文档库 最新最全的文档下载
当前位置:文档库 › 高三系统复习6——解三角形(文)

高三系统复习6——解三角形(文)

高三系统复习6——解三角形(文)
高三系统复习6——解三角形(文)

高中数学三角函数、解三角形知识点

三角函数、解三角形 1.弧长公式:r l α= 扇形面积公式:22 121r lr S α== 2.同角三角函数的基本关系式: 平方关系:1cos sin 2 2 =+αα 商数关系:sin tan cos α αα = 3.三角函数的诱导公式: 诱导公式(把角写成απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) 公式一()()()?????=?+=?+=?+απααπααπαtan 2tan cos 2cos sin 2sin k k k 公式二()()()?????=+=+=+ααπααπααπtan tan cos -cos -sin sin 公式三()()()?? ? ??=-=-=-ααααααtan -tan cos cos -sin sin 公式四()()()?????=-=-=-ααπααπααπtan -tan cos -cos sin sin 公式五???????=??? ??-=??? ??-ααπααπsin 2cos cos 2sin 公式六???????=??? ??+=?? ? ??+ααπααπsin -2 cos cos 2sin 4.两角和与差的正弦、余弦、正切公式: βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+= + β αβαβαtan tan 1tan tan )tan(+-=- 5.二倍角公式: a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -= 6.辅助角公式: sin cos a b αα+ )α?+( 其中sin tan b a ???= = = ). 比如: x x y cos 3sin += ) cos ) 3(13sin ) 3(11( )3(12 2 2 2 22x x ++ ++= )cos 23sin 21(2x x += )3 sin cos 3cos (sin 2ππx x +=)3sin(2π+=x 7.正弦定理: 2sin sin sin a b c R C ===A B (R 为△ABC 外接圆的半径) 8.余弦定理:2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B ,2 2 2 2cos c a b ab C =+- 推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=.

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

解三角形知识点归纳总结

第一章解三角形 .正弦定理: 2)化边为角: a : b: c sin A : sin B : sin C ? 7 a si nA b sin B a sin A b sin B ' c sin C J c sin C ' 3 )化边为角: a 2Rsin A, b 2Rsin B, c 2Rsin C 4 )化角为边: sin A sin B a ; sin B J b sin C b sin A a c' sin C c ' a b 5 )化角为边:si nA , si nB , si nC 2R 2R 3. 利用正弦定理可以解决下列两类三角形的问题: ① 已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由 A+B+C=180,求角A,由正弦定理a 竺A, 竺B b sin B c sin C b 与c ②已知两边和其中一边 的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理旦 血 求出角B,由A+B+C=180求出角C,再使用正 b sin B 弦定理a 泄求出c 边 c sin C 4. △ ABC 中,已知锐角A ,边b ,贝U ① a bsin A 时,B 无解; ② a bsinA 或a b 时,B 有一个解; ③ bsinA a b 时,B 有两个解。 如:①已知A 60 ,a 2,b 2 3,求B (有一个解) ②已知A 60 ,b 2,a 2.3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数 .三角形面积 各边和它所对角的正弦的比相等, 并且都等于外 接圆的直径, 即 a b c sin A sin B sinC 2.变形:1) a b c a sin sin si sin 2R (其中R 是三角形外接圆的半径) b c sin sinC c 2R 沁;求出 sin C 1.正弦定理:在一个三角形中, bsin A

专题21 解三角形(知识梳理)(新高考地区专用)(原卷版)

专题21 解三角形(知识梳理) 一、知识点 1、正弦定理:R C c B b A a 2sin sin sin ===。 (其中R 为ABC ?的外接圆的半径) 正弦定理的变形公式:①A R a sin 2?=,B R b sin 2?=,C R c sin 2?=; ②R a A 2sin =,R b B 2sin =,R c C 2sin =; ③C B A c b a sin :sin :sin ::=; ④C c B b A a C B A c b a sin sin sin sin sin sin ===++++; 2、三角形面积定理:A bc B ac C ab S ABC sin 21sin 21sin 21?=?=?= ?; r c b a S ABC )(2 121++=?=?高底; (其中r 为ABC ?的内切圆的半径) 3、余弦定理:A bc c b a cos 22 22?-+=?bc a c b A 2cos 2 22-+=; B ac c a b cos 22 22?-+=?ac b c a B 2cos 2 22-+=; C ab b a c cos 22 22?-+=?ab c b a C 2cos 2 22-+=; 4、射影定理:B c C b a cos cos ?+?=,A c C a b cos cos ?+?=,A b B a c cos cos ?+?= 5、设a 、b 、c 是ABC ?的角A 、B 、C 的对边,则:①若222c b a =+,则 90=C ; ②若222c b a >+,则 90C 。 6、三角形解的个数的讨论 A ∠为锐角 A ∠为钝角或直角 b a A b < b a ≤

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

(完整版)解三角形知识点及题型总结

基础强化(8)——解三角形 1、①三角形三角关系:A+B+C=180°;C=180°-(A+B); ②. 三角形三边关系:a+b>c; a-bB>C 则6090,060A C ?≤

高考解三角形专题(一)及答案

解三角形专题 1.在ABC ?中,角,,A B C 的对边分别是,,a b c ,若1,3 a b B π ===,则A = ( ) A. 12π B. 6π C. 3π D. 2 π 2.在ABC ?中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC ?的面积,若 () 2 2214 S b c a = +-,则A ∠=( ) A. 90? B. 60? C. 45? D. 30? 3.在ABC ?中,若sin 2sin cos A B C =,且 ()()3b c a b c a bc +-++=,则该三角形的形状是( ) A. 直角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等边三角形 4. 在 中,内角为钝角, , , ,则 ( ) A. B. C. D. 5.在中,若,,则的周长为( )C A . B . C. D . 6. 在锐角中,角、、所对的边分别为,且、、成等差数列, 则面积的取值范围是 7.已知锐角的内角 的对边分别为 ,且 ,则 的最大值为 __________. 8.在中,角,,所对的边分别为,,,且,,则的最小值为 . 9.在 中,内角,,所对的边分别为,,,已知 . (1)求角的大小; (2)若的面积,为边的中点,,求. ABC △23 C π = 3AB =ABC △6sin 33A π?? + + ?? ?6sin 36A π??++ ???33A π??++ ???36A π? ?++ ?? ?ABC ?A B C ,,a b c A B C b =ABC ?ABC ?A B C a b c 2sin cos 2sin sin C B A B =+3c ab =ab

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

解三角形知识点归纳

解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C o .

2017高考真题专题解三角形

2017高考解三角形汇总 1. (2017全国│文,11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B+sin A (sin C ―cosC )=0, a =2, c=√2, 则C= A.π12 B. π6 C. π4 D. π3 2. (2017全国Ⅱ文,16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B= 3. (2017全国Ⅲ文,15)△ABC 的内角A,B,C 的对边分别为a,b,c,,已知3,6,600===c b C ,则=A ________ 4. (2017山东文,17)△ABC 中,角A,B,C 的对边分别为a,b,c,已知b=3,AB ????? ·AC ????? =?6,S △ABC =3,求A 和a 。 5. (2017山东理,9)锐角△ABC 中,角A,B,C 的对边分别为a,b,c,且sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列成立的是() A.a=2b B.b=2a C.A=2B D.B=2A 6. (2017浙江文(理),14)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______. 7. (2017全国│理,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为2 3sin a A (1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长 8. (2017全国Ⅱ理,17)ABC ?的内角,,A B C 的对边分别为,,a b c ,已知2 sin()8sin 2 B A C +=. (1)求cos B (2)若6a c += , ABC ?面积为2,求.b 9. (2017全国Ⅲ理,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A cos A =0,a ,b =2. (1)求c ;

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x, y )是〉的终 边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o , 位置无关。 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦) + L i + —— L + _ - + ------ ■ —— + - ■ sin : cos : tan : 3. 同角三角函数的基本关系式: 4. 三角函数的诱导公式 k 二.一 诱导公式(把角写成2 …形式,利用口诀:奇变偶不变,符 (2)商数关 系: tan-E 屮一、 cos 。(用于切化弦) (1)平方关 系: 2 2 2 sin 工 cos ■■ -1,1 tan : 1 cos 2: ※平方关系一般为隐含条件,直接运用。注意“ 1”的代换 si …y,cos 」 那么 r 三角函数值只与角的大小有关,而与终边上点

5. 特殊角的三角函数值 度 0s 30c A 45“ A 60“ 90 120c A 135“ 150s 180c 270° 360 弧 31 JI JI 2n 3兀 5兀 JI 3兀 2兀 度 6 4 3 2 3 4 6 2 si n 。 0 1 竝 迈 1 旦 1 0 1 2 2 2 2 2 2 cosa 亦 1 1 念 力 1 2 _1 1 2 2 2 2 2 号看象限) sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanx sin ( -x ) - - sin x cos (-x ) =cosx H )tan (-x ) - - tanx m ) |sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一 sin (— -〉)= cos ..z sin (二:)=cos : V ) -?) = sin :

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

解三角形高考真题汇总

2017高考真题解三角形汇编 1.(2017北京高考题)在△ABC 中,A ∠ =60°,c =37 a . (Ⅰ)求sin C 的值; (Ⅱ)若a =7,求△ABC 的面积. 2.(2017全国卷1理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ ABC 的面积为2 3sin a A (1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长. 3.(2017全国卷1文科)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。已知 sin sin (sin cos )0B A C C +-=,a =2,c ,则C =B A .π 12 B .π6 C .π4 D .π3 4.(2016全国卷2理科)ABC ?的内角,,A B C 的对边分别为,,a b c ,已知 2 sin()8sin 2 B A C +=. (1)求cos B (2)若6a c += , ABC ?面积为2,求.b 5.(2017全国卷2文科16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B= 6.(2017全国卷3理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A cos A =0,a b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积. 7.(2017全国卷3文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。已知 C =60°,b c =3,则A =_________。 8.(2017山东高考题理科)在C ?AB 中,角A ,B ,C 的对边分别为a ,b ,c .若 C ?AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;s in s in B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

较为全面的解三角形专题高考题附答案

.. 这是经过我整理的一些解三角形的题目,部分题目没有答案,自己去问老师同学,针 对高考数学第一道大题,一定不要失分。——(下载之后删掉我) 1、在b 、c ,向量m2sinB,3, 2 B nB ,且m//n 。 cos2,2cos1 2 (I )求锐角B 的大小;(II )如果b2,求ABC 的面积S ABC 的最大值。 (1)解:m ∥n2sinB(2cos2 B -1)=-3cos2B 2 2sinBcosB =-3cos2Btan2B =-3??4分 2π π ∵0<2B <π,∴2B = 3,∴锐角B = 3 ??2分 (2)由tan2B =-3B = 5π π 或 36 π ①当B = 3 时,已知b =2,由余弦定理,得: 4=a2+c2-ac ≥2ac -ac =ac(当且仅当a =c =2时等号成立)??3分 1 2 ∵△ABC 的面积S △ABC = acsinB = 3 ac ≤3 4 ∴△ABC 的面积最大值为3??1分 5π ②当B =时,已知b =2,由余弦定理,得: 6 4=a2+c2+3ac ≥2ac +3ac =(2+3)ac(当且仅当a =c =6-2时等号成立) ∴ac ≤4(2-3)??1分 1 2 1 acsinB =ac ≤2-3 4

∵△ABC的面积S△ABC= 2-3??1分∴△ABC的面积最大值为

.. 5、在△ABC中,角A,B,C的对边分别 为a,b,c,且bcosC3acosBccosB. (I)求cosB的值;(II)若BABC2,且b22,求a和c b的值. 解:(I)由正弦定理得a2RsinA,b2RsinB,c2RsinC, 则 2RsinBcosC6RsinAcosB2RsinCcosB, 故sinBcosC3sinAcosBsinCcosB, 可得sinBcosCsinCcosB3sinAcosB, 即sin(BC)3sinAcosB, 可得sinA3sinAcosB.sinA0, 又 因此cosB 1 3 . ????6分 (II)解:由BABC2,可得acosB2,又cosB 1 3 ,故ac 6, 2 由b 2 a 2 c2accosB, 2 可得a 2 c 12, 2 所以(ac)0,ac, 即所以a=c=6 6、在ABC中,cos 5 A, 5 cos 10 B. 10 (Ⅰ)求角C;(Ⅱ)设A B2,求ABC的面积 . cosA 5 5 , cos B 10 10 ,得 A、B0, 2 (Ⅰ)解:由,所以 23 sinA,sinB. 510 ??3分 cosCcos[(A B)]cos(AB)cosAcosBsinAsinB 因为 2 2 ?6分 C. 且0C故 4

相关文档
相关文档 最新文档