文档库 最新最全的文档下载
当前位置:文档库 › MSP430单片机基础与实践

MSP430单片机基础与实践

MSP430单片机基础与实践
MSP430单片机基础与实践

MSP430单片机基础与实践

——March 3, 2011

1.部分英文缩写

●UCLK:外部时钟

2.MSP430单片机的选型

●在芯片的选型上,主要需要考虑以下几个方面:

①系统功耗资源要求;

②芯片功耗要求(考虑引脚、体积);

③系统存储器容量要求。

3.系统复位

●上电复位信号:POR(Power On Reset)

●上电清除信号:PUC(Power Up Clear)

POR信号是器件的复位信号,此信号只有在以下事件发生时才会产生:

1) 器件上电时;

2) RST/NMI引脚配置为复位模式,当RST/NMI引脚产生低电平时。

当POR信号产生时,必然会产生PUC信号;而PUC信号产生时不会产生POR 信号。会引起产生PUC信号的事件如下:

1) POR信号发生时;

2) 启动看门狗,看门狗定时器计满时;

3) 向看门狗写入错误的安全参数值时;

4) 向片内Flash写入错误的安全参数值时。

4.系统复位后器件的初始化

当POR信号或PUC信号发生时引起器件复位后,器件的初始化状态为:

1) RST/NMI引脚配置为复位模式;

2) I/O引脚为输入模式;

3) 状态寄存器复位;

4) 程序计数器(PC)装入复位向量地址0FFFEH,CPU从此地址开始执行。

●下面介绍POR和PUC两者之间的关系。

POR信号的产生会导致系统复位并产生PUC信号,而PUC信号不会导致POR信号的产生。无论是PUC或者是POR信号产生复位后,都会使MSP430从地址0FFFEH开始读取复位中断向量,程序从中断向量所指向的地址开始执行。触发PUC信号复位的条件中,除了POR信号产生以外,其他都可以通过读取相应的中断向量来判断是什么原因引发了中断。

●系统在POR复位后的状态:

1) RST/NMI引脚配置为复位模式;

2) 所有I/O引脚被设置为输入;

3) 外围模块被初始化,其寄存器为器件手册上的默认值;

4) 状态寄存器SR复位;

5) 看门狗激活,进入工作模式;

6) 程序计数器PC装入0FFFEH处的地址,微处理器从此地址开始执行程序。

●在POR复位后,用户必须通过软件对一些寄存器进行如下设置:

1) 初始化SP指针,一般指向RAM的顶部;

2) 按系统要求设置看门狗;

3) 按系统和实际应用配置外围模块寄存器。

5.MSP430的基础时钟模块

●低频晶体振荡器:LFXT1

●高频晶体振荡器:LFXT2

●数字控制振荡器:DCO

1) LFXT1CLK:低频/高频时钟源。可以外接32768Hz的时钟芯片或频率为

450kHz~8MHz的标准晶体或共振器。

2) XT2CLK:高频时钟源。需要外接两个振荡电容器。可以外接频率为

450kHz~8MHz的标准晶体、共振器和外部时钟输入。较常用的晶体振荡器是8MHz的。

3) DCOCLK:内部数字可控制的RC振荡器。MSP430单片机时钟模块提供3

个时钟信号以供给片内各部分电路使用,这3个时钟信号分别是:

① ACLK :辅助时钟信号。ACLK 是LFXT1CLK 信号由1/2/4/8分频器分频后所得到的。由BCSCTL1寄存器设置DIVA 相应位来决定分频因子。ACLK 可提供给CPU 外围功能模块作时钟信号使用。

② MCLK :主时钟信号。MCLK 是由3个时钟源所提供的。它们分别是:LFXT1CLK 、XT2CLK 和DCO 时钟源信号。MCLK 主要用于MCU 和相关系统模块作时钟。同样可设置相关寄存器来决定分频因子及相关的设置。

③ SMCLK :子系统时钟。SMCLK 由2个时钟源信号提供,它们分别是:XT2CLK 和DCO 。如果是F11或F11X1系列单片机,则由LFXT1CLK 代替XT2CLK 。同样可设置相关寄存器来决定分频因子及相关的设置。

● DCO 频率设置是经过以下几步来实现的:

① 通过设置DCOR 位来选择是外部电阻还是内部电阻;

② 通过外部电阻或内部电阻来确定一个基准频率;

③ 通过设置3个RSELx 位来分频;

④ 通过设置3个DCOx 位来选择频率;

⑤ 通过5个MODx 位来选择DCOx 和DCOx+1之间的频率。

当DCOx=07H 时,MODx 位对选择没有效果,因为已经达到最高频率了。 ● 需要注意的是,MCLK 不能高于该器件所规定的最高频率。DCO 的调制器混合DCO 到DCO+1的频率产生一个稳定有效的中频频率来减小电磁干扰。这个功能是通过设置MODx 位来实现的。当MODx 位为0时,该功能失效。 ● 而实际DCO 周期t 的计算公式为:

1)32(+?+?-=DCO DCO t MODx t MODx t

6. 中断结构和类型特点

MSP430的中断分为3种:系统复位中断、不可屏蔽中断和可屏蔽中断。 ● 系统复位中断

● 不可屏蔽中断

不可屏蔽中断的中断向量为0FFFCH 。响应不可屏蔽中断时,硬件自动将OFIE 、NMIE 、ACCVIE 复位。软件首先判断中断源并复位中断标志,接着执行用户代码。需要特别注意的是:置位OFIE 、NMIE 、ACCVIE 后,必须立即退出中断响应程序,否则会再次触发中断,导致中断嵌套,从而导致堆栈溢出,使得程序执行结果无法预料。

产生不可屏蔽中断有3种情况:上升沿电平出现在NMI 引脚,当NMI 引脚配置为NMI 模式时,振荡器发生错误;Flash 的误操作。

● 可屏蔽中断

7.中断的响应过程

中断响应的过程如下:

①如果CPU处于活动状态,则完成当前指令;

②若CPU处于低功耗状态,则退出低功耗状态;

③将下一条指令的PC值压入堆栈;

④将状态寄存器SR压入堆栈;

⑤若有多个中断请求,则响应最高优先级中断;

⑥单中断请求标志位自动复位,多中断源的标志位不变,等待软件复位;

⑦总中断允许位SR.GIE复位;SR状态寄存器中的CPUOFF、OSCOFF、SCG1、V、N、Z、C位复位;

⑧相应的中断向量值装入PC寄存器,程序从此地址开始执行。

中断返回的过程如下:

①从堆栈中恢复PC值,若响应中断前CPU处于低功耗模式,则可屏蔽中断仍然恢复低功耗模式;

②从堆栈中恢复PC值,若响应中断前CPU不处于低功耗模式,则从此地址继续执行程序。

8.中断向量地址

MSP430F149的中断向量地址是从0FFE0H到0FFFFH,每个向量包含了中断服务程序指令序列的16位地址。

9.MSP430F149的最小系统

MSP430F149的最小系统只有四部分:电源、复位电路、晶体和简易仿真器JTAG下载线。

10.电源

由于整个系统采用5V和3.3V供电,又考虑到硬件系统要求电源具有稳压功能和纹波小的特点,另外也考虑到硬件系统的低功耗等特点,因此该硬件系统的电源先用LM7805稳压为5V给外围模块电路供电,再用SPX1117芯片稳压得到3.3V电压,给CPU和3.3V外设供电。

为了使电源输出的纹波较小和降低其对整个系统的干扰,在输入端和输出端连接两个电容。(100uF的电解或胆电容和0.1uF瓷片电容)滤除高频和低频干扰,在输出端得到稳定的直流电压。

11.复位电路

在包含了控制器的电路系统中,都有对应的复位电路,这样能使系统上电后很好地复位,使其处于稳定的运行状态。

一般简单的复位电路可以采用RC复位,但是很不稳定,可靠性不高,尤其是在高速和庞大的系统中是根本不能采用的。

在MSP430系统中,我们都采用专门的复位芯片来提高系统的稳定性和可靠性。在这里采用SP708S,该芯片提供可靠的复位。

12.晶体

XIN1和XOUT1连接时钟晶体低速晶体32768Hz,XIN2和XOUT2连接

8MHz的高速晶体。

13.I/O口的基本操作流程

当I/O口作为一般的输入/输出口使用时,其基本操作流程如下:

①选择I/O口功能,基本I/O模式或其他模式(即设置PxSEL寄存器);

②设置方向寄存器(PxDIR);

③读出外部输入值(PxIN)或写入相应值(PxOUT);

对I/O中断操作的基本流程如下:

①设置I/O模式;

②设置中断触发方式(PxIES寄存器);

③允许中断(PxIES寄存器);

④开总中断(调用_EINT( )或_BIS_SR(LPM4_bits+GIE)函数);

⑤等待中断,有中断时执行中断服务程序。

●方向控制寄存器PxDIR(1:输出;0:输入)

●中断触发选择寄存器PxIES(1:下降沿;0:上升沿)

●中断标志寄存器PxIFG:

复位值全为0,该寄存器必须通过软件复位,同时也可以通过软件写1产生相应中断。

14.UART操作的基本步骤

串口操作的基本步骤如下:

①置位SWRST来复位串口(串口复位主要通过两个操作实现:上电复位或置

SWRST位为1);

②初始化所有的USART寄存器;

③使能USART模块;

④清零SWRST位;

⑤如果需要,则使能中断。

注意:如果不按照这样的过程进行操作,可能会得到不确定的结果。

●分频因子:N=UBR+(M7+M6+M5+M4+M3+M2+M1+M0)/8,其中UBR 为16位数据值,而Mx为调整寄存器UxMTCL中的各数据位。

●波特率=BRCLK/N=BRCLK/[ UBR+(M7+M6+M5+M4+M3+M2+M1+M0)

/8]。

有效波特率的范围是:3≤UxBR≤0FFFH。

15.SPI初始化或重新配置流程

SPI初始化或重新配置流程如下:

①置位SWRST;

②在SWRST=1的情况下,初始化USART寄存器;

③通过MExSFRs使能USART模块;

④通过软件置零SWRST;

⑤如果需要,通过IEx,SFRs使能中断。

注意:如果不按此流程,将会得到不可预料的结果。

https://www.wendangku.net/doc/124672127.html,parator_A的基本操作流程

Comparator_A的基本操作流程如下:

①打开比较器单元;

②打开参考电压发生器单元(可选,如果比较器的输入信号全部是外部输入,则可关闭该单元);

③选择相应输入信号(CA0、CA1和内部参考)连接到比较器的输入端口;

④单片机的比较器A的外部输入端口CA0和CA1分别接至P2.3和P2.4口;

⑤选择配置相关寄存器;

⑥使能中断信号(如果需要的话);

⑦读取比较输出信号。

注意:当比较器A打开时,它的输入信号就应该连接相关外部输入信号、参考电源或地信号,否则会引起不可预料的中断并增加系统功耗。

17.ADC12的操作流程

ADC12操作的基本流程如下:

①选择ADC转换时钟、参考电压、转换模式和存储器管理;

②打开相关中断(可选);

③启动A/D转换;

④进入中断或查询转换完成标志;

⑤采样转换时序;

⑥转换结果缓存及读取A/D转换值;

注意:

为了正确的操作内部参考电压,我们需要在V REF+、V REF-和AV SS之间加上电容。电容通常情况下取10uF和100nF并联,在系统中尽可能把100nF的电容靠近单片机的参考引脚,而且10uF的电容也要尽可能地靠近,这样电容才能起到稳定电压的作用。参考电源的最小建立时间为17ms,所以推荐打开参考电源的时候,过17ms以后再使用。

在连续模式下,如果EOS=0,则复位ENC位不可以停止连续转换模式。为了停止ADC12,应该首先选择单通道模式,然后再复位ENC。

18.ADC12的转换模式

●单通道单次转换

对单通道单次模式有以下设置:

1) x=CSSTARTADD,指向选择的ADC12MEMx和ADC12MCTLx寄存器;

2) ADC12MEMx存放转换结果;

3) ADC12MCTLx寄存器中定义通道和参考电压。

●序列通道单次模式

对序列通道单次转换有以下设置:

1) ADC12MEMx存放结果;

2) EOS=1标志最后通道,非最后通道的EOS位都是0,表示转换没有结束;

3) ADC12MEMx内存放转换结果;

4) ADC12MCTLx寄存器中定义通道和参考电压。

●单通道多次转换

对选定的通道作多次转换,直到关闭该功能或ENC=0,有如下设置:

1) x=CSSTARTADD,指示转换开始通道;

2) ADD12MENx存放转换结果;

3) ADC12MCTLx寄存器中定义通道和参考电压。

在这种模式下改变转换模式,不必先停止转换;在当前正在进行的转换结束后,可以改变转换模式。

该模式的停止可以采用以下方法:

1) 使CONSEQ=0,改变为单通道单次转换;

2) 使ENC=0直接使当前转换完成后停止;

3) 使用单通道单模式替换当前模式,同时使ENC=0。

序列通道多次转换

对序列通道作多次转换,直到关闭该功能或ENC=0,同时有如下设置:

1) x=CSSTARTADD,指示转换通道;

2) EOC标示系列通道中的最后通道;

3) ADC12MCTLx寄存器中定义通道和参考电压。

MSP430单片机实验报告v3.0

MSP430单片机课程设计 一.设计要求 数字温度计 (1)用数码管(或LCD)显示温度和提示信息; (2)通过内部温度传感器芯片测量环境温度; (3)有手动测量(按测量键单次测量)和自动测量(实时测量)两种工作模式; (4)通过按键设置工作模式和自动测量的采样时间(1秒~1小时); (5)具备温度报警功能,温度过高或过低报警。 二.系统组成 系统由G2Launch Pad及其拓展板构成,单片机为MSP430G2553。 I2的通信方式对IO进行拓展,芯片为TCA6416A; 使用C 使用HT1621控制LCD; 三.系统流程 拓展的四个按键key1、key2、key3、key4分别对应单次测量、定时测量、定时时间的增、减。定时时间分别为1s,5s,15s,30s,60s。在自动测量模式下,当温度超过设定温度上限

即报警,报警时在LCD屏幕显示ERROR同时LED2闪烁,在5s后显示0℃。此时可重新开始手动或自动测量温度。 系统示意图: 四.演示 a)手动测量温度 b)自动测量温度 c)报警

显示ERROR同时LED闪烁d)设置时间界面 五.代码部分 #include "MSP430G2553.h" #include "TCA6416A.h" #include "LCD_128.h" #include "HT1621.h" #include "DAC8411.h" #define CPU_F ((double)8000000) #define delay_us(x) __delay_cycles((long)(CPU_F*(double)x/1000000.0)) #define delay_ms(x) __delay_cycles((long)(CPU_F*(double)x/1000.0)) static int t=0; long temp; long IntDeg; void ADC10_ISR(void); void ADC10_init(void); void LCD_Init(); void LCD_Display(); void GPIO_init(); void I2C_IODect(); void Error_Display(); void WDT_Ontime(void); void LCD_Init_AUTO(); void LCD1S_Display();

MSP430单片机题目答案整理(大部分)

第一章 1. MCU(微控制器单元)与MPU(微处理器单元)的区别 MCU集成了片上外围器件,而MPU不带外围器件,是高度集成的通用结构的处理器。是去除了集成外设的MCU。 2. MSC430单片机的不同系列的差别 MSP430系列单片机具有超低功耗、处理能力强大、片内外设丰富、系统工作稳定、开发环境便捷等显着优势,和其他类型单片机相比具有更好的使用效果、更广泛的应用前景。 3. MSC430单片机主要特点 1.超低功耗 2. 强大的处理能力 3. 高性能模拟技术及丰富的片上外围模块 4. 系统工作稳定 5. 方便高效的开发环境 4. MSC430单片机选型依据 选择最容易实现设计目标且性能价格比高的机型。 在研制任务重,时间紧的情况下,首先选择熟悉的机型。 欲选的机型在市场上要有稳定充足的货源。 第二章 1. 从计算机存储器体系结构上看,MSP430单片机属于什么结构 冯·诺依曼结构,是一种程序存储器和数据存储器合并在一起的存储器体系结构。 2. RISC与CISC体系结构的主要特征是什么MSP430单片机属于哪种结构 CISC----是复杂指令系统计算机Complex Instruction Set Computer的缩写,MCS-51单片机属于CISC。具有8位数据总线、7种寻址模式,111条指令。 RISC----是精简指令系统计算机Reduced Instruction Set Computer的缩写,MSP430单片机属于RISC。具有16位数据总线、7种寻址模式,27条指令。 3. 对MSP430单片机的内存访问时,可以有哪几种方式读写字数据有什么具体要求 字,字节,常字。字访问地址必须是偶数地址单元。 4. MSP430单片机的中断向量表位于什么位置其中存放的是什么内容 中断向量表:存放中断向量的存储空间。430单片机中断向量表地址空间:32字节,映射到存储器空间的最高端区域 5. MSP430单片机的指令系统物理指令和仿真指令各有多少条。 27种物理指令-内核指令和24种仿真指令 6. MSP430单片机的指令系统有哪些寻址方式各举一例说明。 有7种寻址方式:寄存器寻址,变址寻址,符号寻址,绝对寻址, 间接寻址,间接增量寻址,立即数寻址 7. MSP430单片机的CPU中有多少个寄存器其中专用寄存器有哪几个 4个专用寄存器(R0、R1、R2、R3)和12个通用寄存器(R4~R15) R0:程序计数器(PC) R1:堆栈指针(SP)—总是指向当前栈顶 R2:状态寄存器(SR)只用到16位中的低9位 R2/R3:常数发生器(CG1/CG2) 8. 按要求写出指令或指令序列。 9. 写出给定指令或指令序列的执行结果。 10.汇编语言程序的分析与理解。

单片机实验报告

院系:计算机科学学院专业:智能科学与技术年级: 2012 学号:2012213865 姓名:冉靖 指导教师:王文涛 2014年 6月1日

一. 以下是端口的各个寄存器的使用方式: 1.方向寄存器:PxDIR:Bit=1,输出模式;Bit=0,输入模式。 2.输入寄存器:PxIN,Bit=1,输入高电平;Bit=0,输入低电平。 3.输出寄存器:PxOUT,Bit=1,输出高电平;Bit=0,输出低电平。 4.上下拉电阻使能寄存器:PxREN,Bit=1,使能;Bit=0,禁用。 5.功能选择寄存器:PxSEL,Bit=0,选择为I/O端口;Bit=1,选择为外设功能。6.驱动强度寄存器:PxDS,Bit=0,低驱动强度;Bit=1,高驱动强度。 7.中断使能寄存器:PxIE,Bit=1,允许中断;Bit=0,禁止中断。 8.中断触发沿寄存器:PxIES,Bit=1,下降沿置位,Bit=0:上升沿置位。 9.中断标志寄存器:PxIFG,Bit=0:没有中断请求;Bit=1:有中断请求。 二.实验相关电路图: 1 MSP430F6638 P4 口功能框图: 主板上右下角S1~S5按键与MSP430F6638 P4.0~P4.4口连接: 2按键模块原理图: 我们需要设置两个相关的寄存器:P4OUT和P4DIR。其中P4DIR为方向寄存器,P4OUT 为数据输出寄存器。 主板上右下角LED1~LED5指示灯与MSP430F6638 P4.5~P4.7、P5.7、P8.0连接:

3 LED指示灯模块原理图: P4IN和P4OUT分别是输入数据和输出数据寄存器,PDIR为方向寄存器,P4REN 为使能寄存器: #define P4IN (PBIN_H) /* Port 4 Input */ #define P4OUT (PBOUT_H) /* Port 4 Output */ #define P4DIR(PBDIR_H) /* Port 4 Direction */ #define P4REN (PBREN_H) /* Port 4 Resistor Enable */ 三实验分析 1 编程思路: 关闭看门狗定时器后,对P4.0 的输出方式、输出模式和使能方式初始化,然后进行查询判断,最后对P4.0 的电平高低分别作处理来控制LED 灯。 程序流程图: 2 关键代码分析: #include void main(void) { WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗 P4DIR |= BIT5; // 设置4.5口为输出模式 P4OUT |= BIT0; // 选中P4.0为输出方式 P4REN |= BIT0; // P4.0使能 while (1) // Test P1.4 { if (P4IN & BIT0) //如果P4.0为1则执行,这是查询方式按下去后是低,否则为高

51单片机学习笔记(六)_串口中断通信+定时器2串口中断

51单片机学习笔记(六)_串口中断通信+定时器2串口中 断 51 单片机默认使用定时器1 作为串口通信的波特率发生器、定时器1 中断 通信,串口与定时器1 冲突,在遇到定时器不够用的时候可以用定时器2 #include void DelayMs(unsigned int i);void SerialInit();void SendByte(unsigned char sbyte);void SendString(unsigned char *pstr);void main(void){SerialInit();while(1); //注:必需要无限循环}/*//单片机时钟周期: 11.0592MHz 以时钟1 作为波特率发生器void SerialInit(){TMOD=0x20; // 设置T1 工作方式为方式2TH1=0xfd; //给定时器高位装初值TL1=0xfd; //给定时 器低位装初值TR1=1; //开定时器//以上是设置波特率SM0=0; //设置串口通 讯方式为方式1SM1=1; REN=1; //串口是否接收数据的开关EA=1; //总中断 打开,采用查询法时不用打开中断ES=1; //串口中断开关,采用查询法时不用打开 中断}*///单片机时钟周期:11.0592MHz 以时钟T2 作为波特率发生器void SerialInit(){PCON &= 0x7F; //波特率不倍速SMOD=0SCON = 0x50; //方式1,8 位数据,可变波特率,接收允许T2CON = 0x34; RCAP2H = 0xFF; RCAP2L = 0xDC; TH2 = 0xFF; TL2 = 0xDC;EA=1; //总中断打开,采 用查询法时不用打开中断ES = 1; //串口中断开关,采用查询法时不用 打开中断}//串口中断函数:void SerialPortInte(void) interrupt 4 //采用串口中断法 收发数据{unsigned char rbyte;if(RI){ //RI=1,判定为串口接收到了数据,RI 要清零,RI=0;rbyte=SBUF; if(rbyte==0x0A){ SendString(“换行”);}else if(rbyte==0x0D){SendString(“回车”);}else{SendByte(rbyte);}}}//串口发送一个字节:void SendByte(unsigned char sbyte){ SBUF=sbyte; //发送数据while(!TI); //等待发送完成TI=0; //清零发送标志位}//串口发送一个字符串:void

南理工 王宏波 MSP430F6638单片机实验报告

MSP430单片机应用技术 实验报告 学号:XXXXXXXX

实验1 一、实验题目:UCS实验 二、实验目的 设置DCO FLL reference =ACLK=LFXT1 = 32768Hz, MCLK = SMCLK = 8MHz,输出ACLK、SMCLK,用示波器观察并拍照。 UCS,MCLK、 SMCLK 8MHz 的 1 2 六、实验结果 实验2 一、实验题目:FLL+应用实验 二、实验目的

检测P1.4 输入,遇上升沿进端口中断,在中断服务程序内翻转P4.1 状态。 三、实验仪器和设备 计算机、开发板、示波器、信号源、电源、Code Comeposer Studio v5 四、实验步骤 1、用电缆连接开发板USB2口和电脑USB口,打开电源开关SW1,电源指示灯D5点亮; 2、运行CCSV5; WDT 1、用电缆连接开发板USB2口和电脑USB口,打开电源开关SW1,电源指示灯D5点亮; 2、运行CCSV5; 3、新建工作空间workspace; 4、新建工程project与源文件main.C; 5、编写程序; 6、编译、调试、下载程序到单片机;

7、观察、分析、保存运行结果。 五、实验程序 实验4 一、实验题目:WDT_A实验 二、实验目的 定时模式 1 2 六、实验结果 实验5一、实验题目:Timer_A实验

二、实验目的 比较模式-Timer_A0,两路PWM 输出,增减计数模式,时钟源SMCLK,输出模式7 TACLK = SMCLK = default DCOCLKDIV。PWM周期CCR0 = 512-1,P1.6 输出PWM占空比CCR1 = 37.5%,P1.7输出PWM占空比CCR1 =12.5%。 要求: (1)用示波器观察两路PWM 输出的波形并拍照,测量周期、正脉宽等参数,与理论值进行对比分析。 (2 (3 1 2 实验6 一、实验题目:ADC12实验 二、实验目的 ADC12 单次采样A0 端口,根据转换结果控制LED 状态。

如何学习并使用MSP430单片机(入门)

如何学习MSP430单片机 如何学习MSP430单片机 。 下面以MSP430系列单片机为例,解释一下学习单片机的过程。 (1)获取资料 购买有关书籍,并到杭州利尔达公司网站和TI网站获取资料,例如,在网上可以找到FET使用指导、MSP430 F1xx系列、F4xx系列的使用说明和具体单片机芯片的数据说明,可以找到仿真器FET的电路图、实验板电路图、芯片封装知识等大量的实际应用参考电路,当然有些资料是英文的,看懂英文资料是个挑战,学会4、6级英语就是为看资料的。英语难学,但是看资料容易,只要下决心,看完一本资料,就可以看懂所有的相关资料。 (2)购买仿真器FET和实验电路板 如果经济条件不错,可以直接购买。 (3)自制仿真器FET和实验电路板 自制仿真器FET,首先要到网上找到FET电路图,然后就可以使用画电路板软件画电路图和电路板图,这又是个挑战。FET电路非常简单,但要把它制作出来还是需要下一番工夫的,找一本有关书,然后练习画原理图,画完原理图后,就学习认识元件封装,再购买元件,这时就可以画电路板图了,一旦画好,将形成的PCB文件交给电路板制作公司,10天后,就可以得到电路板,焊上元件和电缆,等实验电路板做好后,就可以与实验电路板一起调试了。 自制实验电路板,需要单片机芯片内部工作原理的知识、封装知识,清楚的知道每一个引脚的功能,还需要数码管、按钮、排电阻、三端稳压器、二极管、散热器、电解电容、普通电容、电阻、钮子开关等元件的知识,对于初学者,可以做一个只有3个数码管、8个按钮、8个发光二极管的简单实验板,这样的实验板,虽然简单,但足可以帮助初学者入门单片机。自制实验电路板与自制FET 一样,首先画电路图,然后买元件,再画电路板。由于MSP430系列芯片是扁平封装,焊接起来有一定难度,这好象是个挑战,但实际上很简单,方法如下:

双机间的串口双向通信2.0

单片机应用课程设计任务书

单片机应用课程设计说明书 学院名称:计算机与信息工程学院 班级名称:网工124 学生姓名:卞可虎 学号:2012211369 题目:双机间的串口双向通信设计指导教师:于红利 起止日期:2014.12.29至2015.1.4

目录 一、绪论 (1) 二、相关知识 (6) 2.1 双机通信介绍 (6) 2.2单片机AT89C51介绍 (6) 2.3 串行通信简介 (8) 2.3.1串行通信的特点 (8) 2.3.2串行通信技术标准 (9) 三、总体设计 (10) 3.1 设计需求 (10) 四、硬件设计 (10) 4.1 系统硬件电路设计 (10) 4.1.1整体电路设计 (10) 4.1.2 控制电路设计 (11) 4.1.3 复位电路 (11) 4.1.4 显示电路 (12) 五、软件设计 (12) 5.1发送端程序流程 (12) 5.2接收端程序流程 (13) 5.3按键程序 (14) 5.4串口通信程序 (15) 5.5数码管显示程序 (16)

六、Proteus软件仿真 (16) 七、结束语 (19) 参考文献 (20) 指导教师评语 (21) 成绩评定 (21) 附录:源程序 (22) 一、绪论 电子技术的飞速发展,单片机也步如一个新的时代,越来越多的功能各异的单片机为我们的设计提供了许多新的方法与思路。单片机之间的通信可以分为两大类:并行通信和串行通信。串行通信传输线少,长距离传输时成本低,且可以利用数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。所以本系统采用串行通信来实现单片机之间可靠的,有效的数据交换。 对于一些类似复杂的后台运算及通信与高实时性前台控制系统、软件资源消耗大的系统、功能强大的低消耗系统、加密系统等等。如果合理使用多种不同类型的单片机组合设计,可以得到极高灵活性与性能价格比,因此,多种异型单片机系统设计渐渐成为一种新的思路,单片机技术作为计算机技术的一个重要分支,由于单片机体积小,系统运行可靠,数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。但在一些相对复杂的单片机应用系统中,仅仅一个单片机资源是不够的,往往需要两个或多个单片机系统协同工作。这就对单片机通

430单片机点亮LED实验报告

430单片机点亮LED实验报告 一.安装实验软件IAR 二.编写点亮LED灯程序 1.使P1.0口LED灯会不停的闪烁着,程序 #include typedef unsigned int uint; typedef unsigned char uchar; /*延时函数*/ void Delay_Ms(uint x) { uint i; while(x--)for(i=0;i<250;i++); } /*主函数*/ int main( void ) { WDTCTL = WDTPW + WDTHOLD;// Stop watchdog timer to prevent time out reset P2DIR|=BIT0;//定义P1口为输出 while(1)//死循环 { P2OUT^=BIT0;//P1.0口输出取反

Delay_Ms(600);//稍作延时 } } 下载进去看到了P1.0口LED灯会不停的闪烁着。 2.实验目的让两盏灯交换闪烁程序 #include"msp430g2553.h" void main(void) { void Blink_LED(); WDTCTL=WDTPW+WDTHOLD; //关闭看门狗 P1DIR=BIT6; P2DIR=BIT0; while(1) { Blink_LED(); } } void Blink_LED() { _delay_cycles(1000000); //控制第二个LED P1OUT^=BIT6; _delay_cycles(1000000); //控制第一个LED P2OUT^=BIT0;

第3课 HJ-2G AVR单片机学习笔记 程序编写编译环境

第3课ICC程序编写编译环境 基于HJ-2G AVR学习板 学习AVR单片机必需要安装的第二个软件:程序编写编译环境ICC AVR 1、下面说一说安装方法,在配套资料(网上下载)找到ICC AVR直接点击按装,装好后输入正版注册码,这样就可以正常使用ICCAVR软件编写编译。 2、在桌面上打开ICCAVR软件,出现如下图片:请点开工程,并新建一个工程。 3、下图为新建一个工程,请保存在C盘目录下,输入工程名称(只能是中文),点击保存。

4、新建立一个C文件,在下图空白处输入你的C源码,输完后请保存C文件。 5、加入刚才建好的C文件到工程当中,方法如下图。

6、设置一下编译器,如下图。 7、芯片用ATmega16

8、最后一步了,只要你按上面的一步一步做,最后点一下编译键,就可以正常编译成功,如果不成功,请查一查你的C源码是否正确,还有工程是不是在中文目录下。 9、总结:本课主要学习了程序编写编译环境ICC AVR的安装,设置,还有编译方法,开始学单片机时,新手不会写C源码,可以复制慧净写好的C源码到项目中,练习多次,ICCAVR 软件你就会使用了,以后学习中,每一课都会用到本软件,只要你认真跟着《慧净1天入门AVR单片机学习笔记》学习,多多练习,相信你很快速学会AVR单片机。 慧净AVR单片机免费共享学习笔记目录(配有视频教程,请在慧净空间下载) 第一部1天入门AVR单片机学习笔记 第1课:AVR单片机学习基本流程 第2课:AVR单片机程序烧写方法 第3课:程序编写编译环境 第4课:简单C语言基础知识 第二部10天学会AVR单片机学习笔记 第1课:IO端口操作 第2课:流水灯 第3课:单个数码管显示 第4课:多个数码管同时显示 第5课:独立按键 第6课:定时器 第7课:外部中断

MSP430单片机实验报告

MSP430单片机实验报告 专业: 姓名: 学号:

MSP430单片机实验报告 设计目标:使8位数码管显示“5201314.”,深入了解串行数据接口。 实现过程:主要分为主函数、驱动8位数码管函数、驱动1位数码管函数及延时函数。 延时函数:采用for循环。 驱动1位数码管子函数:设置74HC164的时钟传输和数传输,声明变量,使数据表中每一个要表示的字符的每一位都与shift做与运算从而进行传输,上升沿将传输数据传送出去。驱动1位数码管子函数的流程图如图1所示。 图1 驱动1位数码管子函数流程图 驱动8位数码管子函数:调用8次驱动1位数码管子函数。驱动8位数码管子函数流程图如图2所示。 图2 驱动8位数码管流程图

while 图3 主函数流程图 实验结果:供电后,数码管显示“5201314.”字样。 源程序: /************* 程序名称:5201314.*************/ /***程序功能:通过模拟同步串口控制8个共阳数码管***/ /*******P5.1 数据管脚,P5.3 同步时钟管脚*******/ #include // 头文件 void delay(void); // 声明延迟函数void seg7_1 (unsigned char seg7_data); // 声明驱动1 位数码管函数void seg7_8 ( unsigned char seg7_data7, unsigned char seg7_data6, unsigned char seg7_data5, unsigned char seg7_data4, unsigned char seg7_data3, unsigned char seg7_data2,

单片机读书笔记

单片机的分类 单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统。 众多的单片机可以从不同角度进行分类。 Ⅰ按生产厂家分 1.INTEL公司的单片机(MCS-48系列单片机:MCS-48单片机是美国INTEL公司于1976年推出,它是现代单片机的雏形,包含了数字处理的全部功能,外接一定的附加外围芯片即构成完整的微型计算机;MCS-51系列:MCS-51单片机是美国INTE公司于1980年推出的产品,与MCS-48单片机相比,它的结构更先进,功能更强,在原来的基础上增加了更多的电路单元和指令,指令数达111条,MCS-51单片机可以算是相当成功的产品,一直到现在,MCS-51系列或其兼容的单片机仍是应用的主流产品) 2.ATMEL公司的单片机(AT89系列单片机:AT89系列单片机是ATMEL 公司的8位Flash单片机系列。这个系列单片机的最大特点是在片内含有Flash存储器。因此,在应用中有着十分广泛的前途特别是在便携式、省电及特殊信息保存的仪器和系统中显得更为有用;A VR单片机:A VR单片机是1997年由ATMEL公司研发出的增强型内置Flash的RISC(Reduced Instruction Set CPU) 精简指令集高速8位单片

机。A VR的单片机可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。) 3.Motorola公司的单片机(MC68300系列单片机:MC68300系列微控制器采用模块化设计,可以根据用户的要求,选择不同的模块,以适应不同的应用场合) 4. MicroChip单片机的单片机(PIC12CXXX系列单片机、PIC16CXXX系列单片机) 5.PHILIPS公司的单片机(通用型单片机:PHILIPS公司的P80C31基于80C51内核采用高密度CMOS技术设计制造,包含中央处理单元、128字节内部数据存储器RAM、32个双向输入/输出(I/O)口、3个16位定时/计数器和6个中断源,4层优先级中断嵌套结构,可用于多机通信的串行I/O口,I/O扩展或全双工UART,片内时钟振荡电路;Flash 单片机、低功耗OTP单片机) 6.TI公司的单片机(TI单片机MSP430:德州仪器(TI)超低功率16位RISC混合信号处理器的MSP430产品系列为电池供电测量应用提供了最终解决方案。德州仪器作为混合信号和数字技术的领导者,TI 创新生产的MSP430,使系统设计人员能够在保持独一无二的低功率的同时同步连接至模拟信号、传感器和数字组件。) 7.其他公司的单片机(美国SST公司的SST89系列、美国CYGNAL公司的C8051FXXX系列单片机、东芝TLCS-870系列单片机) Ⅱ按单片机数据总线的位数,可将单片机分为4位、8位、16位、32位

史上最通俗易懂的单片机自学有笔记1

单片机关键知识点一览: 系列一 1:单片机简叙 2:单片机引脚介绍 3:单片机存储器结构 4:第一个单片机小程序 5:单片机延时程序分析 6:单片机并行口结构 7:单片机的特殊功能寄存器 系列二 8:单片机寻址方式与指令系统 9:单片机数据传递类指令 10:单片机数据传送类指令 11:单片机算术运算指令 12:单片机逻辑运算类指令 13:单片机逻辑与或异或指令祥解 14:单片机条件转移指令 系列三 15:单片机位操作指令 16:单片机定时器与计数器 17:单片机定时器/计数器的方式

18:单片机的中断系统 19:单片机定时器、中断试验 20:单片机定时/计数器实验 21:单片机串行口介绍 系列四 22:单片机串行口通信程序设计 23:LED数码管静态显示接口与编 24:动态扫描显示接口电路及程序 25:单片机键盘接口程序设计 26:单片机矩阵式键盘接口技术及 27:关于单片机的一些基本概念 28:实际案例实践——单片机音乐程序设计 1:单片机简叙 什么是单片机一台能够工作的计算机要有这样几个部份构成:CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)。在个人计算机上这些部份被分成若干块芯片,安装一个称之为主板的印刷线路板上。而在单片机中,这些部份,全部被做到一块集成电路芯片中了,所以就称为单片(单芯片)机,而且有一些单片机中除了上述部份外,还集成了其它部份如A/D,D/A等。 单片机是一种控制芯片,一个微型的计算机,而加上晶振,存储器,地址锁存器,逻辑门,七段译码器(显示器),按钮(类似键盘),扩展芯片,接口等那是单片机系统。 2:单片机引脚介绍

MSP430 按键程序范例(附原理图)

#i nclude void Init_Port(void) { //将P1口所有的管脚在初始化的时候设置为输入方式 P1DIR = 0; //将P1口所有的管脚设置为一般I/O口 P1SEL = 0; // 将P1.4 P1.5 P1.6 P1.7设置为输出方向 P1DIR |= BIT4; P1DIR |= BIT5; P1DIR |= BIT6; P1DIR |= BIT7; //先输出低电平 P1OUT = 0x00; // 将中断寄存器清零 P1IE = 0; P1IES = 0; P1IFG = 0; //打开管脚的中断功能 //对应的管脚由高到低电平跳变使相应的标志置位 P1IE |= BIT0; P1IES |= BIT0; P1IE |= BIT1; P1IES |= BIT1; P1IE |= BIT2; P1IES |= BIT2; P1IE |= BIT3; P1IES |= BIT3; _EINT();//打开中断 return; } void Delay(void) { int i; for(i = 100;i--;i > 0) ;//延时一点时间 } int KeyProcess(void) { int nP10,nP11,nP12,nP13; int nRes = 0;

//P1.4输出低电平 P1OUT &= ~(BIT4); nP10 = P1IN & BIT0; if (nP10 == 0) nRes = 13; nP11 = P1IN & BIT1; if (nP11 == 0) nRes = 14; nP12 = P1IN & BIT2; if (nP12 == 0) nRes = 15; nP13 = P1IN & BIT3; if (nP13 == 0) nRes = 16; //P1.5输出低电平 P1OUT &= ~(BIT4); nP10 = P1IN & BIT0; if (nP10 == 0) nRes = 9; nP11 = P1IN & BIT1; if (nP11 == 0) nRes = 10; nP12 = P1IN & BIT2; if (nP12 == 0) nRes = 11; nP13 = P1IN & BIT3; if (nP13 == 0) nRes = 12; //P1.6输出低电平 P1OUT &= ~(BIT4); nP10 = P1IN & BIT0; if (nP10 == 0) nRes = 5; nP11 = P1IN & BIT1; if (nP11 == 0) nRes = 6; nP12 = P1IN & BIT2; if (nP12 == 0) nRes = 7; nP13 = P1IN & BIT3; if (nP13 == 0) nRes = 8; //P1.7输出低电平 P1OUT &= ~(BIT4); nP10 = P1IN & BIT0; if (nP10 == 0) nRes = 1; nP11 = P1IN & BIT1; if (nP11 == 0) nRes = 2; nP12 = P1IN & BIT2; if (nP12 == 0) nRes = 3; nP13 = P1IN & BIT3; if (nP13 == 0) nRes = 4; P1OUT = 0x00;//恢复以前值。

MSP430初学者教程(最详细)

如何学习 学习就是迎接挑战、解决困难的过程,没有挑战,就没有人生的乐趣。 下面以系列为例,解释一下学习的过程。 (1)获取资料 购买有关书籍,并到杭州利尔达公司网站和TI网站获取资料,例如,在网上可以找到FET 使用指导、F1xx系列、F4xx系列的使用说明和具体芯片的数据说明,可以找到FET的、实验板、知识等大量的实际应用参考电路,当然有些资料是英文的,看懂英文资料是个挑战,学会4、6级英语就是为看资料的。英语难学,但是看资料容易,只要下决心,看完一本资料,就可以看懂所有的相关资料。 (2)购买FET和实验电路板 如果经济条件不错,可以直接购买。 (3)自制FET和实验电路板 自制仿真器FET,首先要到网上找到FET,然后就可以使用画电路板软件画电路图和电路板图,这又是个挑战。FET电常简单,但要把它制作出来还是需要下一番工夫的,找一本有关书,然后练习画,画完后,就学习认识,再购买元件,这时就可以画电路板图了,一旦画好,将形成的PCB文件交给公司,10天后,就可以得到电路板,焊上元件和电缆,等实验电路板做好后,就可以与实验电路板一起调试了。 自制实验电路板,需要单片机芯片内部工作原理的知识、封装知识,清楚的知道每一个的功能,还需要、按钮、、三端、、散热器、、普通电容、电阻、等元件的知识,对于初学者,可以做一个只有3个、8个按钮、8个的简单实验板,这样的实验板,虽然简单,但足可以帮助初学者入门单片机。自制实验电路板与自制FET一样,首先画电路图,然后买元件,再画电路板。由于系列芯片是扁平封装,焊接起来有一定难度,这好象是个挑战,但实际上很简单,方法如下:首先在焊盘上涂上,在未干的情况下,将芯片放在焊盘上,注意芯片第一的位置,并使与焊盘对齐,将擦干净的(不能有任何)接触引脚,引脚只要一热,焊盘上的就自动将引脚焊住了,千万注意上不能有,焊接时最好配备一个。焊接电路板时,每一个元件都要核对参数,可以用万用表测量的元件一定要测量。 (4)从网上获得IA 到利尔达公司或的网站下载IA,并安装到计算机上。 (5)调试FET和实验板

单片机学习笔记

MC51单片机学习笔记 一准备知识: 1.内部结构:4K Rom 程序存储器(硬件)128节Ram随机存储器(软件) 8位cpu,4个8位并口,1个全双串行口,2个16位定时器/计数器; 寻址范围64k 布尔处理器 CPU:由运算和控制逻辑组成,同时还包括中断系统和部分外部特殊功能寄存器; RAM:用以存放可以读写的数据,如运算的中间结果、最终结果以及欲显示的数据; ROM:用以存放程序、一些原始数据和表格; I/O口:四个8位并行I/O口,既可用作输入,也可用作输出; T/C:两个定时/记数器,既可以工作在定时模式,也可以工作在记数模式 五个中断源的中断控制系统; 一个全双工UART(通用异步接收发送器)的串行I/O口,用于实现单片机之间或单片机与微机之间的串行通信; 片内振荡器和时钟产生电路,石英晶体和微调电容需要外接。最高振荡频率取决于单片机型号及性能。 2.分类:arm(快)凌阳(处理声音较好) 3.型号说明:STC (公司名) 89(系列)C(CMOS;CAD:自带

AD转换;S:串行下载无需专门的编程器;lv:工作电压为3v)51(1*4=4K) RC 40(晶振最高频率) C(商业级:温度0--85,I工业级温度-40--125)----PDIP (双列直插式)0721(07年第21周)......... 4.电平:TTL:高:+5v--低0v; RS232:计算机串口:+12v--低-12v,故计算机和单片机通信需要电平转换芯片 5.二进制与十六进制之间的转换:每4位转变一次 6.二进制转换逻辑符号:&与,//或,---非,异或 7. P3第二功能各引脚功能定义: P3.0:RXD串行口输入 P3.1:TXD串行口输出 P3.2:INT0外部中断0输入 P3.3:INT1外部中断1输入 P3.4:T0定时器0外部输入 P3.5:T1定时器1外部输入 P3.6:WR外部写控制(计数) P3.7:RD外部读控制 RST :复位管脚,高电平有效,时间大于两个机器周期 VPD:备用电源 注:机器周期和指令周期 (1)振荡周期: 也称时钟周期, 是指为单片机提供时钟脉

MSP430单片机定时器实验报告

实验四定时器实验 实验目的: MPS430F5529片内集成的定时器A的使用,学习计数器的补捕获比较模块的使用。实验内容: 定时器采用辅助时钟ACLK作为计数脉冲,fACLK=32768Hz,实现以下功能: 1.定时器TA0延时1s,点亮或熄灭LED6,即灯亮1s灭1s,如此循环,采用中断服务程序实现。 2.定时器TA0延时1s,点亮或熄灭LED4,采用捕获比较器CCR0的比较模式,设定输出方式,输出方波,不用中断服务程序 3.采用捕获比较器CCR1的比较模式LED5,设定输出方式,输出PWM波形,使LED 亮2s,灭1s。 4.用定时器实现30s倒计时,在液晶模块上显示,每过一秒显示数字变化一次。 5.使用TA1的捕获比较器CCR0捕获按键的间隔时间,在液晶模块上显示。 程序代码: 程序1: #include void main() {WDTCTL = WDTPW + WDTHOLD; //关看门狗 P1DIR |= BIT3; //设置P1.0口方向为输出。 TA0CCTL0 = CCIE; //设置捕获/比较控制寄存器中CCIE位为1, //CCR0捕获/比较功能中断为允许。 TA0CCR0 = 32767; //捕获/比较控制寄存器CCR0初值为32767 TA0CTL = TASSEL_1 + MC_1+TACLR; //设置定时器A控制寄存器TACTL, //使时钟源选择为SMCLK辅助时钟。 //进入低功耗模式LPM0和开总中断 _BIS_SR(LPM0_bits +GIE); } //定时器A 中断服务程序区 #pragma vector=TIMER0_A0_VECTOR __interrupt void Timer_A (void) {

MSP430单片机深入学习笔记

复位 1.POR信号只在两种情况下产生: 微处理器上电。 RST/NMI管脚被设置为复位功能,在此管脚上产生低电平时系统复位。 2.PUC信号产生的条件为: POR信号产生。 看门狗有效时,看门狗定时器溢出。 写看门狗定时器安全健值出现错误。 写FLASH存储器安全键值出现错误。 3.POR信号的出现会导致系统复位,并产生PUC信号。而PUC信号不会引起POR信号的产生。系统复位后(POR之后)的状态为: RST/MIN管脚功能被设置为复位功能。 所有I/O管脚被设置为输入。 外围模块被初始化,其寄存器值为相关手册上注明的默认值。 状态寄存器(SR)复位。 看门狗激活,进入工作模式。 程序计数器(PC)载入0xFFFE(0xFFFE为复位中断向量)处的地址,微处理器从此地址开始执行程序。 4.典型的复位电路有以下3种: (1)由于MSP430具有上电复位功能, 因此,上电后只要保持RST/NMI(设置 为复位功能)为高电平即可。通 常的做法为,在RST/NMI管脚接100k? 的上拉电阻,如图1-5(a)所示。 (2)除了在RST/NMI管脚接100k?的 上拉电阻外,还可以再接0.1μF的电 容,电容的另一端接地,可以使复位 更加可靠。如图1-5(b)所示。 (3)由于MSP430具有极低的功耗,如 果系统断电后立即上电,则系统中电 容所存储的电荷来不及释放,此时系 统电压不会下降到最低复位电压以下, 因而MSP430不会产生上电复位,同时 RST/NMI管脚上也没有足够低的电平 使MSP430复位。这样,系统断电后立 即上电,MSP430并没有被复位。为了 解决这个问题,可增加一个二极管, 这样断电后储存在复位电容中的电荷 就可以通过二极管释放,从而加速电 容的放电。二极管的型号可取1N4008。 如图1-5(c)所示。

MSP430时钟配置及ad模块等学习笔记

MSP430收集资料笔记 问: 个刚从51转到msp430这块的学生,我想知道,分频其实到底可以干什么,具体什么时候才会需要我们去分频? 能举些详细的例子告诉我分频什么时候改用,什么时候不该用吗?不需要代码,例子就好 答: 51也要分频啊,一个系统CPU(中央处理单元)的频率最高的,其他的外设都是低速的,都要通过主时钟分频产生低速的时钟来工作;比如8Mhz的单片机是说CPU的时钟是工作在8mhz,但gpio、串口,定时器等它们的工作频率很低的,这个时钟就需要分频来产生;当你想要改变一个外设的工作频率时就需要重新设置分频系数,比如串口波特率,定时时间,IIC时钟,spi时钟等等; 问: MSP430单片机的定时器,看门狗等东西的时钟来源于于各个时钟 (SMCLK,ACLK,MCLK,DCO等)有什么区别呢?还有这些问什么要分频呢,不分频好像程序也可以写啊! 有这三种时钟我也知道,我只是想知道。我是想知道这些时钟给外设使用的时候到底到底选择哪个,为什么要选择这个? 答: 不知道楼主用的是那个型号!我用的149,就用这个给你说吧!msp430F149 不分频具体的根据系统需要决定,楼主应该是初学吧!有些问题你不必深究,慢慢的在学习和使用中你就明白了,刚开始你知道怎么用就可以了! CTRL_C+CTRL_V,就算是抄别人的,也自己敲一遍,加深理解,加深印象!

话有说回来,学编程本来就是这么个过程,一看二抄三写四调试!我就是这么过来的,网上资源很多,多看看别人是怎么学的,怎么做的! || || 信号源---分频输出---------》时钟----------------》输出信号源----------外围模块|| (DCO)//************不设置即被MCLK默认***********************// || (LFXTI)→MCLK==→信号源分频输出=→信号源供给外围模块,CPU || (LFXT2) 1)MCLK系统主时钟。除了CPU运算使用此时钟以外,外围模块也可以使用。MCLK可以选择任何一个振荡器所产生的时钟信号并进行1、2、4、8分频作为其信号源。 (2)SMCLK系统子时钟。供外围模块使用。并在使用前可以通过各模块的寄存器实现分频。SMCLK可以选择任何一个振荡器所产生的时钟信号并进行1、2、4、8分频作为其信号源。 ||(DCO)//************不设置即被MCLK默认***********************// ||(LFXTI)→信号源分频输出=→SMCLK==→信号源供给外围模块 ||(LFXT2) (3)ACLK辅助时钟。供外围模块使用。并在使用前可以通过各模块的寄存器实现分频。但ACLK只能由LFXT1进行1、2、4、8分频作为信号源。 PUC复位后,MCLK和SMCLK的信号源为DCO,DCO的振荡频率默认为800KHZ。ACLK的信号源为LFXT1。 || ||LFXI1=→信号源分频====》ACLK========→外围模块 MCLK,SMCLK ||PUC复位===|=======》 DCO=800KHZ |ACLK | |LFXTI

单片机原理及应用_第十讲_MSP430单片机的ADC实验报告

单片机原理及应用 第十讲 MSP430单片机的ADC 实验报告 报告人:学号:同组人员: 实验内容 实验1 AD采集输入电压并比较 实验2 AD内部温度采集实验 实验3 验收实验:温度采集与显示 把实验2中的实测温度值以摄氏度数值显示在段码LCD上。 实验步骤 步骤: (1) 将PC 和板载仿真器通过USB 线相连; (2) 打开CCS 集成开发工具,选择样例工程或自己新建一个工程,修改代码; (3) 选择对该工程进行编译链接,生成.out 文件。然后选择,将程序下载到实验板中。程序下载完毕之后,可以选择全速运行程序,也可以选择

单步调试程序,选择F3 查看具体函数。也可以程序下载之后,按下,软件界面恢复到原编辑程序的画面。再按下实验板的复位键,运 行程序。(调试方式下的全速运行和直接上电运行程序在时序有少许差别,建议 上电运行程序)。 关键代码: 实验1 AD采集输入电压并比较 #include int main(void) { WDTCTL = WDTPW + WDTHOLD; // Stop WDT ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time, ADC12 on ADC12CTL1 = ADC12SHP; // Use sampling timer ADC12IE = 0x01; // Enable interrupt ADC12CTL0 |= ADC12ENC; P6SEL |= 0x01; // P6.0 ADC option select P4DIR |= BIT1; // P4.1 output while (1) { ADC12CTL0 |= ADC12SC; // Start sampling/conversion __bis_SR_register(LPM0_bits + GIE); // LPM0, ADC12_ISR will force exit __no_operation(); // For debugger } } #pragma vector = ADC12_VECTOR __interrupt void ADC12_ISR(void) { switch(__even_in_range(ADC12IV,34)) { case 0: break; // Vector 0: No interrupt case 2: break; // Vector 2: ADC overflow case 4: break; // Vector 4: ADC timing overflow

相关文档
相关文档 最新文档