文档库 最新最全的文档下载
当前位置:文档库 › 乙烯基苯基硅树脂的合成及其在功率型LED封装中的应用

乙烯基苯基硅树脂的合成及其在功率型LED封装中的应用

乙烯基苯基硅树脂的合成及其在功率型LED封装中的应用
乙烯基苯基硅树脂的合成及其在功率型LED封装中的应用

年产3000万吨有机硅树脂工艺设计

目录 摘要 (2) 关键词 (2) 前言 (2) 1 设计任务 (3) 1.1设计项目 (3) 1.2设计内容 (3) 1.3产品规格及用途 (3) 1.4主要原材料的规格及来源 (5) 2 生产方法及工艺流程 (6) 2.1生产方法选择 (6) 2.2工艺流程简述 (8) 3 工艺计算书 (10) 3.1计算条件 (10) 3.2反应过程的物料衡算 (10) 4 设计结果概要及设计一览表 (14) 5 主要化工设备选型 (15) 小结 (16) 参考文献 (16)

3000吨/年有机硅树脂车间生产工艺设计 摘要:本次设计主要介绍甲基苯基硅树脂的性质,生产方法,设备的选型,重点介绍该项目的生产工艺技术,主要包括工艺条件、工艺物料衡算、工艺流程图。 关键词:硅树脂甲基苯基硅树脂水解-缩合工艺 前言 甲基苯基硅树脂是由MeSiO1.5、Me2SiO、MePhSiO、PhSiO1.5及Ph2SiO 链节选择性地组合构成主链,即兼含甲基硅氧链节及苯基硅氧链节的硅树脂。苯基硅氧链节的引入,使其在热弹性,机械性能,粘接性,光泽性以及与有机物,无机填料的配伍性等方面明显优于甲基硅树脂,而广泛用作耐高温电绝缘漆,耐高温涂料,耐高温黏合剂,耐高温模塑封装料,烧蚀材料,梯形聚合物及硅树脂微粉等产品,是当前硅树脂中用量最大及应用最广的一个品种。 甲基苯基硅树脂以其优异的耐高低温性,耐辐照性,电绝缘性能,广泛应用于航空航天、机械电子、建筑等领域。该材料最大的用途之一是制备有机硅涂料,尤其是制备特种涂料以满足军事工业的特殊要求。C-C 键, 特别是Si -芳键对氧化稳定,因此甲基苯基硅树脂与甲基硅树脂相比具有更优异的耐老化性和耐辐射性,这是由于在辐照过程中甲基容易形成自由基,而苯基的共轭P 键则有效地吸收了辐射能, 减少了辐射裂解效应。因此甲基苯基硅树脂在防辐射材料领域具有极大的应用潜力。

大功率LED灯珠封装流程工艺

HIGH POWER LED 封装工艺 一.封装的任务 是将外引线连接到LED芯片的电极上,同时保护好LED芯片,并且起到提高光取出效率的作用。 二.封装形式 LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸,散热对策和出光效果。LED按封装形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED等。 三.封装工艺说明 1.芯片检验 镜检:材料表面是否有机械损伤及麻点麻坑(lockhill),芯片尺寸及电极大小是否符合工艺要求,电极图案是否完等。 2.扩晶 由于LED芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的操作。我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约0.6mm。也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。 3.点底胶 在LED支架的相应位置点上银胶或绝缘胶。(对于GaAs、SiC导电衬底,具有背面电极的红光、黄光、黄绿芯片,采用银胶。对于蓝宝石绝缘衬底的蓝光、绿光LED芯片,采用绝缘胶来固定芯片。) 工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。 由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。 4.固晶 固晶分为自动固晶和手工固晶两种模式。 自动固晶其实是结合了沾胶(点胶)和安装芯片两大步骤,先在LED支架上点上银胶(绝缘胶),然后用真空吸嘴将LED芯片吸起移动位置,再安置在相应的支架位置上。 自动固晶在工艺上主要要熟悉设备操作编程,同时对设备的沾胶及安装精度进行调整。在吸嘴的选用上尽量选用胶木吸嘴,防止对LED芯片表面的损伤,特别是兰、绿色芯片必须用电木的。因为钢嘴会划伤芯片表面的电流扩散层。

耐1000℃高温的有机硅树脂

碱性和酸性颜料表面用分散剂 美国PCI集团公司的低粘度高分子量含羟基分散剂“PGV—7109”特别适用于聚酯-聚氨酯和聚酯-三聚氰胺体系。据该公司介绍,“HSWADA-60”(用于溶剂型体系)和“WBWADA-60”(用于水性体系)设计与带碱性表面的颜料配用。当要求能与有酸性表面性质的颜料相容时,或者存在碱性和酸性二种颜料表面时,则使用改性的“B”型(代替“60”型)。 无芳香族装饰涂料用有机硅消泡剂 德国Byk-Chemie公司的“Byk 067”是“066”的无溶剂、无气味形式,特别适合于无芳香族装饰涂料和高固体分体系的消泡用。该有机硅助剂也可用于通用工业涂料,其用量为配方总量的011%~015%。该消泡剂应在颜料分散阶段加入。如果在之后的阶段加入,则为使其有效物质充分分散,并避免引起缩孔,提供足够的高切变力使之分散至关重要。 耐1000℃高温的有机硅树脂 日本国立材料化工研究所研究人员开发了一种树脂,它是由硅倍半环氧乙烷混合物与1,3-双苯基乙烯基苯共聚所得的称作“T8二炔”(H8Si8O12)的新型聚合物。这种含有机硅的混杂型材料能耐1000℃高温。该树脂在苯和甲苯中的溶解度使之易于施工。该产品的机械强度和附着力正在测试之中。 单组分和双组分聚氨酯固化用口恶唑烷 美国Industrial Copolymers公司现推出一种单组分和双组分聚氨酯涂料用非结晶双口恶唑烷固化剂。该产品以液态贮存,由此,免除了使用前的加热操作,该产品即使在10℃贮存2年后仍为液态。该固化剂赋予快速透彻的固化,避免了聚氨酯树脂(PUR)配制涂料中常见的针孔、失光和起泡等问题。该固化剂可以二官能团或四官能团不同形式使用,以满足不同的要求。典型用途是房顶或水槽之类耐水涂膜 用湿固化聚氨酯的固化剂。 低于130℃固化的聚氨酯涂料用固 化剂 德国Creanova S pecial Chemie公司 的“Vestanat B1358/100”是一种基于片 状“Vestanat IPDI”的无溶剂封闭多异氰 酸酯。它可与含羟基的聚酯、丙烯酸酯 和醇酸之类树脂配合。其解封温度低, 可配制低于130℃温度下固化的聚氨酯 烘烤磁漆。在传统溶剂体系中,根据多 元醇的活性,用012%~015%二月桂酸 二丁基锡作催化剂,即可在30~60min 内固化。涂膜性能很大程度上取决于所 用的多元醇,这种聚氨酯树脂(PUR)耐 光性和耐候性极佳。通过溶剂的自由选 择,可使许多不同配方得到优化。 新型粘度测量仪 美国Paul V. G ardner公司现可供的“DV-E”测量仪 是一种价廉且易操作的数字粘度计,可 同时测量粘度和转矩。数字显示器显 示粘度(mPa?s或cP)、转矩、转子型号 和转速。可提供013~100r/min的18 种转速。该仪器操作简便、效率高。其 测量准确度达1%,再现性达012%。 UV涂料用非粉末状的蜡分散体  粉末状助剂有时会难以结合入辐射固 化体系中,并且要求较高,德国 Posichem公司研制的“photowax”蜡分散 体能解决这些问题,并简化生产步骤。 该产品基于一种100%固体,易添加且 无粉尘,它们提高了抗划伤性和抗消光 性,防滑,防粘连并且改善了平光和沉 降性。可供选择的品种有4种:2种PE 分散体(牌号名“E1248”和“E1258”),1 种PTFE-PE分散体(“E1282”)和1 种PP分散体(“E1386”)。 无发散物的聚氨酯树脂粉末涂料 用固化剂 德国Bayer公司推出的 “Crelan VP L S2147”是一种基于二氮 丁酮的第二代聚氨酯树脂(PUR)粉末 涂料固化剂,与以前用己内酰胺封闭的 多异氰酸酯交联的粉末涂料不同,这种 二氮丁酮固化剂在交联反应中不会释 出任何己内酰胺或相当于封闭剂的排 放物,也无离解的水,因此更加符合环 保要求。该固化剂无毒,以易加工的几 乎无色的小片粉形式供货。当与所选 羟基聚酯配合时,因熔融粘度低而有优 良的流动性。 有通用相容性的纯丙烯酸酯 德 国Emst J¨ a ger公司的“jagotex EM401” 是基于甲基丙烯酸和丙烯酸的酯类,且 不含苯乙烯的纯丙烯酸分散体。据称, 该产品的耐碱性、耐候性、弹性、耐水性 和附着力等性能均能满足要求。该产 品有通用的相容性,适合于生产石材、 塑料、石棉、水泥、混凝土、木材和其他 底材用外用和内用的平光到丝光涂料。 该产品有良好的颜料润湿性和良好的 粘结力。它与铝粉浆和金色铜粉浆的 相容性也扩大了金属底色漆的范围。 具有良好附着力的丙烯酸酯—苯 乙烯分散体 德国Alberdingk Boley公 司开发的一种“AS6500”产品所得聚合 物对无机底材有极好的附着力。该产 品是一种含活性附着力促进剂的55% 丙烯酸酯-苯乙烯分散体。该基料最 适用于生产糊状物耐水建筑物和砖瓦 粘合剂,以及液压粘结体系用的粘合剂 和弹性剂。 塑料用热熔粘合剂 日本Daikyo 公司现推出一种改性聚烯烃型热熔粘 合剂。它可用于PP、PE或PET之类未 作预处理的塑料上面。与许多传统热 熔粘合剂不同,该新产品能承受-20~ +60℃温度。 专用于硝基纤维素和热塑性丙烯 酸的润湿剂 德国Byk Chemie公司的 溶剂型涂料用润湿分散剂“Disperbyk 140”适用于所有传统涂料基料,尤其适 用于硝基纤维素和热塑性丙烯酸树脂。 该助剂能防止各种情况中的颜料絮凝, 由此使成品色浆和涂料的颜色和着色 强度稳定。此外,该助剂改善了颜料的 润湿,提高了光泽。该产品用于工业、 装饰和木器涂料用的颜料浆中 ,可降低 研磨浆料的粘度。 ? 6 4 ?涂料工业 1999年第10期 ?国外简讯?

硅树脂

是具有高度交联网状结构的聚有机硅氧烷,兼具有机树脂及无机材料的双重特性,具有独特的物理化学性能。 主要包括:甲基苯基硅树脂、甲基硅树脂、低苯基甲基硅树脂、有机硅树脂乳液、自干型有机硅树脂、高温型有机硅树脂、环氧改性有机硅树脂、有机硅聚酯改性树脂、自干型环保有机硅树脂、环保型有机硅树脂、不粘涂料有机硅树脂、高光有机硅树脂、苯甲基透明硅树脂、甲基透明有机硅树脂、云母粘接硅树脂、聚甲基硅树脂、氨基硅树脂、氟硅树脂、硅树脂溶液、有机硅-环氧树脂、有机硅聚酯树脂、耐溶剂型有机硅树脂、有机硅树脂胶粘剂、氟硅树脂硅树脂密封剂、耐高温甲基硅树脂、自干型有机硅绝缘漆、甲基MQ 硅树脂、乙烯基MQ硅树脂、硅丙树脂涂料 硅树脂是高度交联的网状结构的聚有机硅氧烷,通常是用甲基三氯硅烷、二甲基二氯硅烷、苯基三氯硅烷、二苯基二氯硅烷或甲基苯基二氯硅烷的各种混合物,在有机溶剂如甲苯存在下,在较低温度下加水分解,得到酸性水解物。水解的初始产物是环状的、线型的和交联聚合物的混合物,通常还含有相当多的羟基。水解物经水洗除去酸,中性的初缩聚体于空气中热氧化或在催化剂存在下进一步缩聚,最后形成高度交联的立体网络结构。 硅树脂的固化通常是通过硅醇缩合形成硅氧链节来实现的。当缩合反应在进行时,由于硅醇浓度逐渐减少,增加了空间位阻,流动性差,致使反应速率下降。因此,要使树脂完全固化,须经过加热和加入催化剂来加速反应进行。许多物质可起硅醇缩合反应的催化作用,它们包括酸和碱,铅、钴、锡、铁和其它金属的可溶性有机盐类,有机化合物如二丁基二月桂酸锡或N,N,N',N'一四甲基胍盐等。 硅树脂最终加工制品的性能取决于所含有机基团的数量(即R与Si的比值)。一般有实用价值的硅树脂,其分子组成中R与Si的比值在1.2~1.6之间。一般规律是,R:Si的值愈小,所得到的硅树脂就愈能在较低温度下固化;R:Si的值愈大,所得到的硅树脂要使它固化就需要在200材250℃的高温下长时间烘烤,所得的漆膜硬度差,但热弹性要比前者好得多。 此外,有机基团中甲基与苯基基团的比例对硅树脂性能也有很大的影响。有机基团中苯基含量越低,生成的漆膜越软,缩合越快,苯基含量越高,生成的漆膜越硬,越具有热塑性。苯基含量在20~60%之间,漆膜的抗弯曲性和耐热性最好。此外,引入苯基可以改进硅树脂与颜料的配伍性,也可改进硅树脂与其它有机硅树脂的配伍性以及硅树脂对各种基材的粘附力。 硅树脂是一种热固性的塑料,它最突出的性能之一是优异的热氧化稳定性。250℃加热24小时后,硅树脂失重仅为2~8%。硅树脂另一突出的性能是优异的电绝缘性能,它在宽的温度和频率范围内均能保持其良好的绝缘性能。一般硅树脂的电击穿强度为50千伏/毫米,体积电阻率为1013~1015欧姆?厘米,介电常数为3,介电损耗角正切值在10-30左右。此外,硅树脂还具有卓越的耐潮、防水、防锈、耐寒、耐臭氧和耐候性能,对绝大多数含水的化学试剂如稀矿物酸的耐腐蚀性能良好,但耐溶剂的性能较差。 鉴于上述特性,有机硅树脂主要作为绝缘漆(包括清漆、瓷漆、色漆、浸渍漆等)浸渍H级电机及变压器线圈, 以及用来浸渍玻璃布、玻布丝及石棉布后制成电机套管、电器绝缘绕组等。用有机硅绝缘漆粘结云母可制得大面积云母片绝缘材料,用作高压电机的主绝缘。此外,硅树脂还可用作耐热、耐候的防腐涂料,金属保护涂料,建筑工程防水防潮涂料,脱模剂,粘合剂以及二次加工成有机硅塑料,用于电子、电气和国防工业上,作为半导体封装材料和电子、电器零部件的绝缘材料等。 硅树脂的固化交联大致有三种方式:一是利用硅原子上的羟基进行缩水聚合交联而成网状结构,这是硅树脂固化所采取的主要方式,二是利用硅原子上连接的乙烯基,采用有机过氧化物为触媒,类似硅橡胶硫化的方式:三是利用硅原子上连接的乙烯基和硅氢键进行加成反应的方式,例如无溶剂硅树脂与发泡剂混合可以制得泡沫硅树脂。因此,硅树脂按其主要用途和交联方式大致可分为有机硅绝缘漆、有机硅涂料、有机硅塑料和有机硅粘合剂等几大类。

功率型LED封装技术(精)

研究生课程小论文 课程名称:新型电子器件封装 论文题目 : 功率型 LED 封装技术论文评语 : 成绩 : 任课教师 : 评阅日期 : 目录 摘要 (1) Abstract . ................................................................................................................ 1 1 绪论 ................................................................................................................... 2 1.1 LED 芯片结构 . ....................................................................................... 2 1.1.1 水平结 构 ....................................................................................... 2 1.1.2 垂直结 构 ....................................................................................... 3 1.1.3 倒装结 构 ....................................................................................... 3 1.2 LED 的封装材 料 . ................................................................................... 3 1.2.1 基板材 料 ....................................................................................... 3 1.2.2 粘接材 料 (4) 1.2.3 封装胶 (4) 2 LED封装方式和工艺 (5) 2.1 LED 封装方式 . ....................................................................................... 5 2.1.1 引脚式封装 ................................................................................... 5 2.1.2 表面贴装式 ( SMT . ...................................................................... 5 2.1.3 板上芯片直装式 ( COB . .............................................................. 5 2.1.4 系统封装式 ( SiP (6) 2.2 LED 封装工艺 . (6)

大功率LED封装技术详解

大功率LED封装技术 关键词: 从实际应用的角度来看,安装使用简单、体积相对较小的大功率LED器件在大部分的照明应用中必将取代传统的小功率LED器件。由小功率LED组成的照明灯具为了满足照明的需要,必须集中许多个LED的光能才能达到设计要求,但带来的缺点是线路异常复杂、散热不畅,为了平衡各个LED之间的电流、电压关系,必须设计复杂的供电电路。相比之下,大功率单体LED的功率远大于若干个小功率LED的功率总和,供电线路相对简单,散热结构完善,物理特性稳定。所以说,大功率LED器件的封装方法和封装材料并不能简单地套用传统的小功率LED器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率,给LED封装工艺、封装设备和封装材料提出了新的更高的要求。 1、大功率LED芯片 要想得到大功率LED器件,就必须制备合适的大功率LED芯片。国际上通常的制造大功率LED芯片的方法有如下几种: ①加大尺寸法。通过增大单体LED的有效发光面积和尺寸,促使流经TCL层的电流均匀分布,以达到预期的光通量。但是,简单地增大发光面积无法解决散热问题和出光问题,并不能达到预期的光通量和实际应用效果。 ②硅底板倒装法。首先制备出适合共晶焊接的大尺寸LED芯片,同时制备出相应尺寸的硅底板,并在硅底板上制作出供共晶焊接用的金导电层及引出导电层(超声金丝球焊点),再利用共晶焊接设备将大尺寸LED芯片与硅底板焊接在一起。这样的结构较为合理,既考虑了出光问题又考虑到了散热问题,这是目前主流的大功率LED的生产方式。 美国Lumileds公司于2001年研制出了AlGaInN功率型倒装芯片(FCLED)结构,其制造流程是:首先在外延片顶部的P型GaN上淀积厚度大于500A的NiAu层,用于欧姆接触和背反射;再采用掩模选择刻蚀掉P型层和多量子阱有源层,露出N型层;经淀积、刻蚀形成N型欧姆接触层,芯片尺寸为1mm1mm,P型欧姆接触为正方形,N型欧姆接触以梳状插入其中,这样可缩短电流扩展距离,把扩展电阻降至最小;然后将金属化凸点的AlGaInN芯片倒装焊接在具有防静电保护二极管(ESD)的硅载体上。 ③陶瓷底板倒装法。先利用LED晶片通用设备制备出具有适合共晶焊接电极结构的大出光面积的LED芯片和相应的陶瓷底板,并在陶瓷底板上制作出共晶焊接导电层及引出导电层,然后利用共晶焊接设备将大尺寸LED芯片与陶瓷底板焊接在一起。这样的结构既考虑了出光问题也考虑到了散热问题,并且采用的陶瓷底板为高导热陶瓷板,散热效果非常理想,价格又相对较低,所以为目前较为适宜的底板材料,并可为将来的集成电路一体化封装预留空间。 ④蓝宝石衬底过渡法。按照传统的InGaN芯片制造方法在蓝宝石衬底上生长出PN结后,将蓝宝石衬底切除,再连接上传统的四元材料,制造出上下电极结构的大尺寸蓝光LED芯片。

甲基苯基硅树脂产品应用及说明

甲基苯基硅树脂 一、产品主要特点和用途 有机硅树脂是有机硅产品序列里的四大类(硅油、硅橡胶、硅树脂、硅烷偶联剂)产品之一,与由二官能团的硅氧烷链段组成的硅油、硅橡胶的区别在于硅树脂主要是由大量三(多)官能团的硅氧烷链段所组成。所以,有机硅树脂除了具有与硅油、硅橡胶相同的耐高低温性、耐候性、疏水防潮、电气性能、生理惰性外,同时,根据其组成链段的各种变化,还可同时具有更高的耐热性、更好的介电性能、更强的耐溶剂性和耐候性。甲基苯基硅树脂中的苯基能赋予硅树脂更好的耐高低温性、机械性能、与其他材料的相容性等。 有机硅树脂首要的特性是其具有优异的耐热性能,在200℃甚至更高的温度下几乎不会分解,可用于各种耐热漆的制备,其耐热绝缘等级可达H级。例如,使用有机硅树脂作为基料,添加铝粉的银色漆可在400~600℃使用下长期使用,可用于烟囱、蒸汽管、排气管、燃气装置、炉具、烤箱、电暖炉、化工设备、锅炉、发动机、发电机、电气设备、散热器等。 与普通有机树脂相比,有机硅树脂还具有优异的耐候性、耐臭氧、耐电弧、疏水防潮、防盐雾、抗霉变等性能。例如,用20%以上的硅树脂改性的涂料,其耐水、耐黄变、减少失光等性能显著提高。 甲基苯基硅树脂性能及应用包括以下几个方面: ○甲基苯基聚硅氧烷的甲苯、二甲苯溶液 ○固化物具有优异的耐高低温性能、介电性能、较好的耐溶剂及耐气候老化性能 ○可广泛用作电绝缘材料、耐热或耐候涂料 ○电子电器涂料、印刷线路板 ○用于有机硅玻璃布层压板及套管、涂料涂层漆膜的表面增硬、耐温等级提高 ○耐热、耐侯涂料的基料,耐高温涂层 ○金属线圈、漆包线的浸渍

二、主要技术指标 XJY8351 XJY8353 XJY8355 XJY8357 XJY8359 外观浅黄色透明液体 密度(25℃) 1.02 1.07 1.02 1.01 1.01 粘度(mPa·s)150 40 100 150 100 固含量(%)50 60 50 50 50 电气强度(MV/m)≥40 体积电阻率(ΩM)≥1.0×1012 介质损耗角正切值(1MHz)≤0.002 酸值≤3.0 固化时间150℃3hr/25℃3hr 200℃1hr 1hr 1hr/100℃ 1.5hr 热失重(250℃,%)5/72hr 4.5/300hr 溶剂甲苯、二甲苯 备注漆膜硬、耐 热、轻微发 脆,发烟小 高温下变 色和失光 小,漆膜较 硬 可室温固 化,漆膜稍 脆。200 0C 固化则成 强韧的漆 膜。 漆膜有较 好的硬度 和耐热性 图层具有 良好的韧 性和耐热 性

硅胶与硅树脂的区别

硅胶与硅树脂的区别 硅胶(Silica gel; Silica)别名:硅橡胶是一种高活性吸附材料,属非晶态物质,其化学分子式为mSiO2?nH2O。不溶于水和任何溶剂,无毒无味,化学性质稳定,除强碱、氢氟酸外不与任何物质发生反应。 硅胶按其性质及组分可分为有机硅胶和无机硅胶两大类。 有机硅胶是一种有机硅化合物,是指含有Si-C键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(-Si-O-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。用于封装的一类。 有机硅胶产品的基本结构单元是由硅-氧链节构成的,侧链则通过硅原子与其他各种有机基团相连。因此,在有机硅产品的结构中既含有"有机基团",又含有"无机结构",这种特殊的组成和分子结构使它集有机物的特性与无机物的功能于一身。 有机硅主要分为硅橡胶、硅树脂、硅油三大类。 硅橡胶主要分为室温硫化硅橡胶,高温硫化硅橡胶, 硅橡胶由硅、氧原子形成主链,侧链为含碳基团,用量最大是侧链为乙烯的硅橡胶。既耐热,又耐寒,使用温度在100--300℃之间,它具有优异的耐气候性和耐臭氧性以用良好的绝缘性。缺点是强度低,抗撕裂性能差,耐磨性能也差。 硅树脂是以硅—氧—硅为主链,硅原子上联接有有机基的交联型的半无机高聚物。具有高度交联网状结构的聚有机硅氧烷,是高度支化的聚合物(与线型硅油相比较)能固化成固态物。兼具有机树脂及无机材料的双重特性,具有独特的物理化学性能。 硅树脂最终加工制品的性能取决于所含有机基团的数量(即R与Si的比值)。一般有实用价值的硅树脂,其分子组成中R与Si的比值在1.2~1.6之间。一般规律是,R:Si的值愈小,所得到的硅树脂就愈能在较低温度下固化;R:Si的值愈大,所得到的硅树脂要使它固化就需要在200材250℃的高温下长时间烘烤,所得的漆膜硬度差,但热弹性要比前者好得多。硅树脂还具有卓越的耐潮、防水、防锈、耐寒、耐臭氧和耐候性能,对绝大多数含水的化学试剂如稀矿物酸的耐腐蚀性能良好,但耐溶剂的性能较差。 制备硅树脂的单体是氯硅烷,这些氯硅烷都可通过醇解而得到相应的烷氧基硅烷。由于它们没有腐蚀性,又比相应的氯硅烷具有更大的水解稳定性、易保存、易分离,是广泛应用的单体组分。改变单体中官能基的数目和选择不同的取代基,就可制得不同聚合度、支化度和交联度的高聚物,得到不同性能的产物,以适应不同的用途。 单体中官能团的数目可用单体混合物的R与Si的比值R/Si来表示(R为取代基数目、Si为硅原子数目)。以甲基氯硅烷的水解缩合为例: 当R/Si>2时,即用(CH3)2SiCl2和(CH3)3SiCl混合共水解,生成分子量

大功率LED封装技术详解(精)

大功率 LED 封装技术 关键词: 从实际应用的角度来看 , 安装使用简单、体积相对较小的大功率 LED 器件在大部分的照明应用中必将取代传统的小功率 LED 器件。由小功率 LED 组成的照明灯具为了满足照明的需要 , 必须集中许多个 LED 的光能才能达到设计要求 , 但带来的缺点是线路异常复杂、散热不畅 , 为了平衡各个 LED 之间的电流、电压关系 , 必须设计复杂的供电电路。相比之下 , 大功率单体 LED 的功率远大于若干个小功率 LED 的功率总和 , 供电线路相对简单 , 散热结构完善 , 物理特性稳定。所以说 , 大功率 LED 器件的封装方法和封装材料并不能简单地套用传统的小功率 LED 器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率 , 给 LED 封装工艺、封装设备和封装材料提出了新的更高的要求。 1、大功率 LED 芯片 要想得到大功率 LED 器件 , 就必须制备合适的大功率 LED 芯片。国际上通常的制造大功率 LED 芯片的方法有如下几种: ①加大尺寸法。通过增大单体 LED 的有效发光面积和尺寸 , 促使流经 TCL 层的电流均匀分布 , 以达到预期的光通量。但是 , 简单地增大发光面积无法解决散热问题和出光问题 , 并不能达到预期的光通量和实际应用效果。 ②硅底板倒装法。首先制备出适合共晶焊接的大尺寸 LED 芯片 , 同时制备出相应尺寸的硅底板 , 并在硅底板上制作出供共晶焊接用的金导电层及引出导电层(超声金丝球焊点 , 再利用共晶焊接设备将大尺寸 LED 芯片与硅底板焊接在一起。这样的结构较为合理 , 既考虑了出光问题又考虑到了散热问题 , 这是目前主流的大功率 LED 的生产方式。 美国 Lumileds 公司于 2001年研制出了 AlGaInN 功率型倒装芯片 (FCLED结 构 , 其制造流程是:首先在外延片顶部的 P 型 GaN 上淀积厚度大于 500A 的 NiAu 层 , 用于欧姆接触和背反射 ; 再采用掩模选择刻蚀掉 P 型层和多量子阱有源层 , 露

大功率照明级LED封装技术

大功率照明级LED封装技术 大功率LED器件的封装方法和封装材料并不能简单地套用传统的小功率LED器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率,给LED封装工艺、封装设备和封装材料提出了新的更高的要求。 从实际应用的角度来看,安装使用简单、体积相对较小的大功率LED器件在大部分的照明应用中必将取代传统的小功率LED器件。由小功率LED组成的照明灯具为了满足照明的需要,必须集中许多个LED的光能才能达到设计要求,但带来的缺点是线路异常复杂、散热不畅,为了平衡各个LED之间的电流、电压关系,必须设计复杂的供电电路。相比之下,大功率单体LED的功率远大于若干个小功率LED的功率总和,供电线路相对简单,散热结构完善,物理特性稳定。所以说,大功率LED器件的封装方法和封装材料并不能简单地套用传统的小功率LED器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率,给LED封装工艺、封装设备和封装材料提出了新的更高的要求。 1、大功率LED芯片 要想得到大功率LED器件,就必须制备合适的大功率LED芯片。国际上通常的制造大功率LED芯片的方法有如下几种:

①加大尺寸法。通过增大单体LED的有效发光面积和尺寸,促使流经TCL 层的电流均匀分布,以达到预期的光通量。但是,简单地增大发光面积无法解决散热问题和出光问题,并不能达到预期的光通量和实际应用效果。 ②硅底板倒装法。首先制备出适合共晶焊接的大尺寸LED芯片,同时制备出相应尺寸的硅底板,并在硅底板上制作出供共晶焊接用的金导电层及引出导电层(超声金丝球焊点),再利用共晶焊接设备将大尺寸LED芯片与硅底板焊接在一起。这样的结构较为合理,既考虑了出光问题又考虑到了散热问题,这是目前主流的大功率LED的生产方式。 美国Lumileds公司于2001年研制出了AlGaInN功率型倒装芯片(FCLED)结构,其制造流程是:首先在外延片顶部的P型GaN上淀积厚度大于500A的NiAu层,用于欧姆接触和背反射;再采用掩模选择刻蚀掉P型层和多量子阱有源层,露出N型层;经淀积、刻蚀形成N型欧姆接触层,芯片尺寸为1mm×1mm,P型欧姆接触为正方形,N型欧姆接触以梳状插入其中,这样可缩短电流扩展距离,把扩展电阻降至最小;然后将金属化凸点的AlGaInN芯片倒装焊接在具有防静电保护二极管(ESD)的硅载体上。 ③陶瓷底板倒装法。先利用LED晶片通用设备制备出具有适合共晶焊接电极结构的大出光面积的LED芯片和相应的陶瓷底板,并在陶瓷底板上制作出共晶焊接导电层及引出导电层,然后利用共晶焊接设备将大尺寸LED芯片与陶瓷底板焊接在一起。这样的结构既考虑了出光问题也考虑到了散热问题,并且采用的陶瓷底板为高导热陶瓷板,散热效果非常理想,价格又相对较低,所以为目前较为适宜的底板材料,并可为将来的集成电路一体化封装预留空间。

LED十大封装企业

1.厦门三安光电 (主流全色系超高亮度LED 芯片,各项性能指标领先,蓝、绿光ITO(氧化铟锡)芯片的性能指标已接近国际最高指标,在同行内具有较强竞争力)厦门三安电子有限公司是目前国内最大、国际一流的超高亮度发光二极管外延及芯片产业化基地,占地5万多平方米。公司目前的产品主要有全色系LED外延片、芯片、光通讯核心元件等,产品技术指标属世界先进水平。公司被国家科技部列入国家半导体照明工程龙头企业。 2.大连路美(路美拥有上百个早期国际国内核心专利,,范围横跨外延、芯片、封装、灯具、发光粉等。)连路美芯片科技有限公司是由美国路美光电公司与大连路明科技集团公司共同投资设立的中外合资企业,公司总投资1.5亿美元,占地面积10.8万平米,总建筑面积63515平米,专业从事高品质LED半导体发光芯片和LD激光芯片的研发、生产与制造。美国路美光电公司的前身为美国纳斯达克上市公司AXT的光电公司,技术水平处于世界前四名。 3.杭州士兰明芯(其技术优势在于芯片制造工艺,同时受益母公司强大的集成电路和分立器件生产线经验。公司LED显示屏芯片的市场占有率超过50%,09年作为唯一的国产芯片厂商中标广场LED显示屏。)杭州士兰明芯科技有限公司是一家设计、制造高亮度全彩LED芯片的光电半导体器件公司。公司位于杭州经济技术开发区,为杭州士兰微电子股份有限公司与杭州士兰集成电路有限公司合资创办。公司注册资本金为1.5亿元人民币,占地75亩,拥有进口生产设备一百二十多台套。公司产品包括蓝、绿光氮化物半导体材料外延片和芯片两大部分,生产工艺技术已经达到国际水平。 4.武汉迪源光电(武汉迪源目前的产品主要以0.5W和1W LED芯片为主,月产能为10-15KK,主要生产45、50和60mil的大功率LED芯片,同时迪源已拥有1项美国专利和4项中国专利。) 5.广州晶科电子(是珠三角唯一一家大功率、高亮度、高稳定性蓝光LED芯片制造企业。晶科核心产品优势是功率型氮化镓蓝LED芯片和超大功率模组芯片(5W、10W、15W、30W等)。同时在美国和中国拥8项发明专利,并以每年申请2项发明专利的速度进行持续的技术创新,拥有晶片级倒装焊技术倒装大功率芯片制造技术及多芯片集成技术。) 6.上海蓝宝光电(以中科院物理所为技术支撑,拥有成熟的大功率倒装焊、RGB三基色集成、ITO镀膜、抗静电保护等核心技术。) 7.方大国科光电(母公司方大集团是国内第一家批量生产半导体照明用外延片和芯片企业。) 8.厦门晶宇光电(为全世界产量最大、产品最完善的LED外延片及芯片专业公司。) 晶宇光电成立于1996年,专业从事研发、生产超高亮度发光二极管(LED),为全世界产量最大、产品最完善的LED外延片及芯片专业公司。本公司重视自身技术的创新与发展,已获得的超过1,000件的国内外专利数量,关注产品及服务品质的提升,全力配合客户的发展需求。晶元光电将携手晶宇光电创造中国LED 产业在全世界发光发亮的愿景!

有机硅树脂

1 有机硅树脂 有机硅树脂(或称硅树脂)是有机硅高分子的重要组成部分,是以Si一O一Si 为主链,硅原子上联有有机基团、具有高度交联的半无机高聚物,它是由多官能团的有机硅烷经水解制成硅树脂预聚物,预聚物在加热或催化剂催化下进一步交联成具有三维网状结构的不溶、不熔的固体硅树脂。它可以是一种单体的均聚物,或是多种单体的共聚物。 硅树脂具有有机硅树脂和无机材料的特点,兼有优良的耐热性,电绝缘性,憎水性,耐候性及抗化学试剂等性能,在众多行业都具有广泛用途,特别是在航空航天,建筑,国防等领域及部门。 2 有机硅树脂分类 硅树脂有多种分类方法。 若按主链构成划分,可分为纯硅树脂及改性硅树脂两种,前者为典型的聚硅氧烷结构,根据硅原子上所连接的有机取代基种类又可细分为甲基硅树脂,苯基硅树脂及甲基苯基硅树脂等;改性硅树脂是杂化了有机树脂的热固性的聚硅氧烷,或者是使用其他硅氧烷及碳官能硅烷改性的聚硅氧烷。 若按固化反应机理分,硅树脂可分为三类。缩合型、铂催化加成型、过氧化物固化型。其中,缩合型硅树脂使用量最大,后两种或因成本过高,或因使用不便发展缓慢。 若按固化条件划分,可分为加热固化型,常温干燥型,常温固化型和紫外线固化型。 若按产品形态划分,可分为溶剂型,无溶剂型,水基型和乳液型。

3有机硅树脂的特点 3.1热稳定性 硅树脂是一种热固性树脂,它最突出的性能之一是优异的热氧化稳定性。这主要是由于硅树脂是以Si-O-Si为骨架,因此分解温度高,通常在250℃以下都稳定。有机硅树脂的耐热性还与硅原子联接的有机基团的种类有关。与其它有机树脂相比,250℃下加热24小时后,聚苯乙烯失重为55.5%,还氧树脂为227,而有机硅树脂失重仅为2%一8%;350℃下加热24小时,一般有机树脂失重为70-90%,而硅树脂失重低于20%。 3.2电绝缘性 硅树脂具有优异的电绝缘性能。它在宽广的温度和频率范围内均能保持良好的电绝缘性能,由于耐热性好,因此硅树脂在高温下的电气特性降低很少,高频特性随频率变化也极小。一般硅树脂的电击穿强度为50kv/mm,体积电阻为1013-1016欧姆·cm。硅树脂在室温下的介电损耗正切值为2x10-3左右,远低于一般有机树脂,而且随着温度的上升而下降,特别是温度高于100℃时更明显,这一特性对用作高压绝缘材料有特别的意义。 3.3.耐候性 硅树脂由于难以产生有紫外线引起的自由基反应,也不易产生氧化反应,所以具有突出的耐候性。因此即使在紫外线强烈照射下,硅树脂也耐泛黄,使用耐光颜料并以有机硅树脂为基料的漆,其色彩可保持多年不变,同时不易发生粉化。有机树脂对有机硅树脂进行改性,其改性树脂的耐候性并不随共聚物中有机树脂的含量增加而成比例的下降。因此,即使含有50%有机树脂改性的硅树脂,仍然具有突出的耐候性。例如,醇酸树脂中只要添加10%的某些类型的硅树脂,就能显著提高产品的耐候性能。 3.4.耐水性 硅树脂由于分子中甲基的排列使其具有憎水性,因此硅树脂的吸水性小,而且,即使吸收了水分也会迅速放出从而恢复到原来的状态。而对一般的有机树脂,浸水后电气性能大大降低,吸收的水分也难以除掉,电气特性恢复较慢。 3.5机械性能

LED封装基本知识

LED封装基本知识 LED(发光二极管)封装是指发光芯片的封装,相比集成电路封装有较大不同。LED的封装不仅要求能够保护灯芯,而且还要能够透光,所以LED的封装对封装材料有特殊的要求。 封装简介 LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED。 自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,2000年开始在低、中光通量的特殊照明中获得应用。LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。 技术原理 大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,特别是大功率白光LED封装更是研究热点中的热点。

LED封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高LED性能;3.光学控制,提高出光效率,优化光束分布;4.供电管理,包括交流/直流转变,以及电源控制等。 LED封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,LED 封装先后经历了支架式(Lamp LED)、贴片式(SMD LED)、功率型LED(Power LED)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。 关于LED封装结构说明 LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形状,有这样几种作

大功率LED封装工艺系列之焊线篇

大功率LED封装工艺系列之焊线篇 大功率LED封装工艺系列之焊线篇 一、基础知识 1. 目的 在压力、热量和超声波能量的共同作用下,使金丝在芯片电极和外引线 键合区之间形成 良好的欧姆接触,完成内外引线的连接。 2. 技术要求 2.1 金丝与芯片电极、引线框架键合区间的连接牢固 2.2 金丝拉力:25μm金丝F最小>5CN,F平均>6CN: 32μm金丝F最 小>8CN,F平均>10CN。 2.3 焊点要求 2.3.1金丝键合后第一、第二焊点如图(1)、图(2) 2.3.2 金球及契形大小说明

金球直径A: ф25um金丝:60-75um,即为Ф的2.4-3.0倍; 球型厚度H:ф25um金丝:15-20um,即为Ф的0.6-0.8倍; 契形长度D: ф25um金丝:70-85um,即为Ф的2.8-3.4倍; 2.3.3 金球根部不能有明显的损伤或变细的现象,契形处不能有明显的 裂纹 2.4 焊线要求 2.4.1 各条金丝键合拱丝高度合适,无塌丝、倒丝,无多余焊丝 2.5 金丝拉力 2.5.1第一焊点金丝拉力以焊丝最高点测试,从焊丝的最高点垂直引线

框架表面在显微镜观察下向上拉,测试拉力。如图所示: 键合拉力及断点位置要求: 3.工艺条件 由于不同机台的参数设置都不同,所以没有办法统一。我在这里就简单 的说一下主要要设置的地方: 键合温度、第一第二焊点的焊接时间、焊接压力、焊接功率、拱丝高度、 烧球电流、尾丝长度等等。

4.注意事项 4.1 不得用手直接接触支架上的芯片以及键合区域。 4.2 操作人员需佩带防静电手环,穿防静电工作服,避免静电对芯片 造成伤害。 4.3 材料在搬运中须小心轻放,避免静电产生及碰撞,需防倒丝、塌丝、 断线及沾附杂物。 4.4 键合机台故障时,应及时将在键合的在制品退出加热板,避免材料在加热块上烘烤过久而造成银胶龟裂及支架变色。 二、键合设备

大功率LED封装工艺技术

大功率LED 封装工艺技术 【摘要】LED 是一种绿色照明光源,其核心是PN 结,原理是多数载流子与少数注入PN 结的载流子进行复合,从而产生光子。LED 封装是LED 的关键技术,主要负责管芯保护、可见光及电信号输出等工作。LED 管芯结构、材料质量、几何形状、成本、封装内部结构等直接影响着大功率LED 的稳定性、均匀性和发光效率。本文对LED 的封装形式、大功率LED 封装关键技术等问题作了详细的分析和系统的阐述。 【关键词】大功率LED ;封装工艺;技术研究 LED 工艺主要包括芯片设计、芯片封装。就目前来看,广大研究者一直致力于大功率LED 封装技术及其散热技术的研究,以求取得更好的研究成果。大功率LED 封装的工艺流程虽较为简单,但实际工艺操作却比较复杂,某个工艺流程不注意便会对LED 的使用寿命造成直接的影响。因而在进行大功率LED 封装时,应对诸多的影响因素(如电、光、热、机械等)进行充分考虑,以便满足设计要求。如电学方面应对大功率LED 的驱动电源设计等情况进行充分考虑;光学方面应对大功率LED 的光衰问题进行充分考虑;热学方面应对大功率LED 的散热问题进行充分考虑;机械方面应对LED 封装的形式等进行充分考虑。

1 LED 的封装形式 随着社会的发展和科技的进步,LED 的封装形式也在不断趋于完善,封装形式繁多,如引脚式LED 封装、系统封装式LED 封装、表面组装贴片式LED 封装、板上芯片直接式LED 封装等,具体作以下介绍: 1.1 引脚式LED 封装形式 引脚式LED 封装形式一般应用在小功率LED 封装当中,通常情况下见到的普通发光二极管大多采用引脚式LED 封装形式,应用比较普遍。引脚式LED 封装形式的散热问题比较好解决,主要是其热量由负极引脚架直接散发到PCB 板上,但该种封装形式在实际的使用当中仍存在一定的缺点和不足一一热阻较大,因而缩短了LED的使用寿命。 1.2 系统封装式LED 封装形式 系统封装式LED 封装形式的发展和应用时间相对较短,该种封装形式满足了系统小型化和系统便携式的诸多要求。系统封装式LED 封装形式较其他封装形式来说,成本较低,且具有较高的集成度,兼容性好,能够实现一个封装内多个LED 芯片的组装工作。 1.3 表面组装贴片式LED 封装 表面组装贴片式LED 封装亦是比较新型的一种LED 封装形式,该种封装技术的原理是在PCB 表面制定位置上贴、焊封装好的LED 器件。该种封装形式技术优势是具有较好的高频特性、较强的可

相关文档