文档库 最新最全的文档下载
当前位置:文档库 › 水泥组分含量的测定

水泥组分含量的测定

水泥组分含量的测定
水泥组分含量的测定

四川广元高力水泥实业有限公司

水泥组分的定量测定检验规程

目的:规定水泥组分的定量测定检验操作步骤及操作标准化,确保生产在受控状态下进行。

范围:适用于通用硅酸盐水泥中的组分含量的定量检测。

程序:

1、本规程水泥组分的定量测定方法为定量测定法。

2、方法提要:

水泥试样用盐酸溶液(10℃±2℃)选择溶解,火山灰质混合材料或粉煤灰组分基本上不溶解,而其他组分基本上被溶解。

水泥试样被pH11.60含有EDTA的溶液选择溶解后,熟料、石膏及碳酸盐基本上被溶解,而其他组分则基本不溶解。

石灰石的含量由二氧化碳的含量而定。二氧化碳的测定采用碱石棉吸收重量法或氢氧化钾-乙醇滴定容量法。

碱石棉吸收重量法用磷酸分解试样,碳酸盐分解释放出的二氧化碳由不含二氧化碳的气流带入一系列的U形管,先除去硫化氢和水分,然后被二氧化碳吸收剂吸收,通过称量来确定二氧化碳的含量。

氢氧化钾-乙醇滴定容量法用磷酸分解试样,碳酸盐分解释放出的二氧化碳先由不含二氧化碳的气流带入硫酸铜洗气瓶,除去硫化氢,然后被乙二醇-乙二胺-乙醇溶液吸收,以百里酚酞为指示剂,用氢氧化钾-乙醇标准溶液跟踪滴定。

由选择溶液的结果以及二氧化碳和三氧化硫的含量,计算水泥中各组分的含量。

3、分析步骤:

3.1 用盐酸溶液选择溶解后不溶渣含量的测定:

3.1.1基准法用盐酸溶液选择溶解法分别测定水泥和掺入水泥的火山灰质混合材材料或粉煤灰以及硅酸盐水泥(P·I)中不溶渣的含量。

)(其中火山灰质混合材料或粉煤灰试样称取约3.1.2称取约0.5g试样(m

1

0.25g),精确至0.0001g,置于200ml的干烧杯中,加入80ml水,放入一根搅拌子。将烧杯置于水泥组分测定装置上,控制温度在10℃±2℃,搅拌5分钟,使试样完全分散。

然后,加入40ml已在10℃±2℃水中恒温8分钟~10分钟的盐酸(1+2),继续搅拌25分钟,取下。立即用预先在105℃±5℃烘干至恒量的玻璃砂芯漏斗抽气过滤。

提示:恒量的玻璃砂芯漏斗是预先处理好的,即先用毛刷和水洗涤干净,并分别用热的盐酸(1+5)和水抽滤洗涤干净。然后在105℃±5℃干燥箱中烘干至

)。

恒重,在干燥器中冷却至室温并称量(m

2

用镊子取出搅拌子并用25℃±5℃的水洗净,将不溶渣全部转移至玻璃砂芯漏斗上,用水洗涤不溶渣六次,再用乙醇洗涤两次(洗涤液总量80ml~100ml)。

过滤时等上次洗涤液漏完后再洗涤下次。过滤必须迅速,如果过滤时间超过20分钟(包括洗涤),应重新做该试验。

将玻璃砂芯漏斗放入105℃±5℃烘箱中,烘干40分钟以上。取出后置于干

燥器中冷却至室温,称量。如此反复烘干,直至恒重(m

3

)。

3.2用EDTA溶液选择溶解后不溶渣含量的测定:

3.2.1基准法用EDTA溶液选择溶解法分别测定水泥和掺入水泥的矿渣以及硅酸盐水泥(P·I)中不溶渣的含量。

3.2.2 按照仪器使用规程,分别用磷酸盐pH标准缓冲溶液与硼酸盐pH标准缓冲溶液校准酸度计。

3.2.3 取50ml EDTA溶液、10ml三乙醇胺(1+2)、80ml水,依次加入至200ml 烧杯中。

在酸度计指示下用氢氧化钠溶液调整溶液的pH至11.60±0.05。

放入一根搅拌子。将烧杯置于水泥组分测定装置上,使溶液保持在20℃±

2℃,在搅拌下向溶液中加入约0.3g试样(m

4

),精确至0.0001g。在加入试样后计时,继续搅拌25分钟,取下。立即用预先在105℃±5℃烘干至恒量的玻璃砂芯漏斗抽气过滤。

提示:恒重的玻璃砂芯漏斗是预先处理好的,即先用毛刷和水洗涤干净,并分别用热的盐酸(1+5)和水抽滤洗涤干净。然后在105℃±5℃干燥箱中烘干至

恒重,在干燥器中冷却至室温并称量(m

5

)。

用镊子取出搅拌子并用水洗净,将不溶渣全部转移至玻璃砂芯漏斗上,用25℃±5℃的水洗涤不溶渣八次,再用乙醇洗涤两次(洗涤液总量100ml~120ml)。

过滤时等上次洗涤液漏完后再洗涤下次。过滤必须迅速,如果过滤时间超过20分钟(包括洗涤),应重新做该试验。

将玻璃砂芯漏斗放入105℃±5℃烘箱中,烘干40分钟以上。取出后置于干

燥器中冷却至室温,称量。如此反复烘干,直至恒重(m

6

)。

3.3 结果的计算:

3.3.1 盐酸溶液选择溶解后不溶渣含量的计算:

盐酸溶液选择溶解后水泥中不溶渣的含量(R

1

)和掺入水泥的火山灰质混合

材料或粉煤灰中不溶渣的含量(R

2)以及硅酸盐水泥(P·I)中不溶渣的含量(R

3

均按下式计算:

m3-m2

盐酸溶液选择溶解后水泥中不溶渣的含量 = × 100

m1

式中:

m

2

——玻璃砂芯漏斗的质量,单位为克(g);

m

3

——烘干后的玻璃砂芯漏斗和不溶渣的质量,单位为克(g);

m

1

——试料的质量,单位为克(g)。

3.3.2 EDTA溶液选择溶解后不溶渣含量的计算:

EDTA溶液选择溶解后水泥中不溶渣的含量(R

4

)、掺入水泥的矿渣中不溶渣

的含量(R

5)以及硅酸盐水泥(P·I)中不溶渣的含量(R

6

)均按下式计算:

m6-m5

EDTA溶液选择溶解后不溶渣的含量 = × 100 m4

式中:

——玻璃砂芯漏斗的质量,单位为克(g);

m

5

——烘干后的玻璃砂芯漏斗和不溶渣的质量,单位为克(g);

m

6

——试料的质量,单位为克(g)。

m

4

本规程从2010年7月1日起执行!

四川广元高力水泥实业有限公司化验室

2010年6月16日

编写:罗天德审核:郑锋批准:罗洪辉

水泥试验方法

水泥试验方法 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

水泥试验方法 水泥试验方法 水泥试验方法 试验条件试验温度为20℃±2℃相对湿度应不低于50%水泥试样、拌和水、仪器和用具的温度应与试验室一致湿气养护箱的温度为20℃±1℃相对湿度不低于90%。 1取样及频率 1.1 外观质量检查 进场水泥必须有水泥生产厂的质量证明书。每批进场水泥需核对、检查生产厂名、强度等级、出厂日期、出厂编号、数量、包装、质量证明书以及是否受潮等。 1.2 取样方法 散装水泥当水泥深度不超过2m时应采用槽形管状取样器进行取样 通过转动取样器内管控制开关在适当位置插入水泥一定深度关闭开关将所取样品放入洁净、干燥、不易受污染的容器中取样数量不少于12kg。袋装水泥应采用取样管连续取样从20个以上的不同部位取等量样品将所取样品放入洁净、干燥、不易受污染的容器中取样数量不少于12kg。样品分割样品混拌均匀后采用分样器或四分法缩分样品至不少于12kg作为检验试样。将样品分成两份一份按试验检测标准规定的方法进行检验一份密封保存三个月以备有疑问时用于复试。 1.3 检验频率

每批散装水泥不大于500t或袋装水泥不大于200t的同厂家、同品种、同批号、同出厂日期的水泥为一验收批。 2 水泥标准稠度用水量测定 2.1准备工作 维卡仪的金属棒能自由滑动,调整至试杆接触玻璃板时指针对准零点,搅拌机运行正常。 2.2 水泥净浆的拌制 用水泥净浆搅拌机搅拌锅和搅拌叶先用湿布擦过将拌和水倒入搅拌锅内然后在5s-10s内小必将称好的500g水泥加入水中防止水和水泥溅出拌和时先将锅放在搅拌机的锅座上升至搅拌位置启动搅拌机低速搅拌120s停15s同时将叶片和锅壁上的水泥刮入锅中间接着高速搅拌120s停机。 2.3 标准稠度用水量的测定步骤 拌和结束后立即将拌好的水泥净浆装入已置于玻璃底板上的试模中用小刀插捣轻轻振动数次刮去多余的净浆抹平后迅速将试模和底板移到维卡仪上并将其中心定在试杆下降低试杆直至与水泥净浆表面接触拧紧螺丝1s-2s后突然放松使试杆垂直自由地沉入水泥净浆中。在试杆停止沉入或释放试杆30s时记录试杆距底板之间的距离整个操作过程应在搅拌后1.5min内完成。以试杆沉入净浆并距底板6mm±1mm的水泥净浆为标准稠度净浆。其拌和用水量为该水泥的标准稠度用水量P按水泥质量的百分比计。 3 凝结时间测定

水泥组分含量的测定

四川广元高力水泥实业有限公司 水泥组分的定量测定检验规程 目的:规定水泥组分的定量测定检验操作步骤及操作标准化,确保生产在受控状态下进行。 范围:适用于通用硅酸盐水泥中的组分含量的定量检测。 程序: 1、本规程水泥组分的定量测定方法为定量测定法。 2、方法提要: 水泥试样用盐酸溶液(10℃±2℃)选择溶解,火山灰质混合材料或粉煤灰组分基本上不溶解,而其他组分基本上被溶解。 水泥试样被pH11.60含有EDTA的溶液选择溶解后,熟料、石膏及碳酸盐基本上被溶解,而其他组分则基本不溶解。 石灰石的含量由二氧化碳的含量而定。二氧化碳的测定采用碱石棉吸收重量法或氢氧化钾-乙醇滴定容量法。 碱石棉吸收重量法用磷酸分解试样,碳酸盐分解释放出的二氧化碳由不含二氧化碳的气流带入一系列的U形管,先除去硫化氢和水分,然后被二氧化碳吸收剂吸收,通过称量来确定二氧化碳的含量。 氢氧化钾-乙醇滴定容量法用磷酸分解试样,碳酸盐分解释放出的二氧化碳先由不含二氧化碳的气流带入硫酸铜洗气瓶,除去硫化氢,然后被乙二醇-乙二胺-乙醇溶液吸收,以百里酚酞为指示剂,用氢氧化钾-乙醇标准溶液跟踪滴定。 由选择溶液的结果以及二氧化碳和三氧化硫的含量,计算水泥中各组分的含量。 3、分析步骤: 3.1 用盐酸溶液选择溶解后不溶渣含量的测定: 3.1.1基准法用盐酸溶液选择溶解法分别测定水泥和掺入水泥的火山灰质混合材材料或粉煤灰以及硅酸盐水泥(P·I)中不溶渣的含量。 )(其中火山灰质混合材料或粉煤灰试样称取约3.1.2称取约0.5g试样(m 1 0.25g),精确至0.0001g,置于200ml的干烧杯中,加入80ml水,放入一根搅拌子。将烧杯置于水泥组分测定装置上,控制温度在10℃±2℃,搅拌5分钟,使试样完全分散。 然后,加入40ml已在10℃±2℃水中恒温8分钟~10分钟的盐酸(1+2),继续搅拌25分钟,取下。立即用预先在105℃±5℃烘干至恒量的玻璃砂芯漏斗抽气过滤。 提示:恒量的玻璃砂芯漏斗是预先处理好的,即先用毛刷和水洗涤干净,并分别用热的盐酸(1+5)和水抽滤洗涤干净。然后在105℃±5℃干燥箱中烘干至 )。 恒重,在干燥器中冷却至室温并称量(m 2 用镊子取出搅拌子并用25℃±5℃的水洗净,将不溶渣全部转移至玻璃砂芯漏斗上,用水洗涤不溶渣六次,再用乙醇洗涤两次(洗涤液总量80ml~100ml)。 过滤时等上次洗涤液漏完后再洗涤下次。过滤必须迅速,如果过滤时间超过20分钟(包括洗涤),应重新做该试验。

实验 水泥中三氧化硫含量的测定

实验水泥中三氧化硫含量的测定 适量的SO3可调节水泥的凝结时间,还具有增强、减缩等作用。制造膨胀水泥时,石膏还是一种膨胀组分,赋予水泥膨胀的性能。但水泥中石膏量过多,却会导致水泥安定性不良。因此,水泥中三氧化硫含量是水泥重要的质量指标,在生产过程中必须予以严格控制。 由于水泥中石膏的存在形态及其性质不同,测定水泥中三氧化硫的方法有很多种,如经典的硫酸钡重量法及其改进方法、离子交换法、磷酸溶样-氯化亚锡还原——碘量滴定法、燃烧法(与全硫的测定相同)、分光光度法、离子交换分离一EDTA配位滴定法等。目前多采用硫酸钡重量法、磷酸溶样—氯化亚锡还原—碘量滴定法(还原—碘量法)、离子交换法。经典的硫酸钡重量法较准确,常作为仲裁分析。 硫酸钡重量法测定水泥中三氧化硫 一、实验目的 掌握硫酸钡重量法测定原理和方法。 了解晶型沉淀的沉淀条件、原理和沉淀方法。 沉淀水泥中三氧化硫的含量,并用换算因数计算测定结果。 二、基本原理 硫酸钡重量法不仅在准确性方面,而且在适应性和测量范围方面都优于其它方法,但其最大缺点是手续繁琐,费时,不宜作为生产控制例行分析方法。其改进方法虽然简化了离子分离手续,但是过滤、沉淀、洗涤……,直至恒重等一系列手续,便使这一方法有所逊色。 硫酸钡质量法是通过氯化钡使硫酸根结合成难溶的硫酸钡沉淀,以硫酸钡的质量折算水泥中的三氧化硫含量。 由于在磨制水泥中,需加入一定量石膏,加入量的多少主要反映在水泥中SO42-离子的数量上。所以可采用BaCl2作沉淀剂,用盐酸分解,控制溶液浓度在0.2-0.4mol/L的条件下,用BaCl2沉淀SO42-离子,生成BaSO4沉淀。沉淀经过滤、洗涤、和灼烧,以BaSO4形式称量,从而求得S、SO3、或SO42-离子含量。BaSO4的溶解度很小(其K sp=l.lx10-10),其化学性质非常稳定,灼烧后的组分与分子式符合。反应式为 Ba2+ + SO42- = BaSO4↓(白色) 三、试剂 1. 盐酸(1+1); 2. 氯化钡溶液(100g/L); 3. 硝酸银溶液(5g/L)。 四、分析步骤 准确称取约0.5g水泥试样,精确到0.0001g,置于300ml烧杯中,加入30-40ml水使其分散。及10ml盐酸(1+1),用玻璃棒压碎块状物。慢慢加热溶液,将溶液加热至微沸,并保持微沸5min,使试样充分分解。取下试样,以中速滤纸过滤,用热水洗涤10~12次。调整滤液体积至200ml,煮沸,在搅拌下滴加10ml热的氯化钡溶液〔10%(W/V)〕,并将溶液煮沸3min,搅拌2~3次,然后移至温热处静置4h 或过夜(此溶液体积应保持在200ml),用慢速滤纸过

水泥成分测定报告

实验题目:硅酸盐水泥中SiO2、Fe2O3、Al2O3、CaO、MgO含量测定一、摘要 本实验测定硅酸盐水泥中SiO 2、Fe 2 O 3 、Al 2 O 3 、CaO、MgO的含量。实验采用 重量分析法测定SiO 2 的百分含量,试样经过溶解、沉淀、陈化、过滤和洗涤、 烘干、碳化、灰化最后灼烧至恒重得到SiO 2的质量。测定试样中Fe 2 O 3 、CaO、MgO 的含量均采用EDTA直接滴定,采用返滴定法测定Al 2O 3 的含量,先加入过量EDTA 溶液,用CuSO 4 标准溶液滴定过量的EDTA。 二、前言 水泥主要由硅酸盐组成,按我国规定,分成硅酸盐水泥(纯熟料水泥)、普通硅酸盐水泥(普通水泥)、矿渣硅酸盐水泥(矿渣水泥)、火山灰质硅酸盐水泥(火山灰水泥),粉煤灰硅酸盐水泥(煤灰水泥)等。水泥熟料是由水泥生料经1400 o C以上高温煅烧而成。硅酸盐水泥由熟料加入适量石膏,其成分均与水泥熟料相似,可按水泥熟料化学分析法进行测定。 三、实验原理 SiO 2 的测定可分为容量法和重量法,重量法又因使硅酸凝聚所用物质的不同分为盐酸干涸法、动物胶法、氯化铵法等,本实验采用氯化铵法将试样与7-8 倍固体NH 4Cl混匀后,再加HCl溶解分解试样,HNO 3 氧化Fe2+为Fe3+经沉淀分离、 过滤、洗涤后的SiO 2·nH 2 O在瓷坩埚中于950o C灼烧至恒重。 如果不测定SiO 2,则试样经HCl溶液分解、HNO 3 氧化后,用均匀沉淀法使 Fe(OH) 3、Al(OH) 3 与Ca2+、Mg2+分离以磺基水杨酸为指示剂,用EDTA络合滴定Fe, 以PAN为指示剂,用CuSO 4 标准溶液返滴定法测定Al,Fe、Al含量高时,对Ca2+、 Mg2+的测定有干扰,用尿素分离Fe、Al后,Ca2+、Mg2+是以GBHA或铬黑T为指示 剂用EDTA络合滴定法测定,若试样中含Ti时,则CuSO 4 回滴定法测得的实际上 是Al和Ti的含量,若要测定TiO 2 的含量可加入苦杏仁酸解蔽剂,TiY可成为 Ti4+,再用标准CuSO 4 滴定释放的EDTA,如Ti含量较低时可用比色法测定。 滤液中Ca2+、Mg2+按常法在pH = 10时用EDTA滴定,测得Ca2+、Mg2+含量;再在pH = 12时,用EDTA滴定,测得CaO的含量,用差减法计算MgO的含量。生产上通常未经上述沉淀分离,加入三乙醇胺、氟化钾等作掩蔽剂,直接用EDTA 进行滴定。 四、实验仪器和试剂

水泥密度测定方法

水泥密度测定方法(GB/T 208-2014) 5.4.1 方法原理 将一定质量的水泥倒入装有足够量液体介质的李氏瓶内,液体的体积应可以充分浸润水泥颗粒。根据阿基米德定律,水泥颗粒的体积等于它所排开的液体体积,从而算出水泥单位体积的质量即为密度。试验中,液体介质采用无水煤油或不与水泥发生反应的其他液体。 5.4.2 仪器与材料 李氏瓶:李氏瓶由优质玻璃制成,透明无条纹,具有抗化学侵蚀且热滞后性小,要有足够的厚度以确保良好的耐裂性。李氏瓶横截面形状为圆形。瓶颈刻度由0mL~1mL和18mL~24mL两段刻度组成,且0mL~1mL和18mL~24mL以0.1mL为分度值,任何标明的容量误差都不大于0.05mL。 无水煤油:符合GB 253要求。 恒温水槽:应有足够大的容积,使水温可以稳定控制在20℃±1℃。 天平:量程不小于100g,分度值不大于0.01g。 温度计:量程包括0℃~50℃,分度值不大于0.1℃ 5.4.3 测定步骤 5.4.3.1水泥试样应先通过0.90mm方孔筛,在110℃±5℃温度下烘干1h,并在干燥器内冷却至室温(室温应控制在20℃±1℃)。 5.4.3.2 称取水泥60g(m),精确至0.01g,在测试其它材料密度时,可按实际情况增减称量材料质量,以便读取刻度值。 5.4.3.3 将无水煤油注入李氏瓶中至“0mL”到“1mL”之间刻度线后(选用磁力搅拌),盖上瓶塞放入恒温水槽内,使刻度部分浸入水中(水温应控制在20℃ ). ±1℃),恒温至少30min,记下无水煤油的初始(第一次)读数(V 1 5.4.3.4 从恒温水槽中取出李氏瓶,用滤纸将李氏瓶细长颈内没有没有的部分仔细擦干净。 5.4.3.5 用小匙将水泥样品一点点装入李氏瓶中,反复摇动(亦可用超声波振动或磁力搅拌等)直至没有气泡排出,再次将李氏瓶静置于恒温水槽,使刻度部分浸入水中,恒温至少30min,记下第二次读数(V )。 2

水泥中三氧化硫含量的测定

水泥中三氧化硫含量的测定 水泥中的三氧化硫是由石膏、熟料(特别是以石膏作矿化剂煅烧的熟料)或混合材料引入,在水泥制造时加入适量石膏可以调节凝结时间,还具有增强、减缩等作用。制造膨胀水泥时,石膏还是一种膨胀组分,赋予水泥以膨胀等性能,但水泥中的三氧化硫含量过多,却会引起水泥体积安定性不良等问题,因此,在水泥生产过程中必须严格控制水泥中的三氧化硫含量。 测定水泥中三氧化硫含量的方法多种,如硫酸钡质量法、磷酸溶样-氯化亚锡还原-碘量法以及离子交换法等。 一、 测定原理 1. 硫酸钡质量法的测定原理 用盐酸分解试样,时试样中不同形态的硫酸全部转变成可溶性的硫酸盐 ,以氯化钡沉淀剂,使之生成硫酸钡沉淀。该沉淀的溶解度极小,化学性质非常稳定,经灼烧后称重,再换算得出三氧化硫的含量,反应式如下: =↓(白色) 2. 碘量法的测定原理 水泥中的硫主要以硫酸盐硫(石膏)存在,部分硫存在于硫化钙、硫化亚锰、硫化亚铁等硫化物中。用磷酸溶解水泥试样时,水泥中的硫化物与磷酸发生下列反应,生成磷酸盐和硫化氢气体,其反应式如下: 3CaS +2=+3S ↑ 3MnS+2=+3S ↑ 3FeS+2=+3S ↑ 在有还原剂并加热的条件下,用浓磷酸溶解试样时,不仅硫化物与磷酸发生上述反应,硫酸盐也将与磷酸反应,生成的硫酸与还原剂氯化亚锡发生氧化还原反应,放出硫化氢气体。 43434224 2424223CaSO +2H PO =Ca PO +3H PO 3H SO +12SnCl =6SnCl +6SnO +)3H (S 根据碘酸钾溶液(加有碘化钾)在酸性溶液中析出碘的性质,在H2S 的吸收液中加入过量的碘酸钾标准溶液,使在溶液酸化时析出碘,并与硫化氢作用,剩余的碘则用硫代硫酸钠回滴,其反应式如下: --+322222232246 IO +5I +6H =3I +3H O H S+I =2HI+S 2Na S O +I =2NaI+Na S O 利用上述反应,先用磷酸处理试样,使水泥中的硫化物生成硫化氢溢出,然后用氯化亚锡-磷酸溶液处理试样,测定试样中的硫酸盐。

硅酸盐水泥中二氧化硅含量测定

硅酸盐水泥中SiO 2,Fe 2O 3,Al 2O 3 含量的测定 姓名: 学号: 班级: 同组人: 2014/9

一实验目的: 1、掌握重量法测定水泥中SiO 2 含量的原理及方法。 2、掌握加热蒸发、沉淀过滤、洗涤、炭化、灰化、灼烧等操作技术和要求。 3、学习配位滴定法测定水泥中Fe 2O 3 ,Al 2 O 3 等含量的测定原理及方法。 4、学习铁离子、铝离子、钙离子的测定条件、指示剂的选择。 5、掌握CuSO 4 和EDTA标准溶液的配制与标定。 6、掌握络合滴定的原理和方法、掩蔽剂的选择、指示剂的使用及终点颜色的变 化情况。 二、仪器药品及试剂配制仪器 1、仪器:马弗炉、瓷坩埚、干燥器和长、短坩埚钳、电子天平、台秤、电炉、水浴锅、容量瓶(100ml、250ml)、移液管(50ml、25ml)、滴定管,称量瓶、试剂瓶( 500ml和1000ml)、锥形瓶(250ml)、量筒(50ml、10ml)、烧杯(100ml、200ml)、表面皿、瓷蒸发皿、玻璃漏斗、漏斗架、瓷坩埚、平头玻璃棒、胶头滴管、漏斗、中速定量滤纸、洗瓶。 2、试剂: HCl溶液(1:1):1体积浓盐酸溶于1体积的水中;HCl溶液(3:97):3体积浓盐酸溶于97体积的水中;浓硝酸;氨水(1:1):1体积浓氨水溶于1体积的水中;0.05%溴甲酚绿指示剂:将0.05g溴甲酚绿溶于100mL20%乙醇溶液中10%磺基水杨酸指示剂:将10g磺基水杨酸溶于100mL水中;0.2%PAN指示剂:称取0.2gPAN溶于100mL乙醇中;0.1%铬黑T: 称取0.1g 铬黑T溶于75mL三乙醇胺和25mL乙醇中;Mg-Y;NH4Cl固体;水泥试样 3、溶液的配置 1)标准溶液的配制: a、0.015mol/L CaCO3溶液的配制:减量法准确称取CaCO3基准物0.3764g,置于100mL烧杯中,用少量水先润湿,盖上表面皿,慢慢滴加1∶1HCl ,待其溶解后,用少量水洗表面皿及烧杯内壁,洗涤液一同转入250mL容量瓶中,用水稀释至刻度,摇匀备用。 b、0.015mol/L EDTA标准滴定溶液的配制:称取约5.6gEDTA(乙二胺四乙酸钠盐)置于烧杯中,加入约200ml水,加热溶解,过滤,用水稀释至1L. c、0.015mol/L硫酸铜(M CuSO4=160)标准溶液的配制:准确称取2.4g硫酸铜溶于水中,加4到5滴硫酸溶液(1:1),用水稀释至1L。 (2)缓冲溶液的配制

水泥矿粉密度检验细则

水泥矿粉密度检验细则 一、依据标准:《水泥密度测定方法》(GB/T 208—1994) 二、仪器设备: 1、李氏瓶横截面形状为圆形,外形尺寸应严格遵守关于公差、长度、间距以及均匀刻度的要求;最高刻度标记与磨口玻璃塞最低点之间的距离至少为10mm。 2、李氏瓶的结构材料是优质玻璃,透明无条文,具有抗化学腐蚀性且热滞后性小,具有足够的厚度以确保较好的耐烈性。 3、瓶颈刻度由0至24mL,且0~1mL和18~24mL应以0.1mL 刻度,任何标明的容量误差都不大于0.05mL。 4、无水煤油符合GB253的要求。 5、恒温水槽。 三、方法步骤: 1、将无水煤油注入李氏瓶中0到1mL 刻度线后(以弯月面下部为准),盖上瓶塞放入恒温水槽内,是刻度部分侵入水中(水温应控制在李氏瓶刻度时的温度),恒温30min,记

下初始(第一次)读数。 2、从恒温水槽中取出李氏瓶,用滤纸将李氏瓶细长颈内没有煤油的部分仔细擦干净。 3、水泥试样应预先通过0.90mm方孔筛,灾110±5℃温度下干燥1h,并在干燥器内冷却至室温。成水泥60g,称准至0.01g。 4、用小匙将水泥样品一点点的装入三、1条的李氏瓶中,反复摇动(亦可用超声波震动),至没有气泡排出,再次将李氏瓶竟至于恒温水槽中,恒温30min,记下第二次数据。 5、第一次读数和第二次读数时,恒温水槽的温度差不大于 0.2℃。 四、结果计算: 1、水泥体积应为第二次读数减去初始(第一次)读数,即水泥所排开的无水煤油的体积(mL)。水泥密度ρ(g/cm3)按下式计算: 水泥密度ρ=水泥质量(g)/排开的体积(cm3) 结果计算到小数第三位,且取整数到0.01g/cm3,试验结

食用油脂中辣椒素的测定BJS201801

附件 食用油脂中辣椒素的测定 BJS 201801 1范围 本方法规定了食用油脂中辣椒素(天然辣椒素、合成辣椒素、二氢辣椒素)含量的液相色谱-串联质谱测定方法。 本方法适用于食用油脂中辣椒素(天然辣椒素、合成辣椒素、二氢辣椒素)含量的测定。 2原理 试样经二氯甲烷溶解,氢氧化钠水溶液提取酸化后,过固相萃取柱净化,采用液相色谱-串联质谱仪检测,外标法定量。 3试剂和材料 除另行规定外,水为GB/T 6682规定的一级水。 3.1 试剂 3.1.1 乙腈(CH3CN):色谱纯。 3.1.2 甲醇(CH3OH):色谱纯。 3.1.3 甲酸(CH2O2):质谱级。 3.1.4 二氯甲烷(CH2Cl2):色谱纯。 3.1.5 氢氧化钠(NaOH):分析纯。 3.1.6 浓硫酸(H2SO4):98%,分析纯。 3.2 溶液配制 3.2.1 0.1%甲酸水溶液:取甲酸(3.1.3)1 mL用水定容至1000 mL,用滤膜(0.22 μm,水相)过滤后备用。 3.2.2 0.1%甲酸乙腈溶液:取甲酸(3.1.3)1 mL用乙腈(3.1.1)定容至1000 mL,用滤膜(0.22 μm,有机相)过滤后备用。 3.2.3 2%氢氧化钠溶液:称取20 g 氢氧化钠(3.1.5)溶于1000 mL水中,摇匀备用。 3.2.4 稀硫酸(1+15)溶液:取10 mL浓硫酸(3.1.6)缓缓倒入150 mL水中,搅拌均匀备用。 3.3 标准品 天然辣椒素、合成辣椒素、二氢辣椒素标准品的中文名称、英文名称、CAS登录号、分子式、 —1 —

相对分子量见附录A表A.1,纯度≥98%。 3.4 标准溶液配制 3.4.1 标准储备液:分别称取天然辣椒素、合成辣椒素、二氢辣椒素标准品(3.3)0.1 g(精确至0.000 1 g),用甲醇(3.1.2)溶解,并转移至100 mL容量瓶中,定容至刻度,标准储备液浓度为1 mg/mL。贮存于4 ℃冰箱中,有效期3个月。 3.4.2 混合标准系列工作液:分别准确吸取标准储备液(3.4.1)适量于容量瓶中,用甲醇(3.1.2)将其稀释成含量分别为0.1 ng/mL、0.2 ng/mL、0.5 ng/mL、1 ng/mL、5 ng/mL、10 ng/mL、50 ng/mL 和100 ng/mL的标准系列混合工作液。临用时配制。 3.5 C18固相萃取(SPE)小柱:1000 mg,6 mL,或等效SPE柱。 4仪器和设备 4.1 高效液相色谱-串联质谱仪(LC-MS/MS):配有电喷雾离子源。 4.2 超声波清洗器。 4.3 分析天平:感量为0.000 1 g。 4.4 离心机:转速≥4000 r/min。 4.5 涡旋混合器。 5分析步骤 5.1 试样制备 准确称取1 g(精确至0.000 1 g)样品于10 mL具塞塑料试管中,加入1 mL二氯甲烷(3.1.4),再加入3 mL 2%氢氧化钠溶液(3.2.3),涡旋提取10 min,4000 r/min离心10 min,取上层水相;残留有机相再用3 mL 2%氢氧化钠溶液重复提取一次,合并水相,再用稀硫酸溶液(3.2.4)调节pH至2-3之间后进行固相萃取操作。C18 SPE小柱预先用3 mL乙腈淋洗3次,再用3 mL纯水淋洗2次进行活化,然后将调节完pH值的水相提取液加入小柱,控制流速至每秒1-2滴,待全部溶液通过SPE小柱后,以3 mL超纯水淋洗2次,弃去流出液,最终以3 mL乙腈(3.1.1)洗脱2次。乙腈洗脱液50℃氮吹近干,用0.5 mL甲醇(3.1.2)溶解后过微孔滤膜(0.22 μm,有机相),过滤液置于进样小瓶内衬管中供LC-MS/MS测定。 5.2 仪器参考条件 5.2.1 色谱条件 a)色谱柱:C18柱,1.8 μm,100 mm×2.1 mm(内径),或性能相当者; b)流动相:A为0.1%甲酸水溶液(3.2.1),B为0.1%甲酸乙腈溶液(3.2.2),洗脱梯度见表1; c)流速:0.3 mL/min; d)柱温:40 ℃; e)进样量:2 μL。 —2 —

土壤有机质测定实验报告

土壤实验报告 土壤有机质的测定 姓名:学号:实验日期: 一、方法原理: 土壤有机质是土壤的重要组成物质之一,是作为衡量土壤肥力高低的一个重要指标,土壤有机质含量也反映一定的成土过程。 测定土壤有机质方法很多,一般采用重铬酸钾硫酸法。此法操作简便,设备简单,速度快,再现性较好,适合大批样品分析和实验室用。 所谓重铬酸钾硫酸法就是在加热条件下,用一定量的标准重铬酸钾溶液,氧化土壤有机碳,多余的重铬酸钾则用硫酸亚铁溶液滴定,以实际消耗的重铬酸钾量计算出有机碳的含量,再乘以常数1.724,即为土壤有机质含量,其反应方程式如下: 2K2Cr2O7+3C+6H2SO4=2K2SO4+Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 二、操作步骤: (1)准确称取通过60号筛风干土样0.1~0.5克(精确到0.0001克),放入干的硬质试管中,用移液管加入5毫升重铬酸钾标准溶液,再用移液管(或加液器)加入5毫升浓硫酸,小心摇匀,在试管口上加一弯颈小漏斗。 (2)预先将植物油浴锅温度升到185~190度,将试管插入铁丝笼中,并将铁丝笼放入上述油锅中加热,此时温度控制在170~180度,使管内溶液保持沸腾5分钟,然后取出铁丝笼,待试管稍冷后,擦净外部油液。 (3)冷却后将试管内溶液洗入250毫升三角瓶中,使瓶内总体积在60~80毫升,此时酸度约为1.5mol/L,然后加邻啡罗啉指示剂3-5滴,用0.2mol/L硫酸亚铁溶液滴定,溶液颜色由黄色经过绿色突变到棕红色即为终点。 (4)在测定样品时必须做空白实验,可以用纯砂或灼烧土代替样品,以免溅出溶液。其他手续同上。 实验操作时注意事项: (1)此法要求有机质含量在2%以上者,相对误差不超过5%,有机质含量低于2%,绝对误差不超过0.05,因此,必须根据有机质含量多少决定称量,一是有机质在7~15%的土样可称0.1~0.5克。2~4%者可称0.5~0.2克少于2%可0.5克以上,以减少误差。 (2)消化煮沸的时间必须尽量准确一致,否则,对分析结果有较大影响,必须从

水泥密度的测定

四川广元高力水泥实业有限公司 水泥密度测定检验规程 目的:规定水泥密度测定检验操作步骤及操作标准化,以确保生产在受控状态下进行。 范围:适用于水硬性水泥的密度,也适用于采用本方法的其他粉状物料的密度的测定。 程序: 1、本规程规定了水泥密度测定方法的原理、仪器和设备、试验条件及材料、试验方法、结果与计算。 2、方法原理: 将水泥倒入装有一定量液体介质的李氏瓶内,并使液体介质充分地浸透水泥颗粒。根据阿基米德定律,水泥的体积等于它所排开的液体体积,从而算出水泥单位体积的质量即为密度,为使测定的水泥不产生水化反应,液体介质采用无水煤油。 3、测定步骤: 3.1将无水煤油注入李氏瓶中至0到1mL刻度线后(以弯月面下部为准),盖上瓶塞放入恒温水槽内,使刻度部分浸入水中(水温应控制在李氏瓶刻度时的温度),恒温30min,记下初始(第一次)读数。 3.2从恒温水槽中取出李氏瓶,用滤纸将李氏瓶细长颈内没有煤油的部分仔细擦干净。 3.3水泥试样应预先通过0.90 mm方孔筛,在(110士5)℃温度下干燥lh,并在干燥器内冷却至室温。称取水泥60g,称准至0.01g。 3.4用小匙将水泥样品一点点的装入李氏瓶中,反复摇动(亦可用超声波震动),至没有气泡排出,再次将李氏瓶静置于恒温水槽中,恒温30min,记下第二次读数。 3.5第一次读数和第二次读数时,恒温水槽的温度差不大于0.2℃。 4、结果计算: 4.1水泥体积应为第二次读数减去初始(第一次)读数,即水泥所排开的无水煤油的体积(mL)。 4.2水泥密度ρ(g/cm3)按下式计算: 水泥质量(g) 水泥密度ρ= 排开的体积(cm3) 结果计算到小数第三位,且取整数到0.01g/cm3,试验结果取两次测定结果的算术平均值,两次测定结果之差不得超过0.02g/cm3。 本规程从2010年7月1日起执行!

辣椒各组分含量测定

辣椒各组分含量测定 一、辣椒中可溶性糖的测定----蒽铜比色法 1.原理:糖与硫酸反应脱水生成羟甲基呋喃甲醛,生产物再与蒽铜缩合成兰色化合物,其颜色深浅与溶液中糖的浓度成正比,可比色定量。 2.试剂 (1)硫酸锌溶液:溶解500g化学纯硫酸锌于500ml水中 (2)亚铁氰化钾溶液:溶解10.6g化学纯亚铁氰化钾于100ml水中(3) 0.2%蒽铜试剂:溶解蒽铜0.2g于100ml95%硫酸中,置棕色瓶中冷暗处保存 (4) 0.1%葡萄糖液:准确称干燥葡萄糖0.1000g 定容100ml 3.操作方法 (1)标准曲线绘制 (2) 100ml容量瓶编号 沸水浴加热6分钟,取出冷却→用1cm比色杯→610nm测定吸光度→作出以吸光度为横坐标,糖液浓度为纵坐标的准曲线 (3)样品测定 称10g样品→于100ml热水加入500ml容量瓶中-加硫酸锌5ml→沸水浴5分钟→取出再摇动下加亚铁氰化钾5ml,→冷却→定容500ml→过滤→吸滤液25ml→于250ml容量瓶→定容250ml→取稀释液1ml,于比色管中→加10ml蒽铜试剂→摇匀→水浴加热6分钟→冷却→比色 试验注意 1,样液必须清澈透明,加热后不应有蛋白质沉淀

2,样品颜色较深时,可用活性炭脱色后再进行测定 3,此法与所用的硫酸浓度和加热时间有关 4,所取糖液浓度在1-2.5mg/100ml之间 (一)菲林试剂 1、试剂 费林试剂:甲液:称取15g硫酸铜(CuSO4·5H2O)及0.05g亚甲基蓝,溶于蒸馏水中并稀释到1000mL。 乙液:称取50g酒石酸钾钠及75g NaOH,溶于蒸馏水中,再加入4g亚铁氰化钾[K4Fe(CN)6],完全溶解后,用蒸馏水稀释到1000mL,贮存于具橡皮塞玻璃瓶中。 0.1%葡萄糖标准溶液:准确称取1.000g经98~100℃干燥至恒重的无水葡萄糖,加蒸馏水溶解后移入 1000mL容量瓶中,加入5mL浓HC l(防止微生物生长),用蒸馏水稀释到1000mL。 6mol/L HCl:取250mL浓HCl(35%~38%)用蒸馏水稀释到500mL。碘-碘化钾溶液:称取5g碘,10g碘化钾溶于100mL蒸馏水中。 6mol/L NaOH:称取120gNaOH溶于500mL蒸馏水中。 0.1%酚酞指示剂。 2、材料 辣椒,淀粉。

实验九 混合碱中各组分含量的测定

实验九混合碱中各组分含量的测定(微型滴定法)一、实验目的 1. 了解利用双指示剂法测定Na 2CO 3 和NaHCO 3 混合物的原理和方法。 2. 学习用参比溶液确定终点的方法。 3. 进一步掌握微量滴定操作技术。 二、实验原理 混合碱是NaCO 3与NaOH或NaHCO 3 与Na 2 CO 3 的混合物。欲测定同一份试样中 各组分的含量,可用HCl标准溶液滴定,根据滴定过程中pH值变化的情况,选用酚酞和甲基橙为指示剂,常称之为“双指示剂法”。 若混合碱是由Na 2CO 3 和NaOH组成,第一等当点时,反应如下: HCl+NaOH→NaCl+H 2 O HCl+Na 2 CO 3 →NaHCO 3 +H 2 O 以酚酞为指示剂(变色pH范围为8.0~10.0),用HCl标准溶液滴定至 溶液由红色恰好变为无色。设此时所消耗的盐酸标准溶液的体积为V 1 (mL)。 第二等当点的反应为: HCl+NaHCO 3→NaCl+CO 2 ↑+H 2 O 以甲基橙为指示剂(变色pH范围为3.1~4.4),用HCl标准溶液滴至溶 液由黄色变为橙色。消耗的盐酸标准溶液为V 2 (mL)。 当V 1>V 2 时,试样为Na 2 CO 3 与NaOH的混合物,中和Na 2 CO 3 所消耗的HCl 标准溶液为2V 1(mL),中和NaOH时所消耗的HCl量应为(V 1 -V 2 )mL。据此, 可求得混合碱中Na 2CO 3 和NaOH的含量。 当V 1<V 2 时,试样为Na 2 CO 3 与NaHCO 3 的混合物,此时中和Na 2 CO 3 消耗的HCl 标准溶液的体积为2V 1mL,中和NaHCO 3 消耗的HCl标准溶液的体积为(V 2 -V 1 )

土的压缩性实验报告doc

土的压缩性实验报告 篇一:土力学实验报告 土力学实验报告 班级:姓名:学号:小组成员: 中国矿业大学建筑工程学院岩土工程研究所二〇一四年十二月 试验一含水量试验 一、目的 本试验之目的在于测定土的含水量,借与其它试验相配合计隙比及饱和度等;并查表确定地基土的容许承载力。 二、解释 (1)含水量w是土中水的质量与干土颗粒质量之比,用百分数表示。 (2)本方法适用于有机物含量不超过干土重5%的土。若土中有机物含量在5~l0%之间,应将烘干温度控制在65-70℃,并在记录中注明)。 三、设备 (1)有盖的称量盒数只;(2)天平,感量0.01克;(3)烘箱(温度100~110℃)(4)干燥器(内有干燥剂CaCl2)。 四、操作步骤 (1)选取具有代表性的土样l5-30克(砂土适当多取)

放入称量盒。盖好盒盖,称盒加湿土质量。 (2)打开盒盖,放入烘箱。在105~110℃下烘至恒重。烘干的时间一般为:粘土、粉土不得少于8小时;砂土不得少于6小时。 (3)将烘好的试样连同称量盒一并放入干燥器内,让其冷却至室温。(4)从干燥器内取出试样,称盒加干土质量。 (5)实验称量应准确至0.01克以上并进行2次平行测定,取平均值。(6)按下式计算含水量: 12 w?2??100% 式中: w——含水量,%; m1——称量盒加湿土质量,g; m2——称量盒加干土质量,g: m——称量盒质量,g(根据盒上标号查表)。 本试验须进行2次平行测定,其平行误差允许值;当含水量w小于5%时,允许平行误差为0.3%; 当含水量w等于或大于5%而小于40%时允许平行误差为l%;当含水量w等于或大于40% 时,允许平行误差为2%。 五、注意事项 (1)称量盒使用前应先检查盒盖与盒体号码是否一致,

实验一 密度、表观密度的测定

实验一密度、表观密度的测定试验 一、实验目的与要求 掌握材料密度和表观密度的测定方法。 二、方法原理 水泥密度:表示水泥单位体积的质量,水泥密度的单位是g / c m3 。 将水泥倒入装有一定量液体介质的李氏瓶内,并使液体介质充分地浸透水泥颗粒。根据阿基米德定律,水泥的体积等于它所排开的液体体积,从而算出水泥单位体积的质量即为密度,为使测定的水泥不产生水化反应,液体介质采用无水煤油。 本方法适用于测定水硬性水泥的密度,也适用于测定采用本方法的其他粉状或颗粒状物料的密度。 材料的表观密度 是指材料在自然 状态下单位体积( V)的干质量(m)。 通过该实验,主要掌握常用建筑材料表观 密度测定的原理和方法。 三、仪器 1、李氏比重瓶(如图1) 李氏比重瓶容积为220-250cm3 ,带 有长18-20cm、直径约1cm 的细颈,下面 有鼓形扩大颈,颈部有体积刻度,颈部为 喇叭形漏斗并有玻璃磨口塞。 2、恒温水槽或其它保持恒温的盛水 玻璃容器:恒温容器温度波动应能维持在 ±0.5 ℃。 四、操作步骤 (一)、密度测定 1、将水泥试样在110±5℃烘箱中烘 干1h,取出置于干燥器中冷却至室温。 2、洗净比重瓶并烘干,将无水煤油

注入比重瓶内至零点刻度线(以弯月面下弧为准),将比重瓶放入恒温水槽内,使整个刻度部分浸入水中(水温必须控制与比重瓶刻度时的温度相同),恒温0.5h ,记下第一次液面体积读数V1。取出比重瓶,用滤纸将比重瓶内液面上部瓶壁擦干。称取干燥水泥试样60 g(准确至0.01 g ) ,用小勺慢慢装入比重瓶内,防止堵塞,将比重瓶绕竖轴摇动几次,排除气泡,盖上瓶塞后放入恒温水槽内,在相同温度下恒温0.5h ,记下第二次液面的体积刻度V2。计算如下式: () ρ=m/V-V 21 式中:ρ-水泥密度,g / cm3 ; V1-装入水泥试样前比重瓶内液面读数,cm3 ; V2―装入水泥试样后比重瓶内液面读数,cm3 ; m-装入比重瓶的水泥质量,g 。 (二)表观密度测定 1、对几何形状规则的六面体或圆柱体试样(如粘土砖、规整的石块等),首先用游标卡尺测量出试件的尺寸,并计算出其体积V0; 2、再将该试样在105~110℃烘箱中烘干至恒重,然后在干燥器中冷却到室温,用天平称量其质量m,则试样的表观密度 ρ=m/V; 00 五、操作注意事项: l、比重瓶在使用时必须刷净烘干。 2、从恒温水槽中取出比重瓶后,要用滤纸卷成筒将比重瓶内零点以上的没有煤油的部分仔细擦净。 3、水泥、无水煤油的温度要尽可能一致。 4、水泥装入比重瓶时要仔细,防止水泥粘附在上部的细颈壁上。 5、摇动比重瓶时,注意勿使无水煤油溅出瓶外,或溅粘在液面上部瓶壁上。 6、水泥密度值以两次试验结果的平均值为准,精确至0.01 g/ cm3,两次试验结果误差不得超过0.02g/ cm3 表1水泥密度测定记录

碘酸钾法测定红尖辣椒中维生素C的含量

碘酸钾法测定红尖辣椒中维生素C的含量 实验目的: 一. 通过测定辣椒中V C的含量来。了解果蔬中VC含量情况; 二. 学习和掌握测定V C的原理和方法等。 三. 通过测定红尖辣椒中V C含量,来看待人们正常日常生活中对V C含量 的摄取。 四. 通过对V C含量的测定来掌握正确设计实验的方法及独立实验的能力。 五. 通过解决实验中发现的问题来锻炼自主实验能力。 实验用品: 药品: HAC缓冲溶液1%淀粉指示剂待测量的新鲜红尖辣椒 10%KI溶液纯净KIO3固体 仪器: 20ml酸式滴定管一个锥形瓶250毫升容量瓶胶头滴管250ml烧杯 100ml烧杯漏斗 20ml移液管 洗瓶玻璃棒 实验原理: 测量果蔬及其制品中Vc含量的方法有很多种,各有特点,本实验采取间接碘量法来对红尖辣椒中V C的含量进行测定,维生素C的结构中有—C = C—基团,又具有烯醇式结构,还原性强,水溶液中可解离成氧化型抗坏血酸。 因此具有还原性,又称为还原性抗坏血酸。 维生素C能还原KIO3中的碘,还原性抗坏血酸还原碘后,本身被氧化成脱氢抗坏血酸,在没有杂质干扰时,一定量的样品提取液还原标准KIO3的量与样品中所含抗坏血酸量成正比(1:3)。 当KIO3刚刚加入时,IO3-离子会与溶液中的I-离子迅速发生氧化还原反应生成I2 IO3-+ 5I-+6H+=3I2+3H2O 然后生成的I2会与V C发生反应氧化还原反应,反应方程式如下:I2 + C6H8O6 = 2HI + C6H6O6 生成的I2被迅速消耗,当溶液中的V c全部反应完后,会生成多余的I2所以可以用淀粉作指示剂,通过淀粉作指示剂可迅速判断终点,当有多余碘存在时,淀粉呈蓝色,即可指示终点。 由于维生素C具在较强的还原性,在空气中极易被氧化成而成黄色,尤其在碱性条件下更甚,所以在搅拌和测定时加入HAC缓冲溶液,以减少维生素的副反应。 并且应当注意的是应该在终点附近加入淀粉,因为淀粉是大分子物质,会吸附溶液中的分子和离子,过早加入淀粉生成的物质会吸附在淀粉上,影响反应终点的判断,所以应该在终点附近加入淀粉。 而且在测定时还要在溶液中加入过量的KI溶液。这有两个原因:一是过量的KI会确保KIO3中的I(+5价)会完全参加反应,第二个原因是I2在一般水溶液中溶解度很小,会影响终点的灵敏度,但是在KI溶液中I2中的

三七总皂苷中各组分含量测定方法的改进

作者简介:冯亮(1980-),男,正攻读药剂学专业的博士学位。3通讯作者(C orrespondent author ),jxh1013@https://www.wendangku.net/doc/114843452.html, 三七总皂苷中各组分含量测定方法的改进 冯 亮,蒋学华3,叶利民 (四川大学华西药学院,四川成都610041) 摘要:目的 用薄层扫描法(T LSC )和高效液相色谱法(HP LC )测定三七总皂苷中人参皂苷Rb 1(Rb 1)、人参皂苷Rg 1(Rg 1)和三 七皂苷R 1(R 1)3种主要成分的含量,并对两种方法进行比较,为修订质量标准中含量测定方法及含量限度提供依据。方法  T LSC 法用正丁醇-乙酸乙酯-水(4∶1∶5)上层溶液为展开剂,27%硫酸无水乙醇溶液为显色剂,测定波长λs =535nm ,λR =460nm ;HP LC 法用C 18色谱柱,以乙腈-水线性梯度洗脱,0min (25∶75)~15min (45∶55);流速1.5ml ?min -1;测定波长200nm 。结 果 T LSC 法测得三七总皂苷原料中Rb 1、Rg 1、R 1的含量分别为31.07%、23.30%、9.35%;HP LC 法测得三七总皂苷原料中Rb 1、 Rg 1、R 1含量分别为30.46%、22.65%、5.83%。结论 HP LC 法能将多种皂苷很好地分离并检测,简便快速,减少了误差。其准 确度和测定结果的稳定性均优于T LSC 法。 关键词:薄层扫描法;高效液相色谱法;三七总皂苷;人参皂苷Rb 1;人参皂苷Rg 1;三七皂苷R 1中图分类号:R927 文献标识码:A 文章编号:1006-0103(2006)02-0187-03 Improvement of determination method of the main components in Panax notoginseng saponions FE NGLiang ,J I ANG Xue -hua 3,YE Li -ming (West China School o f Pharmacy ,Sichuan Univer sity ,Chengdu 610041,China ) Abstract :OBJECTIVE T LSC and HP LC were adopted to determine the contents of ginsenoside Rb 1,ginsenoside Rg 1and sanchinoside R 1in Panax notoginseng saponions.And results of the tw o methods were compared ,which could provide the basis of revising the determination method in quality standard.METH ODS T LSC has been established with the upper layer of the mixture of butanol -ethyl acetate -H 2O (4∶1∶5)as developing s olvent ,and 27%sulphuric acid ethanol s olution as coloring reagent ,λs =535nm ,λR =460nm.HP LC was adopted with C 18column ,acetonitrile -H 2O (25∶75at 0min and 45∶55at 15min ,linear gradient elution )was used as m obile phase and detective wave 2length was set at 200nm.The flow rate was 1.5ml ?min -1.RESU LTS The content of ginsenoside Rb 1,ginsenoside Rg 1and sanchinoside R 1in Panax notoginseng saponions determined by T LSC was 31.07%,23.30%and 9.35%;and that determined by HP LC was 30.46%,22.65%and 5.83%,respectively.CONC L USION HP LC could separate and determine various components in Panax notoginseng saponions and determine them.Its accuracy and stability are better than T LSC. K ey w ords :T LSC ;HP LC ;Panax notoginseng saponions ;G insenoside Rb 1;G insenoside Rg 1;Sanchinoside R 1C LC number :R927 Document code :A Article I D :1006-0103(2006)02-0187-03 三七是五加科人参属植物Panax notoginseng (Burk.) F.H.Chen 的干燥根;含有皂苷、多糖、氨基酸等多种化学成分。其中三七总皂苷(Panax noto 2 ginseng saponions )为其主要的有效成分,具有活血化 淤的功效。三七总皂苷含有人参皂苷Rb 1、Rb 2、Rc 、Rd 、Re 、R f 、Rg 1、Rg 2、Rh 1和三七皂苷R 1、R 2、R 3、R 4、R 6等20余种皂苷成分,均属达玛烷型(Dammarane type )四环三萜皂苷。其中人参皂苷Rb 1(Rb 1)、人参 皂苷Rg 1(Rg 1)是三七总皂苷中含量最高的两个成分,而三七皂苷R 1(R 1)则是三七总皂苷的特征化合物[1]。对于三七总皂苷原料及其口服制剂,文献[2]规定采用比色法测定总皂苷含量。而比色法在操作过程中存在操作烦琐、影响因素多及重复性差等问题[3],尤其是不能分别测定三七总皂苷中各主要成 分的含量。为此,特建立了薄层扫描法(T LSC )测定 三七总皂苷原料中Rb 1、Rg 1和R 1的含量[4];同时建立了HP LC 含量测定法,并与T LSC 法进行比较,为重新修订质量标准中含量测定方法及含量限度提供依据。 1 实验部分 1.1 仪器与试药 LC -9A 高效液相色谱仪,SPD -6AV 紫外检测 器(日本岛津);CS -930薄层扫描仪;Dikma Diam on 2sil C 18色谱柱(200mm ×4.6mm ,5μ m ,美国Dikma 公司);硅胶G 板(大连化物所)。Rb 1、Rg 1和R 1对照 品(中国药品生物制品检定所);三七总皂苷(云南特 安钠制备厂);乙腈(色谱纯,美国Dikma 公司);水(超纯水);其余试剂均为分析纯。1.2 T LSC 法1.2.1 含量测定 取三七总皂苷样品约50mg ,精 华西药学杂志 W C J ?P S 2006,21(2):187~189

相关文档