布(Binomial Distribution),即重复n次的伯努力试验(Bernoulli Experiment), 用ξ表示随机试验的结果. 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重

复试验中发生K次的概率是 P(ξ=K)=Cn(k)P(k)q(n-k) 注意!:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布.. 其中P称为成功概率。 记作ξ~B(n,p) 期望:Eξ=np 方差:Dξ=npq 如果 1.在每次试验中只有两种可能的结果,而且是互相对立的; 2.每次实验是独立的,与其它各次试验结果无关; 3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努力试验. 在这试验中,事件发生的次数为一随机事件,它服从二次分布.二项分布可 二项分布 以用于可靠性试验.可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率. 若某事件概率为p,现重复试验n次,该事件发生k次的概率 为:P=C(k,n)×p^k×(1-p)^(n-k).C(k,n)表示组合数,即从n个事物中拿出k个的方法数. 编辑本段医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。 考虑只有两种可能结果的随机试验,当成功的概率(π)是恒定的

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

(完整版)DTA动态交通分配

(2005) 西安交通大学对具有排队的多模式动态交通分配问题及其相关应用进行研究。本文对动态交通分配模型发展进行了介绍和总结,并详细讨论了模型中的路段动态函数、流量传播约束、FIFO等相关特性。 将单一交通模式的点排队路段动态模型扩展到多模式动态路段模型,并且证明了各种模式的路段行程时间函数合乎模式内的FIFO特性,以及在拥挤情况下各模式车辆的速度收敛特性。 将多模式随机动态同时的路径与出发时间选择平衡条件描述为变分不等式问题,提出了两个不同的算法用于求解变分不等式问题: 算法一是基于路段的算法,这个算法给出了基于logit的同时的路径与出发时间选择的随机动态网络配载方法,并证明了这个方法的正确性; 算法二是基于路径的启发式算法。仿真试验验证了模型以及两个算法的有效性。提出了多模式多用户动态交通分配模型,用于评估ATIS对不同模式出行者和交通系统的影响。将每一模式的出行者分为两类:一类是装配ATIS的出行者,另一类是未装配ATIS的出行者。由于所能获得的交通信息质量的差异,他们将遵循不同的动态用户平衡条件。同时,每一种模式出行者在选择路径和出发时间时,不但考虑出行费用和进度延误费用的影响,而且还考虑油耗费用的影响。将多模式多用户动态用户平衡条件描述为统一的变分不等式问题,利用对角化算法计算相应的平衡流量状态,并通过仿真试验验证了模型与算法的有效性。使用nested-logit模型模拟ATIS的市场渗透率与服从率,模型的上层模拟了驾驶小汽车出行者的购买行为(市场渗透率),底层主要描述了装配ATIS设备的小汽车出行者的服从行为(服从率)。设计了固定点算法计算ATIS的平衡市场渗透率与服从率。并在简单的路网上进行了仿真研究,结果证明算法与模型是正确和有效的。提出了组合模式动态交通分配模型,模型中假设有两类出行者:一类是纯模式出行者,他们自己驾驶小汽车完成一次出行。另一类是组合模式出行者,在其一次出行的第一部分是自己驾驶小汽车完成的,剩余部分是乘公交车完成的。使用nested-logit模型模拟出行者的复杂出行选择行为。将各种不同的选择行为描述为一个变分不等式问题。并给出了启发式算法求解相应的变分不等式问题。最后,利用仿真研究验证了模型与算法的有效性。 交通分配: (2005)所谓交通分配是指按照一定的原则,将各OD (Origin-Destination)对间的出行量分配到具体的交通网络上去,从而得到各路段的交通量,以判断各路段的负荷水平。近半个世纪以来,国内外学者对交通分配问题进行了大量的研究,提出了不少交通流分配模型与软件。总体来看,这些模型可以分为两大类: 平衡分配模型:遵循War drop用户最优(UO, User Optimum)准则或系统最优(SO, System Optimum)准则。它们或者使得个别交通参与者的出行费用最低,或者使得交通网络上所有出行者的总出行费用最低。 非平衡分配模型:运用启发式解法或其他近似解法的分配模型则统称为非平衡分配模型,如全有全无分配模型、容量受限分配模型、多路径概率分配模型、随机分配模型和嫡分配模型等。 静态模型不能反映交通流的时变特性,相反,动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。 DTA(Dynamic Traffic Assignment) 所谓动态交通分配, 就是将时变的交通出行合理分配到不同的路径上, 以降低个人的出行费用或系统总费用。动态交通分配是在交通供给状况以及交通需求状况均为已知的条件下, 分析其最优的交通流量分布模式, 从而为交通流管理、动态路径诱导等提供依据。 交通供给状况:网络拓扑结构、网段特性、既定控制策略等。

人教版高中数学必修三 第三章 概率概率学案3超几何分布

概率学案3 §2.5.3概率综合 ——超几何分布 学习目标 1.根据题意能够识别概率模型。 学习过程 【任务一】分析典型例题,总结解题思路 例:某班共有学生40人,将一次数学考试成绩(单位:分) 绘制成频率分布直方图,如图所示. (Ⅰ)请根据图中所给数据,求出a的值; (Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3 名学生的成绩都在[60,70)内的概率; (Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70) 内的学生中随机选取3人的成绩进行分析,用X表示所 选学生成绩在[60,70)内的人数,求X的分布列和数学期望. 小结: 1.模型特点:总数为N的几类元素,其中含某一类元素M个,从中随机选取n个元素,观察这类元素个数情况; 2.解题思路: A.根据题意识别超几何分布模型; B.利用超几何分布概率特点计算问题中描述的某个事件的概率。 【任务二】跟踪练习 甲口袋中有大小相同的白球3个,红球5个;乙口袋中有大小相同的白球4个,黑球8个,从两个口袋中各摸出2个球,求: (1)甲口袋中摸出的2个球都是红球的概率; (2)两个口袋中摸出的4个球中恰有2个白球的概率.

产品数量 【任务三】课后作业 (2010崇文一模文16)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20, [)20,25,[)25,30,[30,35],频率分布直方图如图所示. 已知生产的产品数量在[)20,25之间的工人有6位. (Ⅰ)求m ; (Ⅱ)工厂规定从生产低于20 件产品的工人中随机的选取2工人进行培训,则这2位工人 在同一组的概率是多少?

二项分布中方差的计算

二项分布中方差的计算 假设ξ~B (n ,p ), 即k n k k n q p C k P -==}{ξ 考虑E [ξ(ξ-1)]=Eξ2-Eξ 而 ∑∑ ∑∑=----=-=-=--=-----?-?=--=-=-n k k n k k n n k k n k n k k n k n k k n k k n q p C p n n q p k n k n n n q p k n k n k k q p C k k E 2 222222 )1()]!2(2[)!2()!2()1()! (!! ) 1()1()]1([ξξ 令2-=k i 上式=222220 22 2 )1()1(np p n p n n q p C p n n n i i n i i n -=-=-∑-=--- 即2222np p n E E -=-ξξ, 再将E ξ=np 代入上式,得)1(222222p np p n np np p n E -+=+-=ξ 最后得npq np p np p n E E D =--+=-=22222)()1()(ξξξ 例1的分布图 例2的分布图 4.2 超几何分布 例1的图形:

例2的图形: 定义4.2 设N 个元素分为两类, 有N 1个属于第一类, N 2个属于第二类(N 1+N 2=N ). 从中不重复抽样取n 个, 令ξ表示这n 个中第一类元素的个数, 则ξ的分布称为超几何分布, ),....,1,0()(2 1n m C C C m P n N m n N m N == =-ξ 规定: 如n

二项分布、超几何分布数学期望与方差公式的推导

二项分布、超几何分布数学期望与方差公式的推导 高中教材中对二项分布和超几何分布数学期望与方差公式没有给出推导公式,现笔者给出一推导过程仅供参考。 预备公式一 11--=k n k n nC kC (1≥n ) ,利用组合数计算公式即可证明。 预备公式二 []2 2)()()(ξξξE E D -=,证明过程可见教材。 预备公式三 2 2)1()1(---=-k n k n C n n C k k (2,2≥≥k n ) ,利用组合数计算公式即可证明。 预备公式四 ),,,,(022110n k m k N k n m C C C C C C C C C k n m m k n k m n k m n k m n ≤≤∈=++++++--Λ,利用恒等 式m n n m x x x )1()1() 1(++=++的二项展开式中k x 的系数相等可证。 一、二项分布 在n 次独立重复试验中,每次试验中事件A 发生的概率为p (10<

正态分布推导72927

正态分布的推导 斯特林(Stirling)公式的推导 斯特林(Stirling)公式: 这个公式的推导过程大体来说是先设一个套,再兜个圈把结果套进来,同时把公式算出来。Stirling太强了。 1,Wallis公式 证明过程很简单,分部积分就可以了。 由x的取值可得如下结论: 即 化简得 当k无限大时,取极限可知中间式子为1。所以

第一部分到此结束,k!被引入一个等式之中。 2,Stirling公式的求解 继续兜圈。 关于lnX的图像的面积,可以有三种求法,分别是积分,内接梯形分隔,外切梯形分隔。分别是: 显然, 代入第一部分最后公式得

(注:上式中第一个beta为平方) 所以得公式: 正态分布推导 在一本俄国的概率教材上看到以下一段精彩的推导,才知道原来所谓正态分布并不是哪位数学家一拍脑门想起来的。记得大学时的教材上只告诉了我们在抽样实验中当样本总量很大时,随机变量就服从正态分布,至于正态分布是怎么来的一点都不提。大学之前,我始终坚信数学是世界上最精致的艺术。但是上了大学之后,发现很多数学上很多问题教材中都是语焉不详,而且很多定义没有任何说明的就出来了,就像一致连续,一致收敛之类的,显得是那么的突兀。这时候数学就像数学老师一样蛮横,让我对数学极其反感,足足有四年之久。只到前些日子,在CSDN上读到孟岩的一篇并于矩阵的文章,才重新对数学发生兴趣。最近又读到了齐民友所写的《重温微积分》以及施利亚耶夫所写的《概率》,才知道原来每一个定义,和每一个定理都有它的价值和意义。 前几天在网上遇到老文,小小的探讨了一下这个问题,顺便问起他斯特林公式的证明过程。他说碰巧最近很是在研究这个公式,就写出来放在百度上以供来者瞻仰吧。于是就有了这篇文章: 斯特林(Stirling)公式的推导 如果哪位在读本篇之前想要知道斯特林公式是怎么来的,请阅读之。 本来是想和老文一块发的,怎奈一个小小的公式编辑器让我费了两个晚上才搞定。于是直至今日,方才有这篇小文字。 本篇是斯特林公式的一个应用。本篇的推导全部抄自施利亚耶夫著《概率》,本文的证明完成了棣莫弗——拉普拉斯定理推导的前半部分,后半部分以及其与伯努利大数定律的关系在以后再往上贴吧。其实也不是很难,自己动动手也是能推出来的。 这次推导可以说是“连续性随机变量”第一次出现在该书中,作为理解连续性随机变量的基础,正态分布是十分重要的。 斯特林公式: 根据斯特林公式,

正态分布、概率

信息系统项目管理师重点知识点:完工概率计算总结 例图: 活动BCD的乐观(m)工期都是9天,最可能(o)工期为12天,最悲观(p)工期都是15天,那么在14天内完成单项活动的概率和完成全部这三项活动的概率是多少 首先计算平均工期(PERT):公式--(乐观时间+4*最可能时间+悲观时间)/ 6 (9+4*12+15)/6=12天; 其次计算标准差:公式--(悲观时间-乐观时间)/ 6 ; (15-9)/6=1天 再计算偏离平均工期:方法--[给出的天数计算(14)-计算出来的平均工期(12)]/标准差(1) (14-12)/1=2 备注:此时得出来的为几,之后就是使用几西格玛 (Sigma)(1σ=68,37%)(2σ=95.46%)(3σ=99.73%)(6σ=99.99966%百万分之三点四) 计算每一项活动在14天内完工的概率是:方法--正态分布概率+西格玛/偏离平均工期数 50%+95.46%/2=97.73% 备注:50%参考正态分布图,95.46参考2西格玛值; 计算全部活动在14天内完工概率是:方法--每一项活动的概率相乘 97.73%*97.73%*97.73%=93.34% 下图为简要正态分布图:

备注:正态分布有50%成功,有50%不成功 如计算将上面的14天,修改为13天; 偏离平均工期就是1天,计算方法:(13-12)/1=1天,则应该使用1西格玛; 计算每一项活动在13天内完工的概率是:方法--正态分布概率+西格玛/偏离平均工期数 50%+68.37%/2=84.19% 备注:50%参考正态分布图,68.37参考1西格玛值; 计算全部活动在13天内完工概率是:方法--每一项活动的概率相乘 84.19%*84.19%*84.19%=59.67% 如果计算为11-15天的概率:最小值的概率+最大值的概率 68.37/2+99.75/2=84.06%

第03章-交通量分析与预测

第三章交通量预测 3.1 交通量预测思路及方法 3.1.1 概述 本项目作为省道S202的一段,本段路线起点位于涡阳县石弓镇与淮北交界处,原S202桩号为K78+650,经涡阳县石弓镇、龙山镇,于K104+500进入涡阳县城区规划外环线、于K126+000与原S202重合,后经楚店镇、利辛县张村镇、汝集镇、王人镇,终点在王人镇与阜阳交界处,路线总体呈南北走向,本项目不仅是沟通淮北市、阜阳市及亳州沿线地区纵向联系的经济干线公路,同时也是河南、山东等省南下的重要干线公路。项目的建设对加快涡阳县城镇体系建设、经济发展布局、加强亳州市内部各县市和周边地区的联系发挥着极其重要的作用。 亳州市是安徽省省辖市,位于皖西北边陲,黄淮平原南端,西北与河南省接壤,西南与阜阳市毗连,东与淮北市、蚌埠市相倚,东南与淮南市为邻。亳州市是皖北地区的老工业基地,拥有机械制造、酿酒、卷烟、医药、纺织、食品、化工、建筑建材、印刷等十几大门类。亳州市是全国重要的药材、商品粮、优质棉、优质烟、优质茧生产基地,拥有药材、酿酒、果蔬、烤烟、畜禽、蚕桑等资源和经济优势,地方名特优产品较多。从商城王建都开始,是一座具有三千多年历史的文化古城。1986年撤县建市,同年成为国家历史文化名城。亳州是中国优秀旅游城市。 亳州交通便捷,陆水空均为重要枢纽。 【铁路】亳州市内现有京九铁路、徐阜铁路穿境而过,正在规划的商杭客运专线、郑蚌铁路(淮海铁路)、禹亳铁路也将贯穿亳州。亳州境内现有亳州站、涡阳站和正在规划建设的亳州南站、亳州北站。 【公路】目前,311、105国道和307省道在市内交叉穿过,济广(济南--广州)高速公路,南洛(南京--洛阳)高速公路,许亳(许昌--亳州)高速公路,宿永亳(宿州--永城--亳州)高速公路、济祁(济宁--祁门)高速公路纵贯全境。 【水路】亳州市内河流属淮河水系。主要干流河道有涡河、西淝河、茨淮新河、北淝河、芡河等多条河流,建有亳州大寺港、涡阳港、蒙城港、利辛港等。 【航空】2010年12月17日,合肥骆岗国际机场亳州候机楼正式运营,亳州与合肥骆岗国际机场之间也将采取开“空港快线”的方式,为当地旅客提

二项分布方差公式推导

二项分布方差公式推导 若ξ~B(n,p),q=1-p ,求证D ξ=npq ∵E ξ=np , kC n k p k q n-k =n p 11 k n C --p k-1q n-k , kk C n k p k q n-k =np[(k-1)11 k n C --p k-1q n-k +11k n C --p k-1q n-k ] =np[(n -1)p 22k n C --p k-2q n-k +11k n C --p k-1q n-k ] 而D ξ=22()E E ξξ-, ∴D ξ=(1×1×C n 1p 1q n-1+2×2 C n 2p 2q n-2+…+k ×k C n k p k q n-k +…+n ×n C n n p n q 0)2() np - =np(1×C n-10p 0q n-1+2C n-11p 1q n-2+3C n-12p 2q n-2+…+ k C n-1k-1p k-1q n-k +…+n C n-1n-1p n-1q 0)-2np E ξ+n 2p 2(p +q)n =np{[0×C n-10p 0q n-1+1C n-11p 1q n-2+2C n-12p 2q n-2+…+ (k-1) C n-1k-1p k-1q n-k +…+(n-1)C n-1n-1p n-1q 0]+(C n-10p 0q n-1+ C n-11p 1q n-2+C n-12p 2q n-2+…+C n-1k-1p k-1q n-k +…+ C n-1n-1p n-1q 0)}2()np - =np[E η+(p +q)n-1] 2() np - =np[(n -1)p +1] 2() np - =np(1-p) =npq .

几何概型常见题型归纳

几何概型常见题型归纳 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。求解几何概型的概率问题,一定要正确确定试验的全部结果构成的区域,正确选择合理的测度,进而利用概率公式求解。^_^天体运动,万有引力定律核心考点研读■安徽 张北春(特级教师) 《天体运动、万有引力定律》是高中物理的重要章节。主要考点有:开普勒定律、天体运动、万有引力定律、估算天体的质量和密度、揭示天体运行规律等。近几年高考试题中的天体运动问题多为匀速圆周运动模型,大多数试题可直接运用开普勒第三定律进行分析或计算,有些试题则需运用牛顿第二定律与万有引力定律、“黄金代换”等分析计算。下面通过典型例题解读这些核心考点,希望对同学们的学习有所帮助。 考点1:开普勒定律 【考点研读】开普勒行星运动定律具体表述如下。第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。第二定律:对任意一个行星来说,它与太阳

的连线在相等时间内扫过相等的面积。第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 温馨提示:古人把天体的运动看得十分神圣,他们认为天体的运动不同于地面物体的运动,天体做的是最完美、最和谐的匀速圆周运动。开普勒则认为行星做椭圆运动。他发现假设行星做匀速圆周运动,计算所得的数据与观测数据不符,只有认为行星做椭圆运动,才能解释这一差别。 温馨提示:我们预期太阳对行星的引力与太阳到行星的距离有关,希望通过行星绕太阳做匀速圆周运动需要的向心力求出这个引力,通过两次数学代换得到了太阳对行星的引力与太阳到行星的距离相关的数学表达式;通过类比得到了行星对太阳的引力与太阳到行星的距离相关的数学表达式;综合概括得到了太阳与行星间引力的数学表达式。 例2(2014年新课标全国卷I)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。对于地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”。据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日。已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是(

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.wendangku.net/doc/194601155.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

几何概型的定义及计算

几何概型的定义及计算 几何概型的概念: 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。 几何概型的概率: 一般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域d内"为事件A,则事件A发生的概率。 说明:(1)D的测度不为0; (2)其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积; (3)区域为"开区域"; (4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关. 几何概型的基本特点: (1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 古典概型的定义及计算 基本事件的定义: 一次试验连同其中可能出现的每一个结果称为一个基本事件。 等可能基本事件: 若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。 古典概型: 如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件的发生都是等可能的; 那么,我们称这个随机试验的概率模型为古典概型.

古典概型的概率: 如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。 古典概型解题步骤: (1)阅读题目,搜集信息; (2)判断是否是等可能事件,并用字母表示事件; (3)求出基本事件总数n和事件A所包含的结果数m; (4)用公式求出概率并下结论。 求古典概型的概率的关键: 求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。 概率的基本性质(互斥事件、对立事件) 互斥事件: 事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。 如果A 1,A 2 ,…,A n 中任何两个都不可能同时发生,那么就说事件A 1 ,A 2 ,…A n 彼此互斥。 对立事件: 两个事件中必有一个发生的互斥事件叫做对立事件,事件A的对立事件记做。注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。 事件A+B的意义及其计算公式: (1)事件A+B:如果事件A,B中有一个发生发生。 (2)如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A 1,A 2 ,…A n 彼此互斥 时,那么P(A 1+A 2 +…+A n )=P(A 1 )+P(A 2 )+…+P(A n )。

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

ASSHTO模型中碰撞几何概率的修正及在长江上的应用

龙源期刊网 https://www.wendangku.net/doc/194601155.html, ASSHTO模型中碰撞几何概率的修正及在长江上的应用 作者:周立万大斌王辉杨洋 来源:《中国水运》2015年第08期 摘要: AASHTO(美国道路工程师协会)规范模型为目前应用最广泛的船桥碰撞概率计算模型之一,该模型将船桥碰撞几何概率作为正态分布考虑,正态分布的标准差等于设计代表船只的船长,期望为0。通过统计长江上船舶过桥时的船位分布情况得知,受航行规则影响,船舶通过单孔双向通航的桥梁时船位沿桥轴线方向成“双峰”分布,该双峰分布可近似的看成由两个正太分布混合而成,据此对AASHTO模型中碰撞几何概率参数进行了修正,修正后的模型与长江干线实际情况更加适应。 关键词: ASSHTO修正模型长江干线船舶碰撞桥梁概率 近年来国内发生了较多的船舶碰撞桥梁事故造成了巨大的人命财产损失,2006年杭州湾 大桥被一走锚失控船舶撞击,大桥多处局部破损,造成经济损失1000余万元;2007年广东九江大桥被砂石船舶碰撞致倒塌造成8人死亡,损失约1.4亿元人民币;2008年浙江宁波金塘大桥被一艘货轮撞击,桥面箱梁塌落,4人死亡;而在长江干线上,从1957年首个有记载的桥 梁被船碰撞的事故以来,已发生的船舶撞桥事故超过300起,其中武汉长江大桥被撞次数最多,已被撞击100余次,虽未造成桥梁倒塌事故,但每一次撞击都会牵动亿万人民的心。因此,开展船舶碰撞桥梁概率研究,为船舶通航安全、桥梁设计、建设与管理提供技术支撑依据非常有必要。 目前,在桥梁防撞设计中,应用较多的船桥碰撞概率计算模型有AASHTO规范模型、拉森(IABSE)模型、欧洲规范模型、昆兹(Kunz)模型和黄平明直航路模型等,不同的模型各有不同侧重和特点。相比较而言,AASHTO模型虽然是依照美国和欧洲的船舶碰撞资料统计 而设计出来的,但因其思路清晰、方法完善、实用性强,是目前应用最为广泛的船桥碰撞概率模型,该规范将船撞桥事件视为风险事件,根据可接受风险的水平指导桥梁的防撞设计,已经形成了系统的思想。 AASHTO模型在长江上应用存在的问题 在该模型中船舶碰撞几何概率以航道中心线为对称轴,船舶的横向分布用正态分布描述,期望为0,即船舶出现的峰值在桥墩之间航道的中间位置。该模型适用于长江上单孔单向通航的桥梁,但长江干线上90%以上的桥梁实行的是单孔双向通航,且长江干线界石盘以下河段均实行了船舶定线制或船舶分道航行规则,船舶在通过单孔双向通航的桥孔时各自靠一边行驶,其中定线制水域还设有分隔带,因此从理论上分析船舶在航道上的几何分布应成“双峰”或“多

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

利用Excel的NORMSDIST计算正态分布函数表1

利用Excel的NORMSDIST函数建立正态 分布表 董大钧,乔莉 沈阳理工大学应用技术学院、信息与控制分院,辽宁抚顺113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的张力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDIST( x )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1 正态分布及其应用 正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为N(μ,σ2 )。则其概率密度

相关文档
相关文档 最新文档