文档库 最新最全的文档下载
当前位置:文档库 › 大功率异步电动机启动方式选择

大功率异步电动机启动方式选择

大功率异步电动机启动方式选择
大功率异步电动机启动方式选择

大功率异步电动机启动方式选择对于大功率异步电动机而言,软起动比硬起动(即直接起动)具有如下优势:

1)减少起动过程引起的电网电压降使之不影响共网其它电气设

备的正常运行;

2)碱小电动机的冲击电流冲击电流会造成电动机局部过热,危害

电动机寿命;

3)碱小硬起动带来的机械冲力冲力将加速传动机械(轴、啮合齿轮

等)的磨损

4)碱少电磁干扰冲击电流会以电磁渡的形式干扰电气仪表的正

常运行。

总之,软起动使电动机可以起停自如,提高作业率,固而有其重要作用。

软起动的分娄

软起动可分为有级和无级两娄,前者的调节是分档的,后者的调节是连续的。早先的软起动均是有级的,如Y/△变换软起动、自耦变压器软起动、电抗器软起动等。无级调节主要有三种:以电解液液阻限流的软起动、以晶闸管为限流器件的晶闸管软起动、以磁饱和电抗器为限流元件的磁控软起动。

1.液阻软启动:

液阻是一中由电解液形成的电阻,它导电的本质是离子导电。其阻值正比于两块电极板的距离,反比于电解液的电导率,极板距离和

电导率都是便于控制的,这也恰恰是软启动所需要的。

优点:液阻软起动装置可以串在绕线式电动机转子回路中以实现重载软启动,在软启动过程中不产生高次谐波,并且售价低廉。阻值可以无级控制并且热容量大。

缺点:(1)基于液阻限流,液阻箱容积大,且一次软启动后电解液通常会有10℃~30℃的温升,使软起动的重复性差;(2)移动极板需要有一套伺服机构,移动的速度较慢,难以实现起动方式的多样化;(3)液阻软启动装置液箱中的水,需要定期补充。

电极板长期浸泡于电解液中,表面会有一定的锈蚀,需要作表面处理(一般2~3次/年;(4)液阻软启动装置不适合放置在易结冰或颠簸的环境中。

2.晶闸管软启动

优点:体积小,结构紧凑,几乎免维护,功能齐全,启动重复性好,保护周全。

缺点:(1)高压产品的价格过高,是液阻的5~10倍;(2)晶闸管引起的高次谐波较严重。

3.磁控软启动

磁控软启动是从电抗器软启动衍生出来的。将三相电抗器串在电源和电机定子之间实现降压是两者的共同点。磁控软启动不同于电抗器软启动的主要原因是其电抗值可控。

优点:输出功率大,具有晶闸管软启动所具有的几乎全部功能,并且能够实现软停止。

缺点:在磁饱和电抗器产生的高次谐波仅次于晶闸管软启动,磁控软启动装置需要有相对功率较大的辅助电源,噪声较大。

4.变频器

变频器可作为软启动设备使用,其主要特点是节能,具有以上启动方式的全部优点。但制约变频器作为软启动装置大范围应用于三相异步电动机的主要原因是一次性投资较高,对于高压变频器价格进口为2000~2500元/KW,国产为1200~1500元/KW。

汽轮机启动方式

汽轮发电机组启动方式有几种,简述启动过程? 按启动过程中新蒸汽参数的情况,可分为额定参数启动和滑参数启动两种启动方式;按汽轮机启动前的金属温度高低,又可分为冷态启动和热态启动;按冲动转子时所用阀门的不同,又可分为调节门启动、自动主汽门和电动主闸门(或其旁路门)启动。额定参数冷态启动电动主闸门前的新蒸汽参数在整个启动过程中始终保持在额定值。启动过程一般包括主蒸汽管道暖管及前期准备,冲动转子暖机升速,定速并列带负荷等阶段。主蒸汽管道暖管及前期准备:冷态的主蒸汽管道被高温高压的新蒸汽加热到与新蒸汽同温度压力的状态称为主蒸汽管道暖管。在暖管过程中,可以进行启动前的准备,凝汽器通循环水,启动凝结水泵,抽真空,送轴封,检查润滑油系统,启动盘车连续运转等。冲动转子暖机升速:冲动转子一般使用调门或电动主闸门(或其旁路门),这根据汽机调速系统的不同来选择。冲动转子后控制转子转速分别进行低,中,高速暖机。暖机过程中严格控制汽缸壁温升,上下缸,内外缸,法兰,螺栓等处温差。一般控制温升在1-2℃/min,温差在30-50℃内。定速并列带负荷:汽机转速3000r/min定速,电气进行并列操作,机组并列,带负荷暖机。带负荷暖机过程中仍应严格控制各处温升及温差等。随缸温升高,机组接带负荷至额定出力。(整个启动过程共需时约8小时)滑参数冷态启动电动主闸门前的新汽参数随转速、负荷的升高而滑升,汽轮机定速或并网前,调门一般处于全开状态。启动过程一般为:锅炉点火及暖管,冲动转子升速暖机,并列接带负荷等。锅炉点火及暖管:锅炉点火前,汽机应做好前期准备包括凝汽器通循环水,检查润滑油系统,启动盘车连续运转等。联系锅炉点火,汽机抽真空,送轴封。锅炉升温升压,应及时开启旁路。电动主闸门前压力,温度达到冲动转子条件时,即可冲动转子。冲动转子升速暖机:冲动转子后,低速暖机全面检查后即可在40-60min内将转速提到3000r/min,定速。并列接带负荷:定速后应立即并列接带少量负荷进行低负荷暖机。联系锅炉加强燃烧,严格按启动曲线控制升温升压速度。70额定负荷后,汽缸金属的温度水平接近额定参数下额定工况下金属的温度水平时,锅炉滑参数加负荷的过程结束。此后,随着锅炉参数的提高,逐渐关小调门保持负荷不变,锅炉定压。当主汽参数达到额定值后再逐渐开大调门加负荷至额定出力。

三相异步电机的转矩特性与机械特性(精)

三相异步电机的转矩特性与机械特性 1.电磁转矩(简称转矩) 异步电动机的转矩T 是由旋转磁场的每极磁通Φ与转子电流I 2相互作用而产生的。电磁转矩的大小与转子绕组中的电流I 及旋转磁场的强弱有关。 经理论证明,它们的关系是: 22cos T T K I ?=Φ (5-4) 其中 T 为电磁转矩 K T 为与电机结构有关的常数 Φ为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值 ?2为转子电流滞后于转子电势的相位角 若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为: 22122220()T sR U T K R sX '=+ (5-5) 其中 T K '为常数 U 1为定子绕组的相电压 S 为转差率 R 2为转子每相绕组的电阻 X 20为转子静止时每相绕组的感抗 由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。此外,转矩T 还受转子电阻R 2的影响。图4-15为异步电动机的转矩特性曲线。 2.机械特性曲线 图 5-5 三相异步电动机的机械特性曲线 在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的n n m (a) T =f (s )曲线

关系曲线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。 在机械特性曲线上我们要讨论三个转矩: 1).额定转矩T N 额定转矩T N 是异步电动机带额定负载时,转轴上的输出转矩。 29550N P T n = (5-6) 式中P 2是电动机轴上输出的机械功率,其单位是瓦特,n 的单位是转/分,T N 的单位是牛·米。 当忽略电动机本身机械摩擦转矩T 0时,阻转矩近似为负载转矩T L ,电动机作等速旋转时,电磁转矩T 必与阻转矩T L 相等,即T = T L 。额定负载时,则有T N = T L 。 2).最大转矩T m T m 又称为临界转矩,是电动机可能产生的最大电磁转矩。它反映了电动机的过载能力。 最大转矩的转差率为S m ,此时的S m 叫做临界转差率,见图5-5(a ) 最大转矩Tm 与额定转矩T N 之比称为电动机的过载系数λ,即 λ= Tm / T N 一般三相异步的过载系数在1.8~2.2之间。 在选用电动机时,必须考虑可能出现的最大负载转矩,而后根据所选电动机的过载系数算出电动机的最大转矩,它必须大于最大负载转矩。否则,就是重选电动机。 3).起动转矩T st , T st 为电动机起动初始瞬间的转矩,即n=0,s =1时的转矩。 为确保电动机能够带额定负载起动,必须满足:T st >T N ,一般的三相异步电动机有T st /T N =1~2.2。 3.电动机的负载能力自适应分析 电动机在工作时,它所产生的电磁转矩T 的大小能够在一定的范围内自动调整以适应负载的变化,这种特性称为自适应负载能力。 2 L T n S I T ↑?↓?↑?↑?↑直至新的平衡。此过程中,2I ↑时,1 I ↑? 电源提供的功率自动增加。

汽轮机的启动

汽轮机的启动 第一节概述 一、启动的概念 汽轮机的启动是指转子由静止(或盘车)状态升速到额定转速,并将负荷逐步增加到额定负荷的过程。汽轮机的启动过程,也就是蒸汽向金属部件传递热量的复杂热交换过程。在这个过程中,汽轮机各金属部件将受到高温蒸汽的加热,从室温及大气压力的状态过渡到额定温度和压力的状态。制定合理的启动方式,就是研究汽轮机合理的加热方式,使启动过程中能保证机组的安全、经济,并力求缩短汽轮机的启动时间。 理想的启动方式,就是在启动中使机组各部金属温差、转子与汽缸的相对膨胀差都在允许范围内,以减少金属的热应力和热变形,提高启动水平。在不发生异常振动,不引起磨擦和不严重影响机组寿命的条件下,尽量缩短总的启动时间,从而制定出在启动过程中各阶段汽轮机零部件所允许的最大温升速度,然后通过调整蒸汽参数或蒸汽流量的方式来准确保持温升速度,以保证安全、经济快速启动。 二、机组启动必须具备的条件 1、机组各部分安装完毕、齐全、准确、联接牢固,无松动和泄漏,各运转部件动作灵活、无卡涩,内部清洁,符合要求。 2、机组安装完毕或运行机组投运前,油系统必须按要求进行冲洗,验收合格,调节保安系统用油油质合格。 3、各部套经单独试验,动作灵活,并有合格的安装试验记录。 4、机组所有仪器、仪表、测点齐全,安装接线正确,性能稳定,标志明显。 5、机组所有管道保温良好,保温层不得有开裂、油浸等现象存在,保温层与基础等固定件间应留有足够的膨胀间隙。 三、汽轮机禁止启动的范围条件 1、机组跳闸保护有任一项失灵,机组大联锁保护试验不正常。 2、主要仪表缺少或不正常,且无其它监视手段。包括转速表、转子偏心度表、真空表、润滑油及EH油压表、振动表、主蒸汽及再热蒸汽压力、温度表、轴向位移指示表、差胀表、汽缸膨胀表、高中压内外缸温度表、轴瓦温度表、轴承回油温度表、主油箱油位计、润滑油温度表、发电机输出有功和无功功率表、电压表、电流表、频率表、同期表、励磁电流表和电压表、空、氢侧密封油压表、H2纯度表、H2压力表、汽包水位计、燃油压力表、氧量表、炉膛压力表、炉膛出口烟温表等。 3、DEH、ETS和DCS、TSI及主要控制系统动作不正常或不能投入,影响机组启动及正常运行。 4、蒸汽室内的深孔热电偶与浅孔热电偶最大温差> 83 ℃。 5、高、中压缸上、下温差>55.6℃。 6、启动盘车后,汽轮机组有金属磨擦声。 7、汽轮机转子偏心>0.076mm,或超过原始值的0.025mm。 8、汽轮机差胀>+18.98mm或<+1mm。 9、轴向位移超过±0.9mm; 10、汽轮机高、中压主汽门、高、中压调门、高排逆止门、抽汽逆止门任一卡涩不能关严,调速系统工作不正常。

一般电动机启动的方式。

电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压起动,Y-Δ降压启动,软启动器启动,变频器启动等等方式。那么他们之间有什么不同呢? 一,一般电动机启动的方式。 1,全压直接起动。 在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。 优点是操纵控制方便,维护简单,而且比较经济。主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw 的电动机不宜用此方法。 2,自耦减压起动。 利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。 它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。并且可以通过抽头调节起动转矩。至今仍被广泛应用。 3,Y-Δ 起动。 对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。这样的起动方式称为星三角减压起动,或简称为星三角起动(Y-Δ 起动)。 采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。如果直接起动时的起动电流以6~7Ie 计,则在星三角起动时,起动电流才2~2.3 倍。这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。 适用于无载或者轻载起动的场合。并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。 4,软起动器。

三相异步电动机的机械特性

三相异步电动机的机械特性 (一)机械特性方程 1)物理表达式:T=CTФmI2’ cosф2 (T是电磁作用的结果) 2)参数表达式: 3) 工程表达式: ——外施电源电压; ——电源频率; ——电机定子绕组参数; ——电机转子绕组参数。 (二)固有机械特性曲线 1.形状(根据工程表达式来说明) AB段(s较大):为双曲线,T与S成反比。 BO段(s很小):为直线,T与S 成正比。

2.起动点A,n=0,S=1, 起动转矩倍数KT=TS/TN 一般取0.8~1.8 3.临界点B 临界转差率只与转子电阻有关. 取0.1~0.2 最大转矩与电源电压UI2有关。 过载能力λ=Tm/TN 取1.6~2.2 4.同步点O n=n1 T=0 (理想的空载转速,旋转磁场的转速 ) 5.额定点C 0< SN

2、转子串电阻的人为机械特性——“变软” 当转子回路串电阻时,同步点不变,Sm与转子电阻成正比,转速随电阻增加而减小,最大转矩Tm保持不变,在一定范围内起动转矩有所增加,其特性曲线(红色)所示 3、降低定子电压频率的人为机械特性——“变小” 降低定子电压频率时,同步转速随之下降,从而使得电机转速下降,但特性的硬度基本保持不变。 电动机在工作时要求主磁通保持不变,因此在降低频率的同时,定子电压也要随之降低。

汽轮机启动方式及过程中的问题解释

汽轮机启动方式及过程中的问题解释 汽轮机的启动方式是由机组的结构特点、机组启动前金属温度水平及锅炉的启动方式综合考虑后确定的,汽轮机的启动按下述方法进行分类 一、按冲转时汽轮机的进汽方式分类 按冲转时汽轮机的进汽方式不同,汽轮机启动可分为高中压缸联合启动和中压缸启动 1.高中压缸联合启动 启动时,蒸汽同时进入高中压缸冲转转子这种启动方式可以使汽缸和转子所受的热冲击减小,加热均匀,启动时间也短,尤其是高中压缸合缸的机组分缸处加热比较均匀,是传统的启动方式,但这种方式因高压缸排汽温度低,造成再热蒸汽温度低,中压缸升温慢,限制了启动速度。 ①带旁路; ②冷态或热态; ③启动时,高中压缸同时进汽冲动转子,对合缸机组有好处,减少热应 力,缩短启动时间。 2.中压缸启动 启动初期,高压缸不进汽而中压缸进汽冲转,待汽轮机蒸汽参数达到一定值后,才开始向高压缸送汽。为防止高压缸鼓风摩擦发热,高压缸必须抽真空或通汽冷却,用控制高压缸内真空度或高压缸冷却汽量的方法控制高压缸温升率。待转速达一定值或待少量负荷后,再逐步向高压缸进汽,这种启动方式可克服中压缸温升大大滞后于高压缸温升的问题,提高启动速度,对控制相对膨胀有利,可以将高压缸的相对膨胀排除从而使汽轮机寿命延长,且运行灵活、可靠;其缺点是操作复杂、启动时间较长。 二、按冲转转子的方式分类 按冲转转子的方式分类,启动可分为调速汽门启动、自动主汽门启动和电动主汽门的旁路门启动 1.调速汽门启动 启动时在自动主汽门和电动主汽门汽门全开的情况下,用调速汽门来控制进入汽轮机的蒸汽流量,这种启动方式是在喷嘴调节的汽轮机启动时采用。这种启动方式可减少蒸汽的节流作用,但汽机进汽处圆周方向温差较大,受热不均匀,且蒸汽通过喷嘴后焓值下降,调节级汽温降低,这在热态启动中极为不利。

三相异步电动机的优缺点以及启动方式

三相异步电动机的优缺点 1、三相异步电动机的优点 三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三 相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连 接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。 2、异步电动机存在的缺点 2.1笼型感应电动机存在下列三个主要缺点。 (1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。 (2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。 (3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。 2.2 绕线型感应电动机 绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改 变外串电阻调速。绕线型电动机虽起动特性和运行特性兼优,但仍存在下列缺点:)由于转子上有集电环和电刷,不仅增加制造成本,并且降低了起动和运行的可

电动机起动方式的比较及选择

电动机起动方式的比较及选择 工业与民用建筑中的水泵与风机常采用笼型感应电动机拖动,恰当的选择其起动方式,具有重要的意义。笼型感应电动机的起动方式分为全压起动、降压起动、变频起动等,现对各种起动方式的特点进行简要分析,以利选择。 1 全压起动 1.1 全压起动的优点及允许全压起动的条件 全压起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为直接起动。全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。有人误认为降压起动比全压起动好,将15kW~75kW的电动机未经计算就采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。尤其是消防泵等应急设备希望起动快,故障少,凡能采用全压起动者,均不应采用降压起动。全压起动的缺点是起动电流大,笼型感应电动机的起动电流一般为额定电流的4~7倍,如果电动机的功率较大,达到可与为其供电的变压器容量相比拟时,电动机的起动电流将会引起配电系统的电压显著下降,影响接在同一台变压器或同一条供电线路上的其他电气设备的正常工作,因此在设计规范中,对电动机起动引起配电系统的压降有明确规定。JGJ/T16-92《民用建筑电气设计规范》第10.2.1.1条规定:“交流电动机起动时,其端子上的计算电压应符合下列要求: (1)电动机频繁起动时,不宜低于额定电压的90%,电动机不频繁起动时,不宜低于额定电压的85%。 (2)电动机不与照明或其他对电压波动敏感的负荷合用变压器,且不频繁起动时,不应低于额定电压的80%。 (3)当电动机由单独的变压器供电时,其允许值应按机械要求的起动转矩确定。 对于低压电动机,还应保证接触器线圈的电压不低于释放电压。”对于自设变压器的高压用户,较容易满足上述电压波动值的限制,很可能允许全压起动,需要注意的是,《规范》中规定的电压是电动机端子上的计算电压,其真正目的却是为了限制电动机起动时配电系统的电压降,以免影响其他设备的运行。过去曾规定“电源母线”电压波动值,由于“母线”的含义对于多级配电系统来说,其位置不太明确,不易掌握。现规定电动机端子电压,既易满足配电系统的要求,又顾及到了相同条件下的其他电动机。《规范》规定电动机端子上的计算电压,实际

汽轮机专业考试题库

汽轮机试题 一、填空题 1、凝结水温度(低于)汽轮机排汽的(饱和温度)数值称凝结水的过冷却度。 2、凝结器按换热方式可分为(混合式)和(表面式)两大类。 3、抽气器的作用是不断地抽出凝结器内(不凝结)气体和漏入的空气(保持)凝结器的真空。 4、位于(给水泵)和(锅炉省煤器)之间的加热器为高压加热器。 5、蒸汽在汽轮机(动叶片)中的焓降与级的(理想焓降)之比称为级的反动度。 6、汽轮机的损失包括(外部)损失和(内部)损失。 7、高速弹簧片式调速器主要由(重锤)、(调速块)钢带座和枕套等部件组成。 8、采用喷嘴调节的多级汽轮机,其第一级进汽面积随(负荷)的变化而变,因此通常称第一级为(调节级)。 9、中间再热式汽轮机必须采用一机(一炉)或一机(二炉)的单元配汽方式。 10、汽轮机在冷态启动和加负荷过程中,蒸汽温度(高于)汽缸内壁金属温度;在停机和减负荷过程中,蒸汽温度(低于)汽缸内室金属温度。 11、超高压汽轮机的高、中压缸采用双层缸结构,在夹层中通入

(蒸汽),以减小每层汽缸的(压差和温差)。 12、汽轮机调速系统由转速感应机构、(传动放大)机构、配汽机构和(反馈)机构等四部分组成。 13、汽轮机危急保安器有(重锤)式和离心(飞环)式之分。 14、蒸汽在汽轮机内膨胀做功,将热能转变为机械能,同时又以(对流)传热方式将热量传给汽缸内壁,汽缸内壁的热量以(传导)方式由内壁传到外壁。 15、蒸汽对汽轮机转子和汽缸等金属部件的放热系数不是一个常数,它随着蒸汽的流动状态,以及蒸汽的(压力)、(温度)和流速的变化而变化。 16、离心泵的基本特性曲线有流量一扬程(Q__H)曲线、(流量一功率(Q__N))曲线和(流量一效率(Q__η))曲线。 17.汽轮机的法兰螺栓加热装臵是为了(减少)汽轮机启动停止和(变工况)过程中汽缸、法兰、螺栓之间的温度。 18、汽轮机隔板在汽缸中的支承与定位主要由(销钉)支承定位、(悬挂销和键)支承定位及Z形悬挂销中分面支承定位。 19、若汽轮机的喷嘴只装在圆周中的某一个或几个弧段上,其余弧段不装喷嘴称(部分)进汽。装喷嘴的弧段叫(工作)弧段。 20、要提高蒸汽品质应从提高(补给水)品质和(凝结水)品质着手。 21、冷态压力法滑参数启动过程的主要启动程序为(锅炉点火及暖管)、冲转升速及暖机、(并网)及带负荷等几个基本阶段。

异步电动机几种启动方式的介绍

异步电动机几种启动方式的介绍 电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。而交流电动机,特别是三相鼠笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业生产中得到了极广泛的应用,也正在发挥着越来越重要的作用。 1 软启动的现状与各种启动方式的比较 交流电动机和直流电动机相比存在许多优点,但当异步电机在起动过程中又有许多弊病。所谓起动过程是在交流传动系统中,当异步电动机投入电网时,其转速由零开始上升,转速升到稳定转速的全过程。 如不采用任何起动装置的情况下,直接加额定电压到定子绕组起动电动机时,电机的起动电流可达额定电流的4倍~8倍,其转速也在很短时间内由零上升到额定转速。同时三相感应电动机起动时的转矩冲击较大,一般可达额定转矩的2倍以上。起动时过高的电流一方面会造成严重的电网冲击,给电网造成过大的电压降落,降低电网电能质量并影响其他设备的正常运行。而过大的转矩冲击又将造成机械应力冲击,影响电动机本身及其拖动设备的使用寿命。因此,通常总是力求在较小的起动电流下得到足够大的起动转矩,为此就要选择合适的起动方法。在选择起动方法时可以根据具体情况具体要求来选择。 对三相鼠笼式异步电动机的起动电流的限制,通常有定子串接电抗器起动、Y-△起动、自藕变压器降压起动、延边三角形起动。而对绕线式交流电动机,常采用转子串接频敏变阻器起动、定子串电阻分级起动。这些传统的起动方法都存在一些问题。 (1)定子串接电阻起动:由于外串了电阻,在电阻上有较大的有功损耗,特别对中型、大型异步电动机更不经济,因此在降低了起动电流的同时,却付出了较大的代价,即起动转矩降低得更多,一般只能用于空载和轻载。 (2)Y—△起动:Y—△起动方法虽然简单,只需一个Y—△转换开关。但是Y—△起动的电动机定子绕组六个出线端都要引出来,对于高电压的电动机有一定的困难,一般只用于380V电动机。 (3)自耦变压器降压起动:自耦变压器降压起动,与定子串接电抗器起动相比,当限定的起动电流相同时,起动转矩损失的较少;比起Y—△起动,有几种抽头供选用比较灵活,并可以拖动较大些的负载起动。但是自耦变压器体积大,价格高,也不能拖动重负载起动。

三相异步电动机的机械特性分解

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 5.1三相异步电动机的运行特性 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩 与转子转速之间的关系。由于转子转速与同步转速、转 差率存在下列关系,即 (5.1)

则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速 和转差率,横坐标表示电磁转矩。 三相异步电动机的机械特性有三种表达式,现介绍如下: 5.1.1机械特性的物理表达式 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 (5.2)式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式(5.2)不能明显地看出电磁转矩 与转差率之间的变化规 律。要从分析气隙每极磁通量,转子相电流,以及为转子功率

因数与转差率之间的关系,间接地找出其变化规律。现分析如表5.1所示。 根据表5.1中的分析,可作出曲线、和 分别如图5.2、5.3、5.4所示,据此可得出图5.1所示的机械特性曲 线。曲线分为两段:当较小时(),变化不大,, 与转子相电流成正比关系,表现为AB段近似为直线, 电磁转矩 较大时 (),如,减少近一 称为直线部分;当 半,很小,尽管转子相电流增大,有功电 不大,使电磁转矩反而减小了,此时表现为段, 流 段为曲线段,称为曲线部分。由此分析知,三相异步电动机的机械特下,产生最大转矩,即点称为最大转矩点,相应的 性在某转差率 转矩为 称为最大转矩,对应的转差率称为临界转差率。 5.1.2机械特性的参数表达式 1.参数表达式的推导:

三相异步电动机的机械特性习题

10.3 节 一、填空题 1、异步电动机的电磁转矩是由和共同作用产生的。 2、三相异步电动机最大电磁转矩的大小与转子电阻r2 值关,起动转矩的大小与转子电阻r2 关。 (填有无关系) 3、一台线式异步电动机带恒转矩负载运行,若电源电压下降,则电动机的旋转磁场转速,转差率,转速,最大电磁转矩,过载能力,电磁转矩。 4、若三相异步电动机的电源电压降为额定电压的0.8 倍,则该电动机的起动转矩T st =?T stN 。 5、一台频率为f1= 60Hz 的三相异步电动机,接在频率为50Hz 的电源上(电压不变),电动机的最大转矩为原来的,起动转矩变为原来的。 6、若异步电动机的漏抗增大,则其起动转矩,其最大转矩。 7、绕线式异步电动机转子串入适当的电阻,会使起动电流,起动转矩。 二、选择题 1、设计在f1= 50Hz 电源上运行的三相异步电动机现改为在电压相同频率为60Hz 的电网上,其电动机的()。 (A)T st 减小,T max 减小,I st 增大(B)T st 减小,T max 增大,I st 减小 (C)T st 减小,T max 减小,I st 减小(D)T st 增大,T max 增大,I st 增大 2、适当增加三相绕线式异步电动机转子电阻r2时,电动机的()。 (A)I st 减少, T st 增加, T max 不变, s m 增加(B)I st 增加, T st 增加, T max 不变, s m 增加 (C)I st 减少, T st 增加, T max 增大, s m 增加(D)I st 增加, T st 减少, T max 不变, s m 增加 3、一台运行于额定负载的三相异步电动机,当电源电压下降10%,稳定运行后,电机的电磁转矩()。(A)T em =T N (B)T em = 0.8T N (C)T em = 0.9T N (D)T em >T N 4、一台绕线式异步电动机,在恒定负载下,以转差率s 运行,当转子边串入电阻r = 2r2',测得转差率将为 ()(r 已折算到定子边)。 (A)等于原先的转差率s (B)三倍于原先的转差率s (C)两倍于原先的转差率s (D)无法确定 5、异步电动机的电磁转矩与( )。 (A)定子线电压的平方成正比;(B)定子线电压成正比; (C)定子相电压平方成反比;(D)定子相电压平方成正比。 6、一般电动机的最大转矩与额定转矩的比值叫过载系数,一般此值应( )。 (A)等于1 (B)小于1 (C)大于1 (D)等于0 三、问答题

汽轮机组启动方式特点研究与探讨

第25卷第6期电站系统工程V ol.25 No.6 2009年11月Power System Engineering 34 文章编号:1005-006X(2009)06-0034-03 汽轮机组启动方式特点研究与探讨 内蒙古电力科学研究院周菁段学友 摘要:描述了汽轮机组中压缸启动、高压缸启动及高中缸联合启动三种方式的主要流程,详细总结了3种启动方式的优、缺点及启动注意事项,并给出了某些运行机组启动方式选用实例。 关键词:启动方式;中压缸启动;高压缸启动;高中缸联合启动 中图分类号:TK267 文献标识码:B Research and Discussion on Turbine Unit Start-up Mode and Characteristics ZHOU Jing, DUAN Xue-you Abstract: The main processes of the three start-up modes, i.e. medium-pressure cylinder start-up, high-pressure cylinder start-up, and high-medium pressure cylinder united start-up are described. Meanwhile, the three start-up modes of the advantages, disadvantages and start-up points for attention are summarized. At the same time, the examples of the operational units and learns from these experiences are given. Key words:s tart-up mode; medium-pressure cylinder start-up; high-pressure cylinder start-up; high-medium pressure cylinder united start-up 汽轮机的启动过程是一个对汽轮机各金属部件不稳定的加热过程。在整个启动过程中,汽轮机自身的机械状态和热力状态都会发生变化。启动过程参数控制不好,金属各部件产生的热应力、热变形、热膨胀不均,可能导致胀差超限,造成汽轮机部件寿命降低,甚至损坏,造成不必要的设备、财产损失。所以选择合理的启动方式对提高机组运行的经济性及安全可靠性显得尤为重要。 1 国内汽轮机厂机组启动方式选用 国内生产的汽轮机设备主要有以下四大厂家:哈尔滨汽轮机厂、东方汽轮机厂、北京北重汽轮电机有限责任公司、上海汽轮机有限公司。以下对四大公司及其生产机组的启动方式做简要说明。 (1) 哈尔滨汽轮机厂。引进西屋公司技术,现具有批量生产300 MW、600 MW、1000 MW汽轮机组能力。哈汽厂机组多采用高压缸启动及高中缸联合启动方式。 (2) 东方汽轮机厂。引进日立机组技术,现已具备开发与制造 0.75~1000 MW各型电站汽轮机能力%。东汽厂机组启动方式可以选择高中缸联合启动及中压缸启动方式。 (3) 北京北重汽轮电机有限责任公司。引进法国Alstom公司技术,现具备独立开发制造300 MW及600 MW 机组能力,北重厂机组多采用中压缸启动方式。 (4) 上海汽轮机有限公司。与西门子公司合作,现已研制出12 MW、25 MW、50 MW、125 MW、300 MW和600 MW 等火电、核电汽轮机。上汽厂机组可以选用高压缸、中压缸及高中缸联合启动方式。 2 汽轮机启动方式 收稿日期:2009-06-15 周菁(1980-),女,助理工程师,双学士。呼和浩特,010020 汽轮机合理的启动方式就是寻求合理的加热方式,使机组各部件的热应力、热变形、汽缸和转子的胀差及转动部分的振动均控制在允许的范围内,尽快把机组的金属温度均匀地升高到工作温度,进入正常运行状态。机组启动过程中,选择合适的蒸汽温升率以及汽机金属温升率,可以避免各金属部件热应力剧烈变化,减小转子寿命损耗,增加汽机运行安全性。目前汽轮机组启动分为中压缸启动、高压缸启动和高中缸联合启动3种方式。冲转参数选择原则:根据缸体温度匹配蒸汽温度,主汽、再热汽蒸汽压力和温度应满足“机组启动曲线”的要求,保证进入汽轮机的主、再热蒸汽温度至少应有80 ℃以上的过热度。 2.1 中压缸启动方式 中压缸启动指启动时蒸汽不经高压缸,再热蒸汽直接进入汽轮机中压缸推动汽轮机转子,将汽轮机冲转。为保证高压缸温度水平,采用通风阀或高缸倒暖的方式。当转速升到一定值或并网带一定负荷(如10%负荷)后再切换到高压缸进汽的启动方式。主要技术要求:机组设有35% B-MCR以上容量的两级串联旁路系统,调节系统具有对中压调门单独控制功能,并设有高压缸倒暖系统,防止高压缸过热的通风系统。 (1) 机组启动流程 中压缸启动机组启动流程及转速控制方式简单描述见图1所示。 图1 中压缸启动流程图 (2) 中压缸启动优点 a. 整个启动过程中锅炉再热器始终有蒸汽流量流通,

#三相异步电动机启动方法选择

三相异步电动机启动方法的选择和比较 1、直接启动 直接启动的优点是所需设备少,启动方式简单,成本低。电动机直接启动的电流是正常运行的5倍左右,理论上来说,只要向电动机提供电源的线路和变压器容量大于电动机容量的5倍以上的,都可以直接启动。这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。对于大容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强大的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网不利,所以大容量的电动机和不能直接启动的电动机都要采用降压启动。 直接启动可以用胶木开关、铁壳开关、空气开关(断路器)等实现电动机的近距离操作、点动控制,速度控制、正反转控制等,也可以用限位开关、交流接触器、时间继电器等实现电动机的远距离操作、点动控制、速度控制、正反转控制、自动控制等。 有些部门简单规定多大的电动机应降压启动,这是没有根据的,通用机械(风机、水泵、压缩机)绝大多数都能承受全压启动的冲击转矩,不宜采用全压启动的仅有长轴传动的深井泵之类极少例子。全压启动条件判断:电动机起动时配电母线的电压不低于系统标称电压的85%,通常只要电动机额定功率不超过电源变压器额定容量的30%,即可全压启动,仅在估算结果处于边缘情况时,才需要进行详细计算。 电动机起动时配电母线电压计算方法和按电源容量估算允许全压启动的电动机最大功率。

2、用自偶变压器降压启动 采用自耦变压器降压启动,电动机的启动电流及启动转矩和其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转矩。如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。 自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛使用。缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。 启动电流小,起动转矩较大,只允许连续启动2~3次,设备价格较高,但性能较好,使用用较广。 3、Y-△降压启动 定子绕组为△连接的电动机,启动时接成Y,速度接近额定转速时转为△运行,采用这种方式启动时,每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。启动电流小,启动转矩小。 Y-△降压启动的优点是不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现,缺点是只能用于△连接的电动机,大型异步电机不能重载启动。

三相异步电动机的部分习题及答案

5.1 有一台四极三相异步电动机,电源电压的频率为50H Z,满载时电动机的转差率为0.02求电动机的同步转速、转子转速和转子电流频率。 n0=60f/p S=(n0-n)/ n0 =60*50/2 0.02=(1500-n)/1500 =1500r/min n=1470r/min 电动机的同步转速1500r/min.转子转速1470 r/min, 转子电流频率.f2=Sf1=0.02*50=1 H Z 5.2将三相异步电动机接三相电源的三根引线中的两根对调,此电动机是否会反转?为什么? 如果将定子绕组接至电源的三相导线中的任意两根线对调,例如将B,C两根线对调,即使B相遇C相绕组中电流的相位对调,此时A相绕组内的电流导前于C相绕组的电流2π/3因此旋转方向也将变为A-C-B向逆时针方向旋转,与未对调的旋转方向相反. 5.3 有一台三相异步电动机,其n N=1470r/min,电源频率为50H Z。设在额定负载下运行,试求: ①定子旋转磁场对定子的转速; 1500 r/min ②定子旋转磁场对转子的转速; 30 r/min ③转子旋转磁场对转子的转速; 30 r/min ④转子旋转磁场对定子的转速; 1500 r/min ⑤转子旋转磁场对定子旋转磁场的转速。 0 r/min 5.4当三相异步电动机的负载增加时,为什么定子电流会随转子电流的增加而增加?

因为负载增加n减小,转子与旋转磁场间的相对转速( n0-n)增加,转子导体被磁感线切割的速度提高,于是转子的感应电动势增加,转子电流特增加,.定子的感应电动使因为转子的电流增加而变大,所以定子的电流也随之提高. 5.5 三相异步电动机带动一定的负载运行时,若电源电压降低了,此时电动机的转矩、电流及转速有无变化?如何变化? 若电源电压降低, 电动机的转矩减小, 电流也减小. 转速不变. 5.6 有一台三相异步电动机,其技术数据如下表所示。 试求:①线电压为380V时,三相定子绕组应如何接法? ②求n0,p,S N,T N,T st,T max和I st; ③额定负载时电动机的输入功率是多少? ①线电压为380V时,三相定子绕组应为Y型接法. ②T N=9.55P N/n N=9.55*3000/960=29.8Nm Tst/ T N=2 Tst=2*29.8=59.6 Nm T max/ T N=2.0 T max=59.6 Nm I st/I N=6.5 I st=46.8A 一般n N=(0.94-0.98)n0n0=n N/0.96=1000 r/min SN= (n0-n N)/ n0=(1000-960)/1000=0.04 P=60f/ n0=60*50/1000=3 ③η=P N/P输入 P输入=3/0.83=3.61 5.7三相异步电动机正在运行时,转子突然被卡住,这时电动机的电流会如何变化?对电动机有何影响? 电动机的电流会迅速增加,如果时间稍长电机有可能会烧毁.

完整启动汽轮机过程

启动汽轮机必须经过的程序 其顺序为 1、启动前的检查项。 2、辅助油泵及调节系统试,保护投入。 3、暖管。 4、辅助设备的启动与投入。 5、启动与升速。 6、并网与带负荷。 熟记汽轮机有哪些保护,所有这些保护是什么时候投入。 汽轮机具有下列保护装置 1、超速保护 DEH中设计了103%超速(OPC)、110%电气超速跳闸(AST)和112%机械超速跳闸。 103%超速保护:汽机任何情况下转速超过3090RPM时OPC电磁阀动作,所有调门立刻关闭,保持数秒或转速降低到3000RPM后重新打开。103%超速保护动作只关调门。 110%AST超速跳闸保护:汽轮机转速超过3300RPM时,AST电磁阀动作,主汽门、调门关闭,汽机跳闸。 112%机械超速跳闸保护:转速超过3360RPM时,机械撞击子在离心力的作用下飞出,使保安系统动作,关闭主汽门、调门,汽机跳闸。 2、低油压保护 ①调速油压低于1.76MPa时联调速油泵;润滑油压低于0.07MPa时联交流润滑油泵。 ②润滑油压低于0.06MPa时联直流润滑油泵;润滑油压低于0.04MPa时跳机。 ③润滑油压低于0.03MPa时联跳盘车。 ④顶轴油泵进口油压≤0.049MPa时联备用泵。 ⑤顶轴油泵进口油压≤0.0196MPa时联跳顶轴油泵。 ⑥DEH控制油压低于0.7MPa时跳机。 3、轴向位移大保护 当轴向位移达-1.0mm或0.8mm时,发出报警信号;当轴向位移达-1.2mm 或1.0mm时,保护动作。 4、轴承温度高保护 轴承回油温度达65℃时,发出报警信号;轴承回油温度达75℃时,保护动作。 5、相对差胀保护 当相对差胀达-1.6mm或2.5mm时,发出报警信号;当相对差胀达-1.8mm 或3.2mm时,保护动作。 6、低真空保护 当排汽真空低于-0.087MPa时,发出报警信号;当排汽真空低于-0.067MPa 时,跳机。 7、危急遮断器手柄

三相异步电动机启动方法

三相异步电动机启动方法 降压启动就可以降低启动电流,减少线路压降。除直接启动外,降压启动一般有星-三角降压启动,自藕变压降压启动,变频启动、软启动等。 三相异步电动机接线图 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 1、三相电源绕组有几种接线方式?三相负载的连接方式有几种? 答:三相发电机或三相变压器的二次侧都具有三相绕组,它们都是用星Y形或三角△形的方式连接起来的。 三相负载的连接与发电机三相绕组的连接相似,也可接成形或三角形△。 2、什么叫三相三线制电路?什么叫三相四线制电路? 答:将负载与发电机用三根火线连接起来。就是三相三线制电路。 用三根火线和一根中线把电源和负载起来,就是三相四线制电路。 3、什么叫三相电源和负载的星型连接?什么叫相、线电压和相、线电流?他们之间的关系如何? 答:将三相绕级的末端连接在一起,从首端分别引出导线,这就是星形连接。通常三相绕组的始端用A、B、C表示,末端用X、Y、Z表示。绕组始端的引出线称为火线。三个绕组末端连接在一起的公共点“O”称为中性点,从中性点引出的一根导线称为零线(也称中线)。如果中性点接地,则零线也称做地线。 每相组两端间的电压(即每相绕组首端与中线之间的电压)uA、uB、uC叫做相电压。 两根火线之间(即两相之间)的电压uAB、uBC、uCA叫做线电压。 流过电源每相绕组或负载的电流,叫做相电流。火线中的电流iA、iB、iC,叫做线电流。在星形连接中,线电压的有效值是相电压有效值的倍,即U线=U相。线电流等于相电流。 即I线=I相。 4、三相四线制供电系统中,中性线(零线)的作用是什么?为什么零线不允许断路?答:中性线是三相电路的公共回线。中性线能保证三相负载成为三个互不影响的独立回路;

相关文档